CN105934327A - 耐腐蚀空气动力整流件 - Google Patents

耐腐蚀空气动力整流件 Download PDF

Info

Publication number
CN105934327A
CN105934327A CN201480043514.3A CN201480043514A CN105934327A CN 105934327 A CN105934327 A CN 105934327A CN 201480043514 A CN201480043514 A CN 201480043514A CN 105934327 A CN105934327 A CN 105934327A
Authority
CN
China
Prior art keywords
corrosion
rectifying component
preform
thermoplastic film
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480043514.3A
Other languages
English (en)
Other versions
CN105934327B (zh
Inventor
H.贝默
P.A.布鲁姆
P.T.海登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LM Wind Power UK Ltd
Original Assignee
Blade Dynamics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blade Dynamics Ltd filed Critical Blade Dynamics Ltd
Publication of CN105934327A publication Critical patent/CN105934327A/zh
Application granted granted Critical
Publication of CN105934327B publication Critical patent/CN105934327B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • B29C70/0035Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties comprising two or more matrix materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • B29K2105/089Prepregs fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2675/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/95Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/70Treatments or modification of materials
    • F05B2280/702Reinforcements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

整流件主体(12)由设置在固化树脂中的至少一个加固纤维层形成。耐腐蚀预型件(14)固定至该整流件主体的外表面。耐腐蚀预型件包括熔合至纤维基底(22)的热塑性膜外层(20)。利用该整流件主体的固化树脂浸渍耐腐蚀预型件的纤维基底,该固化树脂将该预型件固定至该整流件主体。

Description

耐腐蚀空气动力整流件
技术领域
本发明涉及耐腐蚀空气动力整流件,且更具体而言,涉及用于转子叶片的耐腐蚀空气动力整流件。借助于作为用于风力涡轮叶片的耐腐蚀空气动力整流件的实际例子来在本文中描述本发明。然而,其容易适用于其他类型的暴露于腐蚀的表面,诸如,直升机转子叶片或风扇叶片。
背景技术
大的三叶片风力涡轮叶片典型地在处于75至100米每秒的范围中的末梢速度下旋转。对于一些双叶片涡轮,叶片可在高至130米每秒的末梢速度下旋转。这在叶片的末梢处以及沿前缘的外1/3引起非常严重的腐蚀情况,从而导致这些区域中的叶片损伤。尽管典型地期望风力叶片持续20年,但由于由对前缘的腐蚀引起的需要叶片修复的损伤,故通常不是这样的情形。然而,前缘的修复是不容易的,因其通常在叶片仍竖立在涡轮上的情况下执行。这还具有显著的成本和安全含意,特别是如果风力涡轮位于近海。
为了减少由腐蚀导致的损伤,已知使用专门的涂料涂层来保护风力涡轮叶片的前缘。这些涂料(例如,可从德国汉堡的Mankiewicz Gebr . & Co. 获得的“BladeRep LEP 9”)具有大量地填充的且特别的配方以对风力涡轮叶片的前缘给予增强的保护。然而,尽管耐腐蚀性应用涂料的区域中增强,但在没有维护的情况下,由专门的涂料涂层提供的保护将随着时间变化而减弱,且不会持续20年的期望的叶片设计寿命。
用于风力涡轮叶片的腐蚀保护措施的另一公知示例为金属前缘的使用。然而,这些导致叶片末梢质量的增大,且因此增大其余叶片和涡轮的负荷。金属前缘还增大叶片的局部刚度,这可使空气动力性能恶化,且可由于它们的传导性特性而使叶片所需的避雷系统复杂化。
还公知将热塑性膜的保护层应用在风力涡轮叶片的前缘上。在图1中可见其示例,图1示出用于风力涡轮叶片的整流件110的前缘118,热塑性膜120的保护层固定至其。典型地,整流件110由复合层压主体112形成,且热塑性膜120之后作为具有压敏粘着剂119的层的薄(150mm宽)带应用于前缘118。此种膜提供良好的耐腐蚀性,但难以应用。而且,在热塑性膜120与层压主体112之间的粘合品质取决于整流件110的没有油脂和灰尘等的表面。
备选地,公知在整流件的模制期间将热塑性膜固定至叶片,如在国际公开号No. WO2006/006593中所公开的。以此方法,加固纤维层放置在靠模具表面铺开的膜的顶部上,接着应用树脂以将层连结。尽管该方法提供相对于之后应用的膜改善的粘合,但难以使用该方法控制在膜和整流件之间的界面的品质和在该膜正下方的基底的品质。
耐腐蚀整流件的另一公知示例可在国际公开号No. WO2010/117262中找到。该整流件包括由纤维加固叶片壳形成的复合主体和由热塑性层、玻璃纤维垫和固化的环氧树脂层形成的保护覆盖物。复合主体和保护覆盖物分开地形成,且该保护覆盖物在使用可热固化的环氧树脂层将两个构件固定在一起之前被设置在复合主体中的凹处中。然而,该途径需要零件的精确公差控制,以确保它们正确地装配在一起,且与热塑性膜的应用一样,覆盖物与复合主体之间的粘合的品质是不容易控制的,因为其取决于附接表面的清洁度。
发明内容
根据本发明的第一方面,提供用于转子叶片的耐腐蚀空气动力整流件,该整流件包括整流件主体,该整流件主体由设置在固化树脂中的至少一个加固纤维层、和固定至整流件主体外表面的耐腐蚀预型件形成,其中,耐腐蚀预型件包括熔合至纤维基底的热塑性膜外层,且其中,该耐腐蚀预型件的纤维基底浸渍有整流件主体的固化树脂,该固化树脂将预型件固定至整流件主体。
通过使用由直接熔合至纤维基底的热塑性膜形成的预型件和利用整流件主体的树脂固定耐腐蚀层,使得能够更好地控制整流件与膜之间的界面的品质和膜正下方的基底的品质,已发现这对整流件的长期腐蚀性能具有显著的影响。
热塑性膜可包括任何合适的热塑性材料,例如聚氨酯。优选地,热塑性膜包括脂族聚氨酯。已发现这些类型的聚氨酯拥有特别好的耐腐蚀性质、水解稳定性和低温挠性,从而使它们良好地适合用在空气动力整流件中。这些材料的表面能还允许它们与环氧树脂良好地粘合,从而进一步增强耐腐蚀层至复合主体的固定。更优选地,脂族聚氨酯以与图1中示出的热塑性膜120相同的方式包括来自复合主体的长链和短链聚醚、聚酯、或己内酯二醇、或它们的组合。
该膜可具有光滑的内和外表面。在优选实施例中,该膜具有有纹理的外表面。通过具有有纹理的外表面(即,在制作期间与模具接触的表面),当预型件放置在模具中且应用真空时,空气可容易逸出。这导致对最终耐腐蚀整流件的品质的进一步改善。
表面纹理可为任何合适的布置。优选地,表面纹理包括多个突出,该多个突出可包括优选地以规则阵列的形式布置的多个正方形和/或角锥形突出。已发现这导致特别高品质的整流件。
在优选实施例中,耐腐蚀层设置在整流件主体的外表面中且固定至其,使得耐腐蚀层的边缘与整流件主体齐平。通过该布置,该耐腐蚀层不具有自由边缘,从而降低热塑性膜从其边缘开始剥离的风险且避免跨过整流件的外表面的空气动力梯级,否则其可使空气动力性能恶化。
该耐腐蚀层可应用至转子叶片的整个长度。优选地,耐腐蚀层基本上限于叶片长度的最外三分之一。在此种布置中,该主体仍可包括在叶片长度的最外三分之一内侧的耐腐蚀层的一个或更多个补片,例如以在局部高腐蚀的区域中保护叶片。
该耐腐蚀层可在转子叶片的整个轮廓上,或在转子叶片的特定部分(诸如后缘)上固定至复合主体。优选地,耐腐蚀层在转子叶片的前缘处固定至整流件主体。
根据本发明的第二方面,提供制作用于转子叶片的耐腐蚀空气动力整流件的方法,该方法包括将热塑性膜熔合至纤维基底以形成耐腐蚀预型件、将该耐腐蚀预型件放置到模具中,使得该热塑性膜直接地靠着该模具表面放置、将至少一个加固纤维层放置到该模具中和该预型件的顶部上、利用可固化树脂浸渍该加固纤维层,以形成未固化的复合主体、和使树脂固化,以由该未固化的复合主体形成整流件主体,使得树脂浸渍该纤维基底且形成在该预型件与该加固纤维层之间的连续树脂基质,以将该预型件固定至该整流件主体。
该方法享有在上面关于本发明的第一方面提及的相同优势。
该热塑性膜可被直接地挤出或膜铸塑到纤维基底上。备选地,将热塑性膜熔合至纤维基底的步骤包括在至少60℃的温度下加热该热塑性膜和该纤维基底和将它们压到一起。这确保了该热塑性膜坚固地熔合至该纤维基底。优选地,该膜和基底在60℃和150℃之间的温度下熔合到一起。这确保了热塑性膜坚固地熔合至纤维基底且还避免热塑性膜的形状的可在更高的温度下发生的损失,从而提供高品质表面光洁度。
该预型件和整流件主体可在没有热塑性膜的任何显著的加热的情况下连结在一起。在优选实施例中,在树脂达到其最小粘性之前将热塑性膜加热至高于其维卡软化温度(Vicat softening temperature)。
浸渍加固纤维层的步骤可包括在将该加固纤维层放置到模具中之后利用可固化树脂浸渍该加固纤维层。例如,可在真空下利用树脂灌注该加固纤维层。优选地,浸渍加固纤维层的步骤包括在将该加固纤维层放置到模具中之前利用可固化树脂预先浸渍该加固纤维层。这允许高度受控的树脂含量和改善的过程可靠性和可重复性、降低的过程时间,且允许使用更高性能的树脂来改善整流件的机械性能。
该纤维基底可在不预先将任何树脂应用至其的情况下插入模具中。通过使用该途径,在预型件和未固化的复合主体的堆叠固化时,树脂在固化之前从未固化的复合材料迁移以浸渍纤维基底,以将耐腐蚀层固定至整流件主体。备选地,纤维基底可在将预型件放置到模具中之前预先浸渍有可固化树脂。
在固化步骤期间,该树脂可仅部分地浸渍纤维基底。这仍将导致在耐腐蚀层与整流件主体之间的牢固粘合。在优选实施例中,在固化步骤期间,树脂完全地浸渍纤维基底。这使树脂能够对热塑性膜提供额外的化学连接,以改善热塑性膜对整流件的固定。
该耐腐蚀层和未固化的复合材料可在任何合适的温度下固化在一起或“共同固化”。优选地,该固化步骤包括将可固化树脂加热至从60℃到130℃的温度。这允许在两个层之间的牢固固定,但阻止可由更高的温度导致的热塑性膜的扭曲和差的表面光洁度。
在优选实施例中,该方法还包括在将预型件放置在模具中的步骤之前,更具体而言在将热塑性膜熔合至纤维基底以形成该预型件的步骤期间,将表面纹理应用至热塑性膜外表面的步骤。如在上面关于本发明的第一方面所提及的,当将该预型件放置在模具中且应用真空时,该表面纹理允许空气更容易地逸出。这导致最终耐腐蚀整流件的品质的进一步改善。该表面纹理可为任何合适的布置。优选地,表面纹理包括多个突出,该多个突出可包括优选地以规则阵列的形式布置的多个正方形和/或角锥形突出。已发现这导致特别高品质的整流件。
附图说明
现在将参照以下附图来描述本发明的示例,在该附图中:
图1是用于风力涡轮叶片的常规耐腐蚀空气动力整流件的前缘的截面图;
图2是用于根据本发明的风力涡轮叶片的耐腐蚀空气动力整流件的前缘的截面图;且
图3至6是在制作的各种阶段处的图2的整流件的截面示意图。
具体实施方式
参考图2,示出耐腐蚀空气动力整流件10。耐腐蚀空气动力整流件10由整流件主体12和耐腐蚀预型件14形成,该耐腐蚀预型件14在整流件10的前缘18处固定至整流件主体12的外表面16。
参考图3和4,耐腐蚀预型件14包括熔合至纤维基底22的热塑性膜20外层。热塑性膜20由脂族聚氨酯形成,其接近600微米厚且可使用长链和短链聚醚、聚酯、或己内酯二醇而产生。聚醚类型具有更好的水解稳定性和低温挠性,聚酯类型具有更好的机械性质,且己内酯提供在聚醚和聚酯类型的性质之间的良好折衷。在该示例中,使用己内酯二醇。这形成膜20,该膜20具有接近75至95的邵氏A硬度、至少300%的延长、和在40至44 mN/m的区域中的表面能量。纤维基底22为玻璃纤维织品预型件,其为多轴向的且具有接近150g/m2的重量。
热塑性膜20和纤维基底22在接近1bar的额外压力下被加热至60至150℃的温度且被加压在一起接近60秒。这导致膜20和基底22熔合在一起,从而形成耐腐蚀预型件14,如图3所示。该熔合过程形成在膜20与基底22之间的非常坚固的连接。此外,在该阶段处,耐腐蚀预型件14为非常可挠的且可容易地放置到模具中以用于复杂的形状,诸如用于风力涡轮叶片前缘。
参考图5和6,示出整流件10的制作。将耐腐蚀预型件14在热塑性膜20靠着模具24的表面的情况下放置到模具24中。接下来,将由预先浸渍有环氧树脂的玻璃或碳纤维形成的预浸料26放置到耐腐蚀预型件14上,以形成整流件所需的典型的复合层压材料,如在图5中示意性地例示的。
耐腐蚀预型件14和预浸料26的层然后以与正常的预浸料处理相同的方式在真空下且在60至130℃的温度下共同固化接近12小时。在耐腐蚀层14和预浸料26的层的堆叠固化时,来自预浸料26的树脂迁移到纤维基底22中且浸渍该纤维基底22。树脂然后完全地固化,以由预浸料26形成整流件主体12,且将耐腐蚀预型件14固定至复合主体12。在这样做时,树脂形成穿过复合主体12和耐腐蚀预型件14的连续基质,以将两个层牢固地粘合在一起。树脂还形成与热塑性膜20的化学连接,从而进一步加强耐腐蚀预型件14对复合主体12的固定。因此,良好地控制在整流件主体12与耐腐蚀预型件14之间的所得的界面,且整流件主体12和纤维基底22提供在热塑性膜20正下方的非常高品质的基底,以改善长期腐蚀性能。
因为整流件主体12和耐腐蚀预型件14共同固化,故整流件主体12围绕耐腐蚀预型件14成形,以便耐腐蚀预型件14的边缘放置成与整流件主体12齐平。这给予所得的整流件10以光滑的外轮廓,如图6所示。该光滑的轮廓减小耐腐蚀预型件14在空气动力性能上的影响且避免出现自由边缘,否则自由边缘可能导致耐腐蚀预型件14更容易从整流件主体12移除。

Claims (24)

1. 一种用于转子叶片的耐腐蚀空气动力整流件,所述整流件包括:
整流件主体,其由设置在固化树脂中的至少一个加固纤维层形成;和
耐腐蚀预型件,其固定至所述整流件主体的外表面,
其中,所述耐腐蚀预型件包括熔合至纤维基底的热塑性膜外层,和
其中,所述耐腐蚀预型件的纤维基底浸渍有所述整流件主体的固化树脂,所述固化树脂将所述预型件固定至所述整流件主体。
2. 根据权利要求1所述的耐腐蚀空气动力整流件,其中,所述热塑性膜包括脂族聚氨酯。
3. 根据权利要求1或权利要求2所述的耐腐蚀空气动力整流件,其中,所述热塑性膜具有有纹理的外表面。
4. 根据权利要求3所述的耐腐蚀空气动力整流件,其中,所述有纹理的外表面包括多个突出。
5. 根据权利要求4所述的耐腐蚀空气动力整流件,其中,所述多个突出包括优选地以规则阵列的形式布置的多个正方形和/或角锥形突出。
6. 根据任一前述权利要求所述的耐腐蚀空气动力整流件,其中,耐腐蚀层固定至所述整流件主体的外表面,使得所述耐腐蚀层的边缘与所述整流件主体齐平。
7. 一种转子叶片,其包括根据任一前述权利要求的耐腐蚀空气动力整流件。
8. 根据权利要求7所述的转子叶片,其中,所述耐腐蚀层被基本上限于叶片长度的最外三分之一。
9. 根据权利要求7或权利要求8所述的转子叶片,其中,耐腐蚀层在所述转子叶片的前缘处固定至所述整流件主体。
10. 一种风力涡轮,其包括根据权利要求1至6中的任一项的耐腐蚀空气动力整流件。
11. 一种制作用于转子叶片的耐腐蚀空气动力整流件的方法,其包括:
将热塑性膜熔合至纤维基底,以形成耐腐蚀预型件;
将所述耐腐蚀预型件放置到模具中,使得所述膜直接地靠着模具表面放置;
将至少一个加固纤维层放置到所述模具中和所述预型件的顶部上;
利用可固化树脂浸渍所述加固纤维层,以形成未固化的复合主体;和
固化所述树脂,以由所述未固化的复合主体形成整流件主体,使得所述树脂浸渍所述纤维基底且形成在所述预型件与所述加固纤维层之间的连续的树脂基质,以将所述预型件固定至所述整流件主体。
12. 根据权利要求11所述的方法,其中,将所述热塑性膜熔合至所述纤维基底的步骤包括在至少60℃、更优选地在60℃和150℃之间的温度下加热所述热塑性膜和所述纤维基底,且将它们压到一起。
13. 根据权利要求11所述的方法,其中,将所述热塑性膜熔合至所述纤维基底的步骤包括将所述热塑性膜直接地挤出或膜铸塑到所述纤维基底上。
14. 根据权利要求11至13中的任一项所述的方法,其中,在树脂达到其最小粘性之前将所述热塑性膜加热至高于其维卡软化温度。
15. 根据权利要求11至14中的任一项所述的方法,其中,所述热塑性膜包括脂族聚氨酯。
16. 根据权利要求11至15中的任一项所述的方法,其中,浸渍所述加固纤维层的步骤包括在将所述加固纤维层放置到所述模具中之前,利用所述可固化树脂预先浸渍所述加固纤维层。
17. 根据权利要求11至16中的任一项所述的方法,还包括在将所述预型件放置到所述模具中之前,利用所述可固化树脂预先浸渍所述纤维基底。
18. 根据权利要求11至17中的任一项所述的方法,其中,在所述固化步骤期间,所述树脂完全地浸渍所述纤维基底。
19. 根据权利要求11至18中的任一项所述的方法,其中,所述固化步骤包括将所述可固化树脂加热至从90℃到130℃的温度。
20. 根据权利要求11至19中的任一项所述的方法,还包括在将所述预型件放置在所述模具中的步骤之前,更优选地,在将所述热塑性膜熔合至所述纤维基底以形成所述预型件的步骤期间,对所述热塑性膜的外表面应用表面纹理的步骤。
21. 根据权利要求20所述的方法,其中,所述表面纹理包括多个突出。
22. 根据权利要求21所述的方法,其中,所述多个突出包括优选地以规则阵列的形式布置的多个正方形和/或角锥形突出。
23. 一种基本上如在本文中且参考图2至6所描述的用于转子叶片的耐腐蚀空气动力整流件。
24. 一种基本上如在本文中且参考图2至6所描述的制作用于转子叶片的耐腐蚀空气动力整流件的方法。
CN201480043514.3A 2013-08-01 2014-07-30 耐腐蚀空气动力整流件 Active CN105934327B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1313779.9A GB201313779D0 (en) 2013-08-01 2013-08-01 Erosion resistant aerodynamic fairing
GB1313779.9 2013-08-01
PCT/GB2014/052337 WO2015015202A1 (en) 2013-08-01 2014-07-30 Erosion resistant aerodynamic fairing

Publications (2)

Publication Number Publication Date
CN105934327A true CN105934327A (zh) 2016-09-07
CN105934327B CN105934327B (zh) 2019-03-19

Family

ID=49223995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480043514.3A Active CN105934327B (zh) 2013-08-01 2014-07-30 耐腐蚀空气动力整流件

Country Status (9)

Country Link
US (1) US10240578B2 (zh)
EP (1) EP3027385B1 (zh)
CN (1) CN105934327B (zh)
BR (1) BR112016002116B1 (zh)
CA (1) CA2919751C (zh)
DK (1) DK3027385T3 (zh)
ES (1) ES2808552T3 (zh)
GB (1) GB201313779D0 (zh)
WO (1) WO2015015202A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108025519A (zh) * 2015-07-17 2018-05-11 Lm Wp 专利控股有限公司 具有防蚀护罩的风轮机叶片
CN109878124A (zh) * 2017-11-21 2019-06-14 安萨尔多能源瑞士股份公司 叶片和用于制造该叶片的方法
CN111231369A (zh) * 2020-02-18 2020-06-05 中材科技风电叶片股份有限公司 防护壳体及其制备方法、风电叶片的制造方法
CN113085219A (zh) * 2020-01-09 2021-07-09 乌本产权有限公司 用于制造风力发电设备转子叶片的方法

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075014A1 (en) * 2013-11-19 2015-05-28 Lm Wp Patent Holding A/S A system and method for manufacturing a wind turbine blade component
DK201570881A1 (da) * 2015-05-26 2017-01-30 Blade Repair Solutions Ivs Fremgangsmåde til etablering af erosionsbestandig overfladedel på en vindmøllevinge, fremgangsmåde til dannelse af en erosionsbestandig belægning, vindmøllevinge med eftermonteret belægning i og omkring områder hvor vingen er særligt udsat for erosionsskader, belægning til montering på en vindmøllevinges forkant.
JP6421078B2 (ja) * 2015-05-28 2018-11-07 エムエイチアイ ヴェスタス オフショア ウィンド エー/エス 風車翼及び風力発電装置、並びに風車翼の製造又は改造方法
US10337490B2 (en) 2015-06-29 2019-07-02 General Electric Company Structural component for a modular rotor blade
US9897065B2 (en) 2015-06-29 2018-02-20 General Electric Company Modular wind turbine rotor blades and methods of assembling same
US10072632B2 (en) 2015-06-30 2018-09-11 General Electric Company Spar cap for a wind turbine rotor blade formed from pre-cured laminate plates of varying thicknesses
US10077758B2 (en) 2015-06-30 2018-09-18 General Electric Company Corrugated pre-cured laminate plates for use within wind turbine rotor blades
CA2992634C (en) * 2015-07-17 2022-10-04 Lm Wp Patent Holding A/S Wind turbine blade with anchoring sites
US9970304B2 (en) 2015-07-22 2018-05-15 General Electric Company Rotor blade root assembly for a wind turbine
US10060411B2 (en) 2015-07-22 2018-08-28 General Electric Company Rotor blade root assembly for a wind turbine
US10533533B2 (en) 2015-08-26 2020-01-14 General Electric Company Modular wind turbine rotor blade constructed of multiple resin systems
US10830205B2 (en) 2015-08-26 2020-11-10 General Electric Company Rotor blades having thermoplastic components and methods of assembling same
US10253752B2 (en) 2015-08-26 2019-04-09 General Electric Company Rotor blade components formed from dissimilar thermoplastics and methods of assembling same
US10473086B2 (en) 2015-08-26 2019-11-12 General Electric Company Erosion resistant leading edge cap for a wind turbine rotor blade
US10113531B2 (en) 2015-08-26 2018-10-30 General Electric Company Methods for repairing wind turbine rotor blades
US10071532B2 (en) 2015-08-26 2018-09-11 General Electric Company Rotor blades having thermoplastic components and methods of assembling same
US10422315B2 (en) 2015-09-01 2019-09-24 General Electric Company Pultruded components for a shear web of a wind turbine rotor blade
US10584678B2 (en) 2015-09-01 2020-03-10 General Electric Company Shear web for a wind turbine rotor blade
US10533534B2 (en) 2015-09-09 2020-01-14 General Electric Company Composite layers for bonding components of a wind turbine rotor blade
US10151297B2 (en) 2015-09-14 2018-12-11 General Electric Company Methods for joining shear clips in wind turbine rotor blades
US10161381B2 (en) 2015-09-14 2018-12-25 General Electric Company Rotor blades having thermoplastic components and methods for joining rotor blade components
US10197041B2 (en) * 2015-09-14 2019-02-05 General Electric Company Methods for joining surface features to wind turbine rotor blades
US11125205B2 (en) 2015-09-14 2021-09-21 General Electric Company Systems and methods for joining blade components of rotor blades
US10138867B2 (en) 2015-09-14 2018-11-27 General Electric Company Methods for assembling rotor blades
US10240577B2 (en) 2015-09-22 2019-03-26 General Electric Company Thermoplastic airflow modifying elements for wind turbine rotor blades
US10107257B2 (en) 2015-09-23 2018-10-23 General Electric Company Wind turbine rotor blade components formed from pultruded hybrid-resin fiber-reinforced composites
US9981433B2 (en) 2015-09-23 2018-05-29 General Electric Company Methods for modifying wind turbine blade molds
US10213994B2 (en) 2015-09-23 2019-02-26 General Electric Company Methods for manufacturing spar caps for wind turbine rotor blades using thermoplastic-based composite plates
BR112018007902B1 (pt) * 2015-10-22 2022-10-04 Wobben Properties Gmbh Componente compósito em três camadas de hélice de turbina eólica
US10113532B2 (en) 2015-10-23 2018-10-30 General Electric Company Pre-cured composites for rotor blade components
US10316818B2 (en) 2016-03-21 2019-06-11 General Electric Company Thermoset component having a weldable thermoplastic interface
DE102016206661A1 (de) * 2016-04-20 2017-10-26 Innogy Se Verfahren zur Ertüchtigung von Rotorblättern bestehender Windkraftanlagen
US10422316B2 (en) 2016-08-30 2019-09-24 General Electric Company Pre-cured rotor blade components having areas of variable stiffness
CN110192026B (zh) 2016-12-20 2021-08-20 维斯塔斯风力系统有限公司 用于修复风轮机叶片的方法和系统
US11572861B2 (en) 2017-01-31 2023-02-07 General Electric Company Method for forming a rotor blade for a wind turbine
US11098691B2 (en) 2017-02-03 2021-08-24 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
US10830206B2 (en) 2017-02-03 2020-11-10 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
EP3357953A1 (en) 2017-02-06 2018-08-08 Nitto Denko Corporation Composition and method for prevention of leading edge erosion in wind turbines
US10641240B2 (en) 2017-02-21 2020-05-05 General Electric Company Methods of joining rotor blade components using thermoplastic welding
DK179701B1 (en) * 2017-09-06 2019-04-02 Blade Repair Solutions Ivs A method for reinforcing a wind turbine blade
US10961982B2 (en) 2017-11-07 2021-03-30 General Electric Company Method of joining blade sections using thermoplastics
US10920745B2 (en) 2017-11-21 2021-02-16 General Electric Company Wind turbine rotor blade components and methods of manufacturing the same
US10865769B2 (en) 2017-11-21 2020-12-15 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US11040503B2 (en) 2017-11-21 2021-06-22 General Electric Company Apparatus for manufacturing composite airfoils
US11390013B2 (en) 2017-11-21 2022-07-19 General Electric Company Vacuum forming mold assembly and associated methods
US11248582B2 (en) 2017-11-21 2022-02-15 General Electric Company Multiple material combinations for printed reinforcement structures of rotor blades
US10773464B2 (en) 2017-11-21 2020-09-15 General Electric Company Method for manufacturing composite airfoils
US11668275B2 (en) 2017-11-21 2023-06-06 General Electric Company Methods for manufacturing an outer skin of a rotor blade
US10913216B2 (en) 2017-11-21 2021-02-09 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US10821652B2 (en) 2017-11-21 2020-11-03 General Electric Company Vacuum forming mold assembly and method for creating a vacuum forming mold assembly
US11035339B2 (en) 2018-03-26 2021-06-15 General Electric Company Shear web assembly interconnected with additive manufactured components
US10821696B2 (en) 2018-03-26 2020-11-03 General Electric Company Methods for manufacturing flatback airfoils for wind turbine rotor blades
EP3966456A4 (en) * 2019-05-10 2022-12-21 Blade Dynamics Limited LONG RIM EXTENSION
US11981839B2 (en) 2019-09-30 2024-05-14 The Boeing Company Method and apparatus for fabrication of composite tooling
US20210094246A1 (en) * 2019-09-30 2021-04-01 The Boeing Company Method and apparatus for fabrication of composite tooling
US11713137B2 (en) 2019-10-25 2023-08-01 Goodrich Corporation Extruded elastomeric surface or erosion plys
EP3822478A1 (en) * 2019-11-15 2021-05-19 Siemens Gamesa Renewable Energy A/S Shell of a wind turbine blade
EP4071350A1 (en) * 2021-04-09 2022-10-12 LM Wind Power A/S A wind turbine blade with a fairing
WO2022214428A1 (en) * 2021-04-09 2022-10-13 Lm Wind Power A/S A wind turbine blade with a fairing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1034738A (en) * 1963-05-09 1966-07-06 Reinforced Plastics Ltd Improved method of bonding together thermo-plastic and thermo-setting materials
WO1995023179A1 (en) * 1994-02-23 1995-08-31 Wijngaart Adriaan Hubertus Joh Sheet material
CN101128307A (zh) * 2005-02-21 2008-02-20 空中客车德国有限公司 纤维复合结构元件和用于制造纤维复合结构元件的方法
CN201786551U (zh) * 2009-12-30 2011-04-06 力仓风力设备(上海)有限公司 风力发电机叶片前缘保护套
CN102448711A (zh) * 2009-04-10 2012-05-09 湘电达尔文有限责任公司 受防护的风力涡轮叶片、制造其的方法及风力涡轮

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2817192B1 (fr) * 2000-11-28 2003-08-08 Snecma Moteurs Ensemble forme par au moins une pale et une plate-forme de fixation de la pale, pour une turbomachine, et procede pour sa fabrication
US20090143511A1 (en) 2004-07-13 2009-06-04 Hitachi Chemical Co., Ltd. Encapsulated epoxy-resin molding compound, and electronic component device
GB0417634D0 (en) * 2004-08-09 2004-09-08 Structural Polymer Systems Ltd Mould
DE102006002198B4 (de) 2006-01-16 2011-04-28 Airbus Operations Gmbh Verfahren zur Herstellung eines Faserverbund-Bauelements
GB0805713D0 (en) * 2008-03-28 2008-04-30 Blade Dynamics Ltd A wind turbine blade
US20110194941A1 (en) * 2010-02-05 2011-08-11 United Technologies Corporation Co-cured sheath for composite blade
JP5059249B2 (ja) 2011-01-26 2012-10-24 藤倉ゴム工業株式会社 翼体及び該翼体の積層保護シート

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1034738A (en) * 1963-05-09 1966-07-06 Reinforced Plastics Ltd Improved method of bonding together thermo-plastic and thermo-setting materials
WO1995023179A1 (en) * 1994-02-23 1995-08-31 Wijngaart Adriaan Hubertus Joh Sheet material
CN101128307A (zh) * 2005-02-21 2008-02-20 空中客车德国有限公司 纤维复合结构元件和用于制造纤维复合结构元件的方法
CN102448711A (zh) * 2009-04-10 2012-05-09 湘电达尔文有限责任公司 受防护的风力涡轮叶片、制造其的方法及风力涡轮
CN201786551U (zh) * 2009-12-30 2011-04-06 力仓风力设备(上海)有限公司 风力发电机叶片前缘保护套

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108025519A (zh) * 2015-07-17 2018-05-11 Lm Wp 专利控股有限公司 具有防蚀护罩的风轮机叶片
CN108025519B (zh) * 2015-07-17 2021-08-24 Lm Wp 专利控股有限公司 具有防蚀护罩的风轮机叶片
CN109878124A (zh) * 2017-11-21 2019-06-14 安萨尔多能源瑞士股份公司 叶片和用于制造该叶片的方法
CN109878124B (zh) * 2017-11-21 2022-05-13 安萨尔多能源瑞士股份公司 叶片和用于制造该叶片的方法
CN113085219A (zh) * 2020-01-09 2021-07-09 乌本产权有限公司 用于制造风力发电设备转子叶片的方法
CN111231369A (zh) * 2020-02-18 2020-06-05 中材科技风电叶片股份有限公司 防护壳体及其制备方法、风电叶片的制造方法

Also Published As

Publication number Publication date
CN105934327B (zh) 2019-03-19
BR112016002116A2 (pt) 2017-08-01
US20160215757A1 (en) 2016-07-28
WO2015015202A1 (en) 2015-02-05
GB201313779D0 (en) 2013-09-18
EP3027385B1 (en) 2020-04-29
ES2808552T3 (es) 2021-03-01
DK3027385T3 (da) 2020-08-03
EP3027385A1 (en) 2016-06-08
CA2919751C (en) 2021-04-13
BR112016002116B1 (pt) 2021-09-28
US10240578B2 (en) 2019-03-26
CA2919751A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
CN105934327B (zh) 耐腐蚀空气动力整流件
USRE47696E1 (en) Composite aerofoil
US20110194941A1 (en) Co-cured sheath for composite blade
JP6147436B2 (ja) 風力発電装置用のロータブレード要素、ロータブレード、並びにそのための製造方法、及びロータブレードを備えた風力発電装置
US9403335B2 (en) Wind turbine rotor blade with trailing edge comprising rovings
US20190226458A1 (en) Aerodynamic Shroud and Method
WO2018060297A1 (en) Protective cover system for protecting a leading edge of a wind turbine rotor blade
CN113635587B (zh) 制造风力涡轮机转子叶片的方法
EP3867500B1 (en) Gas turbine engine fibre-reinforced composite material component with protective shield, and corresponding manufacturing method
WO2015124760A1 (en) A method of manufacturing a turbine blade and a tubine blade
US11371483B2 (en) Method of manufacturing a shell of a wind turbine blade having improved leading edge erosion protection, method for manufacturing the wind turbine blade, shell, wind turbine blade and wind turbine
US20180126687A1 (en) Composite Structure
WO2024068339A1 (en) Resin joining portion for wind turbine blades
JP2024515554A (ja) フェアリング付き風力タービンブレード

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant