CN105944152A - 可吸收防粘医用膜的制备方法 - Google Patents

可吸收防粘医用膜的制备方法 Download PDF

Info

Publication number
CN105944152A
CN105944152A CN201610410049.3A CN201610410049A CN105944152A CN 105944152 A CN105944152 A CN 105944152A CN 201610410049 A CN201610410049 A CN 201610410049A CN 105944152 A CN105944152 A CN 105944152A
Authority
CN
China
Prior art keywords
preparation
polylactic acid
medical film
absorbable
sticking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610410049.3A
Other languages
English (en)
Other versions
CN105944152B (zh
Inventor
吴新谦
张均明
林水东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longyan Cercis Innovation Research Institute
Original Assignee
Longyan Cercis Innovation Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longyan Cercis Innovation Research Institute filed Critical Longyan Cercis Innovation Research Institute
Priority to CN201610410049.3A priority Critical patent/CN105944152B/zh
Publication of CN105944152A publication Critical patent/CN105944152A/zh
Application granted granted Critical
Publication of CN105944152B publication Critical patent/CN105944152B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了可吸收防粘医用膜的制备方法,采用二氯甲烷和乙酸乙酯溶解相对分子质量为120000‑200000的聚乳酸,配制得到聚乳酸浓度为5‑8%的静电纺丝液,再通过静电纺丝工艺形成聚乳酸纳米纤维无纺毡,最后将聚乳酸纳米纤维无纺毡干燥后得到防粘连的可吸收医用膜。本发明工艺简单,制备得到的防粘连医用膜降解时间可控,且质量稳定、柔韧性和拉伸性好。

Description

可吸收防粘医用膜的制备方法
技术领域
本发明涉及医疗用品领域,特别设计一种可吸收防粘医用膜的制备方法。
背景技术
现有外科手术中,常采用防粘连医用膜作为物理屏障来防止术后粘连,避免周围疤痕组织长入与肌腱形成粘连,有效的预防肌腱粘连,能有效遮盖手术部位,可避免血肿的压迫。防粘连膜的选择性通透功能,既可以使滑液等营养物质进入,促进肌腱内源性愈合,又具有一定的透气性,有利于伤口愈合。
一般的防粘连膜均采用生物可吸收医用膜,如聚乳酸膜、透明质酸膜、壳聚糖膜等等。
市售的聚乳酸膜为聚乳酸与乙醇酸共聚物或聚乳酸均聚物的膜,质脆,柔韧性、拉伸性差,降解时间过长,在使用及安全性上都有一定的弊端。而透明质酸膜、壳聚糖膜和氧化纤维素膜,降解时间太短,不能在要求的时间内保持物理屏障的作用,而不能较好地完成防粘连的功能,另外壳聚糖膜柔韧性较差,给临床使用带来许多不便。
近年来也有有关将乳酸、聚乙二醇通过本体聚合的方法共聚,从而制得乳酸/聚乙二醇共聚物生物可降解材料的报道,其制成医用膜的方法主要有压延法、流延法、溶剂蒸发法,上述制备方法的成膜过程长,制备得到的乳酸/聚乙二醇共聚物生物可降解材料的柔韧性不够理想,且降解时间无法控制。
静电纺丝工艺由于其可控性强,应用于生产细胞支架时取得良好的效果。为此本发明人将静电纺丝工艺应用于可吸收防粘医用膜的制备中,然由于可吸收防粘医用膜要求降解时间可控,需要更强的膜强度,为此本发明人通过不断改进,研制出适于静电纺丝制备可吸收防粘医用膜的方法,本案由此产生。
发明内容
本发明提供的可吸收防粘医用膜的制备方法,工艺简单,制备得到的医用膜质量稳定、柔韧性和拉伸性好,且降解时间可调。
为了实现上述目的,本发明的技术方案如下:
可吸收防粘医用膜的制备方法,采用二氯甲烷和乙酸乙酯溶解相对分子质量为120000-200000的聚乳酸,配制得到聚乳酸浓度为5-8%的静电纺丝液,再通过静电纺丝工艺形成聚乳酸纳米纤维无纺毡,最后将聚乳酸纳米纤维无纺毡干燥后得到防粘连的可吸收医用膜。
所述聚乳酸为聚L-乳酸(PLLA)。
所述静电纺丝的条件为,电压12-23kV,喷丝头挤出速度0.02-0.15ml/min,接收距离15-25cm。
所述干燥条件为,将聚乳酸纳米纤维无纺毡放置在15-50℃的干燥箱内干燥3-30小时。
采用上述方案后,本发明通过采用二氯甲烷和乙酸乙酯共同作为溶剂,改善了纺丝过程的稳定性,从而利于提高纺丝后纤维的强度,通过选择不同相对分子质量的聚乳酸,通过改变静电纺丝的工艺条件,即可制备得到体内降解可靠,且具备不同降解时间的可吸收防粘医用膜,并且得到的医用膜厚度均匀,质量稳定,柔韧性和拉伸性好。
具体实施方式
为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。
实施例一
将分子量160000的聚L-乳酸(PLLA)5克,加入一定量的二氯甲烷和乙酸乙酯,配制成5%PLLA纺丝液。
将该纺丝液注入注射器中并固定在注射泵上。将喷丝口(针头) 与高压电源阳极输出端相连, 阴极输出端与金属接收屏相接, 这样就在高分子溶液上施加了一个高压静电场。量出两电极间的距离,即喷丝口到阴极接收金属片之间的距离。
静电纺丝条件为,调节电压到15kV及喷丝头挤出速度0.02ml/min, 接收距离15厘米。约4小时后,制得PLLA纳米纤维无纺毡。
然后将纳米纤维无纺毡在50℃的干燥箱内干燥6小时,制备得到可吸收防粘医用膜。制备得到的可吸收防粘医用膜降解时间为14周,其断裂伸长率为96%,拉伸模量为1.05Mpa。
实施例二
将分子量120000的聚L-乳酸(PLLA)5克,加入一定量的二氯甲烷和乙酸乙酯,配制成8%PLLA纺丝液。
将该纺丝液注入注射器中并固定在注射泵上。将喷丝口(针头) 与高压电源阳极输出端相连, 阴极输出端与金属接收屏相接, 这样就在高分子溶液上施加了一个高压静电场。量出两电极间的距离,即喷丝口到阴极接收金属片之间的距离。
静电纺丝条件为,调节电压到20kV及喷丝头挤出速度0.03ml/min, 接收距离18厘米。约4小时后,制得PLLA纳米纤维无纺毡。
然后将PLLA纳米纤维无纺毡在15℃的干燥箱内干燥30小时,制备得到可吸收防粘医用膜。制备得到的可吸收防粘医用膜降解时间为8周,其断裂伸长率为86%,拉伸模量为0.95Mpa。
实施例三
将分子量200000的聚L-乳酸(PLLA)5克,加入一定量的二氯甲烷和乙酸乙酯,配制成6%PLLA纺丝液。
将该纺丝液注入注射器中并固定在注射泵上。将喷丝口(针头) 与高压电源阳极输出端相连, 阴极输出端与金属接收屏相接, 这样就在高分子溶液上施加了一个高压静电场。量出两电极间的距离,即喷丝口到阴极接收金属片之间的距离。
静电纺丝条件为,调节电压到20kV及喷丝头挤出速度0.15ml/min, 接收距离23厘米。约8小时后,制得PLLA纳米纤维无纺毡。
然后将纳米纤维无纺毡在25℃的干燥箱内干燥20小时,制备得到可吸收防粘医用膜。制备得到的可吸收防粘医用膜降解时间为24周,其断裂伸长率为110%,拉伸模量为1.15Mpa。
由本发明方法制备得到的可吸收防粘医用膜的其它性能如下:
医用膜孔径为3-20μm,厚度为15-80μm,纤维直径200-1000nm;
特性粘数:0.4~1.4;
重金属含量:小于10μg/g;
溶血率小于5%;
烧灼残渣:小于0.2%;
无致敏反应;
皮肤刺激试验:无刺激反应;
细胞毒性:小于I级。
以上仅为本发明的较佳实施例,并非对本发明的保护范围的限定。凡依本案的设计思路所做的等同变化,均落入本案的保护范围。

Claims (4)

1.可吸收防粘医用膜的制备方法,其特征在于:采用二氯甲烷和乙酸乙酯溶解相对分子质量为120000-200000的聚乳酸,配制得到聚乳酸浓度为5-8%的静电纺丝液,再通过静电纺丝工艺形成聚乳酸纳米纤维无纺毡,最后将聚乳酸纳米纤维无纺毡干燥后得到防粘连的可吸收医用膜。
2.如权利要求1所述的可吸收防粘医用膜的制备方法,其特征在于:所述聚乳酸为聚L-乳酸(PLLA)。
3.如权利要求1所述的可吸收防粘医用膜的制备方法,其特征在于:所述静电纺丝的条件为,电压12-23kV,喷丝头挤出速度0.02-0.15ml/min,接收距离15-25cm。
4.如权利要求1所述的可吸收防粘医用膜的制备方法,其特征在于:所述干燥条件为,将聚乳酸纳米纤维无纺毡放置在15-50℃的干燥箱内干燥3-30小时。
CN201610410049.3A 2016-06-13 2016-06-13 可吸收防粘医用膜的制备方法 Expired - Fee Related CN105944152B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610410049.3A CN105944152B (zh) 2016-06-13 2016-06-13 可吸收防粘医用膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610410049.3A CN105944152B (zh) 2016-06-13 2016-06-13 可吸收防粘医用膜的制备方法

Publications (2)

Publication Number Publication Date
CN105944152A true CN105944152A (zh) 2016-09-21
CN105944152B CN105944152B (zh) 2019-02-12

Family

ID=56908051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610410049.3A Expired - Fee Related CN105944152B (zh) 2016-06-13 2016-06-13 可吸收防粘医用膜的制备方法

Country Status (1)

Country Link
CN (1) CN105944152B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104056297A (zh) * 2014-06-18 2014-09-24 四川大学 一种聚乳酸基复合材料手术医用膜及其制备方法
CN104955445A (zh) * 2012-05-09 2015-09-30 优势医疗公司 多晶型物组合物及其制造方法和用途
CN105396181A (zh) * 2015-08-24 2016-03-16 武汉医佳宝生物材料有限公司 一种可降解支架医用膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104955445A (zh) * 2012-05-09 2015-09-30 优势医疗公司 多晶型物组合物及其制造方法和用途
CN104056297A (zh) * 2014-06-18 2014-09-24 四川大学 一种聚乳酸基复合材料手术医用膜及其制备方法
CN105396181A (zh) * 2015-08-24 2016-03-16 武汉医佳宝生物材料有限公司 一种可降解支架医用膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAZIM J. HAROOSH等: ""Electrospun PLA/PCL Fibers with Tubular Nanoclay:Morphological and Structural Analysis"", 《JOURNAL OF APPLIED POLYMER SCIENCE》 *

Also Published As

Publication number Publication date
CN105944152B (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
Uppal et al. Hyaluronic acid nanofiber wound dressing—production, characterization, and in vivo behavior
Ghobeira et al. Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters
Sadeghi et al. Electrospun polyvinyl alcohol/gelatin/chondroitin sulfate nanofibrous scaffold: Fabrication and in vitro evaluation
Kim et al. Electrospinning of PCL/PVP blends for tissue engineering scaffolds
CN101623517B (zh) 一种医用防粘连膜及其制备方法
WO2017071267A1 (zh) 一种双层结构的防粘连膜及其制备方法
Yoon et al. Fabrication of Microfibrous and Nano‐/Microfibrous Scaffolds: Melt and Hybrid Electrospinning and Surface Modification of Poly (L‐lactic acid) with Plasticizer
Gultekinoglu et al. Preparation of poly (glycerol sebacate) fibers for tissue engineering applications
KR101182736B1 (ko) 코어-쉘 형태의 나노섬유 지지체 및 이의 제조방법
Trinca et al. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: physico-chemical properties and morphology
KR101501383B1 (ko) 직교 형태로 정렬된 튜브 형태의 나노섬유 지지체 및 이의 제조방법
Maleknia et al. Electrospinning of gelatin nanofiber for biomedical application
Mo et al. Electrospun nanofibers of collagen-chitosan and P (LLA-CL) for tissue engineering
Chung et al. Lamellar stack formation and degradative behaviors of hydrolytically degraded poly (ε‐caprolactone) and poly (glycolide‐ε‐caprolactone) blended fibers
Jafari et al. Development of an electrospun scaffold for retinal tissue engineering
Llorens et al. Hybrid nanofibers from biodegradable polylactide and polythiophene for scaffolds
Atari et al. The effect of different solvent systems on physical properties of electrospun poly (glycerol sebacate)/poly (ɛ-caprolactone) blend
Cork et al. Electrospinning and mechanical properties of P (TMC-co-LLA) elastomers
CN105944152B (zh) 可吸收防粘医用膜的制备方法
CA2520704C (en) Elastin molded article and production method thereof
JP5390274B2 (ja) 繊維積層体およびその製造方法
CN107007889B (zh) 一种术后防粘连高分子薄膜及其制备方法
JP2020084359A (ja) 不織布製造方法および不織布製造装置
Korkjas et al. An ultrasound-enhanced electrospinning for generating multilayered nanofibrous structures
Jeong et al. Electrospun poly (D, L-lactic acid)/gelatin membrane using green solvent for absorbable periodontal tissue regeneration

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190212

Termination date: 20210613