CN105930688A - 基于改进pso算法的蛋白质功能模块检测方法 - Google Patents

基于改进pso算法的蛋白质功能模块检测方法 Download PDF

Info

Publication number
CN105930688A
CN105930688A CN201610240098.7A CN201610240098A CN105930688A CN 105930688 A CN105930688 A CN 105930688A CN 201610240098 A CN201610240098 A CN 201610240098A CN 105930688 A CN105930688 A CN 105930688A
Authority
CN
China
Prior art keywords
particle
protein
module
population
int
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610240098.7A
Other languages
English (en)
Other versions
CN105930688B (zh
Inventor
郑相涵
李坤
于元隆
陈日清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201610240098.7A priority Critical patent/CN105930688B/zh
Publication of CN105930688A publication Critical patent/CN105930688A/zh
Application granted granted Critical
Publication of CN105930688B publication Critical patent/CN105930688B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations

Landscapes

  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Analytical Chemistry (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种基于改进PSO算法的蛋白质功能模块检测方法,以PPIN的拓扑结构为基础,根据存在相互作用的蛋白质建立邻接矩阵,再计算蛋白质间的距离dij;对于每个粒子,随机选取0~n之间的整数k,其中n为蛋白质的个数,求出其余各蛋白质到蛋白质k之间的距离作为当前粒子的初始位置,粒子群中初始群体最优位置是以各蛋白质到中心蛋白质的距离作为粒子群体历史最优位置,粒子的种群规模取蛋白质个数的5倍;将惯性权重w和学习因子c2设为可调因子在PSO算法搜索得出最优解后,引入基于拓扑和功能信息的后处理策略。本发明有利于寻找最优解,防止陷入局部最优;模块划分更精确,模块数量更繁多。

Description

基于改进PSO算法的蛋白质功能模块检测方法
技术领域
本发明是基于原始的PSO(Particle swarm optimization)算法,对其进行改进后结合生物基因本体知识应用于生物蛋白质相互作用网络(Protein to Protein Interaction Network,PPIN)中蛋白质功能复合体的识别中来。
背景技术
随着人类基因组计划的完成,蛋白质组学的研究已经成为生命科学乃至自然科学领域中最重要的研究课题之一。因为蛋白质很少以独立个体的方式参与生命过程,而是通过蛋白质复合体的形式完成其生物学功能。因此蛋白质相互作用及相互作用网络的研究和分析很自然地成为理解生命活动中细胞组织、过程和功能的基础。目前,对蛋白质相互网络的研究,主要集中在检测蛋白质复合体和功能模块上,这个问题已转变为在蛋白质相互网络图中识别稠密子的问题。普遍的做法是将蛋白质网络表示成一个,其中节点表示蛋白质,边表示蛋白质之间的相互作用。这样,就可以利用各种聚类算法来挖掘蛋白质复合体和功能模块。
粒子群算法是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法,相对于其他聚类算法具有较大的优势,所以将其应用于蛋白质网络的识别问题上来。
发明内容
本发明的目的是基于原始的PSO(Particle swarm optimization)算法,对其进行改进后结合生物基因本体知识应用于生物蛋白质相互作用网络(Protein to Protein Interaction Network,PPIN)中蛋白质功能复合体的识别中来。
本发明采用以下技术方案实现:一种基于改进PSO算法的蛋白质功能模块检测方法,其特征在于,包括以下步骤:步骤S1:以PPIN的拓扑结构为基础,根据存在相互作用的蛋白质建立邻接矩阵,再根据距离公式(1)计算蛋白质间的距离dij
其中Int(i)和Int(j)分别代表蛋白质i和j具有邻接蛋白质的数量总和,|Int(i) ΔInt(j)|=|Int(i)∪Int(j)|-|Int(i)∩Int(j)|,以此得出蛋白质网络的距离矩阵;步骤S2:对于每个粒子,随机选取0~n之间的整数k,其中n为蛋白质的个数,求出其余各蛋白质到蛋白质k之间的距离作为当前粒子的初始位置,粒子群中初始群体最优位置是以各蛋白质到中心蛋白质的距离作为粒子群体历史最优位置,粒子的种群规模取蛋白质个数的5倍;步骤S3:将惯性权重w设为可调因子:w=0.9-a*0.4b;将学习因子c2也设为可调因子:c2=2.0*a/b,其中a为当前迭代次数,b为总迭代次数;步骤S4:在PSO算法搜索得出最优解后,引入基于拓扑和功能信息的后处理策略;基本PSO的数学描述:假设粒子群的初始种群大小有N,问题空间的维数为N,粒子的初始速度和位置随机产生,t时刻粒子i的速度为位置为 其中i=1,2,..,N,m∈N;将粒子i在搜索过程中达到过的最优位置记为整个粒子群在搜索过程中到达过的最优位置记为则在t+1时刻粒子i在j维空间的飞行速度和位置按如下公式进行更新:
(2)式中w为惯性权重函数值,c1,c2为学习因子,r1,r2为(0,1)之间的随机数,(4)式表示粒子的速度限制在[-vmax,vmax]之间,vmax为粒子最大速度;
粒子群的算法流程描述如下:
Step1:随机初始化粒子群中各个粒子的速度和位置,并且将各个粒子的初始个体最优位置设为粒子的初始位置,将所有个体最优位置中的最优位置设为初始粒子群的群体最优位置;
Step2:对各个粒子的评估函数值进行计算;
Step3:如果评估函数值优于其原先评估函数值,则把当前位置更新为粒子的个体最优位置;如果评估函数值优于群体评估函数值,则把当前位置更新为群 体历史最优位置;
Step4:更新各个粒子的速度和位置,更新公式为(2)~(4);
Step5:判断是否达到最大迭代次数,如果达到,则输出最优解,结束算法,否则返回step2。
进一步的,步骤S4包括以下具体步骤:主要分为两个部分基于功能信息的模块规划和基于拓扑的模块规划:步骤S41:基于功能的模块规划:合并功能相似的初始蛋白质功能模块,使用公式(5)衡量2个模块的相似性:
其中MS和MT分别代表两个模块的规模,而S(i,j)由以下公式(6)刻画:
其中,fij是基于基因拓扑结构相似性函数,由以下公式(7)刻画:
公式(7)中的gi和gj分别取值于蛋白质i和蛋白质j在Gene Ontology中的注释数值,fij的值越大表示两个蛋白质愈加的相似;
给定相似性阀值s,以合并相似的模块,提高模块划分精度;
步骤S42:基于拓扑的模块规划:
通过衡量初始模块的密度,设置过滤参数,减少过于稀疏的蛋白质模块,以提高划分精度,模块的精度根据公式(8)计算:
其中n表示当前模块所含蛋白质的数量,e表示模块中相互作用的数量。
与现有技术相比,本发明的技术方案具有以下优点:迭代初始时粒子扩大搜索区域,进行全局搜索,使搜索区域收敛于某一局部区域,而随着迭代次数的增加,粒子应进行局部范围搜索,有利于寻找最优解,防止陷入局部最优;模块划分更精确,模块数量更繁多。
具体实施方式
下面结合具体实施例对本发明做进一步解释说明。
本发明涉及一种基于改进PSO算法的蛋白质功能模块检测方法,其主要包括以下步骤:
①PPIN建模
本发明中以PPIN的拓扑结构为基础,根据存在相互作用的蛋白质建立邻接矩阵,再根据距离公式(1)计算蛋白质间的距离dij
其中Int(i)和Int(j)分别代表蛋白质i和j具有邻接蛋白质的数量总和。以此得出蛋白质网络的距离矩阵。
②初始化
在基本粒子群算法中,粒子群初始位置是随机选取,跟实际问题的求解没有关联。而为了使粒子群算法跟实际问题相关联,本发明中粒子初始位置是确定的:对于每个粒子,随机选取0~n之间的整数k(其中n为蛋白质的个数),求出其余各蛋白质到蛋白质k之间的距离作为当前粒子的初始位置,粒子群中初始群体最优位置是以各蛋白质到中心蛋白质的距离作为粒子群体历史最优位置。粒子的种群规模取蛋白质个数的5倍。
③参数设置
在基本粒子群算法中,一般选取惯性权重w=1和学习因子c2=2,但考虑到基本粒子群算法容易陷入局部最优,而惯性权重w主要是粒子保持自身运动状态的惯性,用来平衡算法局部和全局搜索,当w取大值时有利于探索新领域,较小时有利于详细搜索当前区域。因此迭代初始时粒子应扩大搜索区域,进行全局搜索,使搜索区域收敛于某一局部区域,而随着迭代次数的增加,粒子应进行局部范围搜索,有利于寻找最优解,防止陷入局部最优。所以本发明中惯性权重w设为可调因子:w=0.9-a*0.4b。
由于学习因子c2是粒子向群体历史最优位置学习,粒子开始搜索阶段,群体历史最优位置在群体最优解所占据的优势还不是很明显,因此通过参数设置使粒子开始阶段向群体历史最优位置学习的比重较低,而搜索后期,由于群体历史最优位置在搜索全局最优解中的比重较大,因此可以使粒子多向群体历史最优位 置学习,防止陷入局部最优,有利于找到最优解。所以本发明中,c2也设为可调因子:c2=2.0*a/b。
其中a为当前迭代次数,b为总迭代次数。
基本PSO的数学描述:假设粒子群的初始种群大小有N,问题空间的维数为N,粒子的初始速度和位置随机产生,t时刻粒子i的速度为位置为其中i=1,2,..,N,m∈N;将粒子i在搜索过程中达到过的最优位置记为整个粒子群在搜索过程中到达过的最优位置记为则在t+1时刻粒子i在j维空间的飞行速度和位置按如下公式进行更新:
(2)式中w为惯性权重函数值,c1,c2为学习因子,r1,r2为(0,1)之间的随机数,(4)式表示粒子的速度限制在[-vmax,vmax]之间,vmax为粒子最大速度;
粒子群的算法流程描述如下:
Step1:随机初始化粒子群中各个粒子的速度和位置,并且将各个粒子的初始个体最优位置设为粒子的初始位置,将所有个体最优位置中的最优位置设为初始粒子群的群体最优位置;
Step2:对各个粒子的评估函数值进行计算;
Step3:如果评估函数值优于其原先评估函数值,则把当前位置更新为粒子的个体最优位置;如果评估函数值优于群体评估函数值,则把当前位置更新为群体历史最优位置;
Step4:更新各个粒子的速度和位置,更新公式为(2)~(4);
Step5:判断是否达到最大迭代次数,如果达到,则输出最优解,结束算法,否则返回step2。
④模块优化
原始的蛋白质模块检测算法中,当获得最初优化路径时,仅仅根据给定阀值D对路径进行剪枝,获得初始蛋白质模块。这样将存在模块划分不精确,模块数量繁多等不足。为了弥补这个缺陷,本发明在PSO算法搜索得出最优解后,引入基于拓扑和功能信息的后处理策略。主要分为两个部分:基于功能信息的模块规划和基于拓扑的模块规划。
(1):基于功能的模块规划
本步骤的目的在于合并功能相似的初始蛋白质功能模块,使用公式(5)衡量2个模块的相似性:
其中MS和MT分别代表两个模块的规模(包含蛋白质数量),而S(i,j)由以下公式(6)刻画:
其中,fij是基于基因拓扑结构相似性函数,由以下公式(7)刻画:
公式(7)中的gi和gj分别取值于蛋白质i和蛋白质j在Gene Ontology中的注释数值。fij的值越大表示两个蛋白质愈加的相似。
本发明中将给定相似性阀值s,以合并相似的模块,提高模块划分精度。
(2):基于拓扑的模块规划
本步骤旨在通过衡量初始模块的密度,设置过滤参数,减少过于稀疏的蛋白质模块,以提高划分精度。模块的精度根据公式(8)计算:
其中n表示当前模块所含蛋白质的数量,e表示模块中相互作用的数量。
综上所述,本发明提供的上列较佳实施例,对本发明的目的、技术方案和优点进行了进一步详细说明,所应理解的是,以上所述仅为本发明的较佳实施例而 已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种基于改进PSO算法的蛋白质功能模块检测方法,其特征在于,包括以下步骤:
步骤S1:以PPIN的拓扑结构为基础,根据存在相互作用的蛋白质建立邻接矩阵,再根据距离公式(1)计算蛋白质间的距离dij
d i j = | I n t ( i ) Δ I n t ( j ) | | I n t ( i ) ∪ I n t ( j ) | + | I n t ( i ) ∪ I n t ( j ) | - - - ( 1 )
其中Int(i)和Int(j)分别代表蛋白质i和j具有邻接蛋白质的数量总和,|Int(i)ΔInt(j)|=|Int(i)∪Int(j)|-|Int(i)∩Int(j)|,以此得出蛋白质网络的距离矩阵;
步骤S2:对于每个粒子,随机选取0~n之间的整数k,其中n为蛋白质的个数,求出其余各蛋白质到蛋白质k之间的距离作为当前粒子的初始位置,粒子群中初始群体最优位置是以各蛋白质到中心蛋白质的距离作为粒子群体历史最优位置,粒子的种群规模取蛋白质个数的5倍;
步骤S3:将惯性权重w设为可调因子:w=0.9-a*0.4b;将学习因子c2也设为可调因子:c2=2.0*a/b,其中a为当前迭代次数,b为总迭代次数;
步骤S4:在PSO算法搜索得出最优解后,引入基于拓扑和功能信息的后处理策略;
基本PSO的数学描述:假设粒子群的初始种群大小有N,问题空间的维数为N,粒子的初始速度和位置随机产生,t时刻粒子i的速度为位置为其中i=1,2,..,N,m∈N;将粒子i在搜索过程中达到过的最优位置记为整个粒子群在搜索过程中到达过的最优位置记为则在t+1时刻粒子i在j维空间的飞行速度和位置按如下公式进行更新:
V i j t + 1 = wv i j t + c 1 r 1 ( p i j t - x i j t ) + c 2 r 2 ( g i j t - x i j t ) - - - ( 2 )
x i j t + 1 = x i j t + v i j t + 1 - - - ( 3 )
v i j t + 1 = v max , v i j t + 1 > v max - v max , v i j t + 1 < - V max - - - ( 4 )
(2)式中w为惯性权重函数值,c1,c2为学习因子,r1,r2为(0,1)之间的随机数,(4)式表示粒子的速度限制在[-vmax,vmax]之间,vmax为粒子最大速度;
粒子群的算法流程描述如下:
Step1:随机初始化粒子群中各个粒子的速度和位置,并且将各个粒子的初始个体最优位置设为粒子的初始位置,将所有个体最优位置中的最优位置设为初始粒子群的群体最优位置;
Step2:对各个粒子的评估函数值进行计算;
Step3:如果评估函数值优于其原先评估函数值,则把当前位置更新为粒子的个体最优位置;如果评估函数值优于群体评估函数值,则把当前位置更新为群体历史最优位置;
Step4:更新各个粒子的速度和位置,更新公式为(2)~(4);
Step5:判断是否达到最大迭代次数,如果达到,则输出最优解,结束算法,否则返回step2。
2.根据权利要求1所述的基于改进PSO算法的蛋白质功能模块检测方法,其特征在于:
步骤S4包括以下具体步骤:
主要分为两个部分基于功能信息的模块规划和基于拓扑的模块规划:
步骤S41:基于功能的模块规划:
合并功能相似的初始蛋白质功能模块,使用公式(5)衡量2个模块的相似性:
S ( M S , M T ) = &Sigma; i &Element; M S , j &Element; M T s ( i , j ) m i n ( | M S | , | M T | ) - - - ( 5 )
其中MS和MT分别代表两个模块的规模,而S(i,j)由以下公式(6)刻画:
s ( i , j ) = 1 , i f i = j f i j , i f i &NotEqual; j - - - ( 6 )
其中,fij是基于基因拓扑结构相似性函数,由以下公式(7)刻画:
f i j = | g i &cap; g j | | g i &cup; g j | - - - ( 7 )
公式(7)中的gi和gj分别取值于蛋白质i和蛋白质j在Gene Ontology中的注释数值,fij的值越大表示两个蛋白质愈加的相似;
给定相似性阀值s,以合并相似的模块,提高模块划分精度;
步骤S42:基于拓扑的模块规划:
通过衡量初始模块的密度,设置过滤参数,减少过于稀疏的蛋白质模块,以提高划分精度,模块的精度根据公式(8)计算:
D S = e n * ( n - 1 ) / 2 - - - ( 8 )
其中n表示当前模块所含蛋白质的数量,e表示模块中相互作用的数量。
CN201610240098.7A 2016-04-18 2016-04-18 基于改进pso算法的蛋白质功能模块检测方法 Expired - Fee Related CN105930688B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610240098.7A CN105930688B (zh) 2016-04-18 2016-04-18 基于改进pso算法的蛋白质功能模块检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610240098.7A CN105930688B (zh) 2016-04-18 2016-04-18 基于改进pso算法的蛋白质功能模块检测方法

Publications (2)

Publication Number Publication Date
CN105930688A true CN105930688A (zh) 2016-09-07
CN105930688B CN105930688B (zh) 2017-06-06

Family

ID=56839195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610240098.7A Expired - Fee Related CN105930688B (zh) 2016-04-18 2016-04-18 基于改进pso算法的蛋白质功能模块检测方法

Country Status (1)

Country Link
CN (1) CN105930688B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106446603A (zh) * 2016-09-29 2017-02-22 福州大学 基于改进pso算法的基因表达数据聚类方法
CN106991295A (zh) * 2017-03-31 2017-07-28 安徽大学 一种基于多目标优化的蛋白质网络模块挖掘方法
CN107025383A (zh) * 2017-04-14 2017-08-08 上海交通大学 基于多目标粒子群优化的蛋白质结构预测方法
CN107992720A (zh) * 2017-12-14 2018-05-04 浙江工业大学 基于共表达网络的癌症靶向标志物测绘方法
CN108009403A (zh) * 2017-11-24 2018-05-08 中国地质大学(武汉) 基于多源数据融合及多目标优化的蛋白质复合物识别方法
CN108537005A (zh) * 2018-04-03 2018-09-14 福州大学 一种基于BPSO-KNN模型的关键lncRNA预测方法
CN108681660A (zh) * 2018-05-07 2018-10-19 福州大学 一种基于关联规则挖掘的非编码rna与疾病关系预测方法
CN108710939A (zh) * 2018-04-25 2018-10-26 广西民族大学 一种多目标过程系统优化的粒子群算法求解方法
CN110610742A (zh) * 2019-09-20 2019-12-24 福建工程学院 一种基于蛋白质互作网络的功能模块检测方法
CN112071362A (zh) * 2020-08-03 2020-12-11 西安理工大学 一种融合全局和局部拓扑结构的蛋白质复合体的检测方法
CN113764043A (zh) * 2021-09-10 2021-12-07 东北林业大学 基于位置特异性得分矩阵的囊泡转运蛋白识别方法及识别设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105138866A (zh) * 2015-08-12 2015-12-09 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种基于蛋白质相互作用网络和网络拓扑结构特征识别蛋白质功能的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105138866A (zh) * 2015-08-12 2015-12-09 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种基于蛋白质相互作用网络和网络拓扑结构特征识别蛋白质功能的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘现: "蛋白质结构预测的粒子群优化算法研究", 《硕士论文数据库》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106446603A (zh) * 2016-09-29 2017-02-22 福州大学 基于改进pso算法的基因表达数据聚类方法
CN106991295A (zh) * 2017-03-31 2017-07-28 安徽大学 一种基于多目标优化的蛋白质网络模块挖掘方法
CN106991295B (zh) * 2017-03-31 2019-06-21 安徽大学 一种基于多目标优化的蛋白质网络模块挖掘方法
CN107025383A (zh) * 2017-04-14 2017-08-08 上海交通大学 基于多目标粒子群优化的蛋白质结构预测方法
CN108009403A (zh) * 2017-11-24 2018-05-08 中国地质大学(武汉) 基于多源数据融合及多目标优化的蛋白质复合物识别方法
CN107992720A (zh) * 2017-12-14 2018-05-04 浙江工业大学 基于共表达网络的癌症靶向标志物测绘方法
CN107992720B (zh) * 2017-12-14 2021-08-03 浙江工业大学 基于共表达网络的癌症靶向标志物测绘方法
CN108537005A (zh) * 2018-04-03 2018-09-14 福州大学 一种基于BPSO-KNN模型的关键lncRNA预测方法
CN108710939A (zh) * 2018-04-25 2018-10-26 广西民族大学 一种多目标过程系统优化的粒子群算法求解方法
CN108681660A (zh) * 2018-05-07 2018-10-19 福州大学 一种基于关联规则挖掘的非编码rna与疾病关系预测方法
CN110610742A (zh) * 2019-09-20 2019-12-24 福建工程学院 一种基于蛋白质互作网络的功能模块检测方法
CN110610742B (zh) * 2019-09-20 2023-12-19 福建工程学院 一种基于蛋白质互作网络的功能模块检测方法
CN112071362A (zh) * 2020-08-03 2020-12-11 西安理工大学 一种融合全局和局部拓扑结构的蛋白质复合体的检测方法
CN112071362B (zh) * 2020-08-03 2024-04-09 西安理工大学 一种融合全局和局部拓扑结构的蛋白质复合体的检测方法
CN113764043A (zh) * 2021-09-10 2021-12-07 东北林业大学 基于位置特异性得分矩阵的囊泡转运蛋白识别方法及识别设备
CN113764043B (zh) * 2021-09-10 2022-05-20 东北林业大学 基于位置特异性得分矩阵的囊泡转运蛋白识别方法及识别设备

Also Published As

Publication number Publication date
CN105930688B (zh) 2017-06-06

Similar Documents

Publication Publication Date Title
CN105930688A (zh) 基于改进pso算法的蛋白质功能模块检测方法
CN107563381B (zh) 基于全卷积网络的多特征融合的目标检测方法
CN107862179A (zh) 一种基于相似性和逻辑矩阵分解的miRNA‑疾病关联关系预测方法
CN105279397B (zh) 一种识别蛋白质相互作用网络中关键蛋白质的方法
CN105717926A (zh) 基于改进蚁群算法的移动机器人旅行商优化方法
CN106021990B (zh) 一种将生物基因以特定的性状进行分类与自我识别的方法
CN104156945B (zh) 基于多目标粒子群算法的灰度图像分割方法
CN108009403A (zh) 基于多源数据融合及多目标优化的蛋白质复合物识别方法
CN105740651A (zh) 一种特定癌症差异表达基因调控网络的构建方法
CN106339416A (zh) 基于网格快速搜寻密度峰值的数据聚类方法
CN106485096B (zh) 基于双向随机游走和多标签学习的miRNA-环境因子关系预测方法
CN111598209A (zh) 基于串行式融合的ga&amp;pso优化算法研究
CN109686403A (zh) 基于不确定蛋白质相互作用网络中关键蛋白质识别方法
CN106326188B (zh) 基于反向学习半径粒子群优化的任务划分系统及其方法
CN114242168A (zh) 一种识别生物必需蛋白质方法
CN108932402A (zh) 一种蛋白质复合物识别方法
CN102779241A (zh) 基于人工蜂群繁殖机制的ppi网络聚类方法
CN109492770A (zh) 一种基于个性化关系排序的属性网络嵌入方法
CN111432449B (zh) 基于新生粒子群工业无线可充电传感器网络充电调度方法
CN108388769A (zh) 基于边驱动的标签传播算法的蛋白质功能模块识别方法
He et al. A novel ant-based clustering approach for document clustering
CN109033746B (zh) 一种基于节点向量的蛋白质复合物识别方法
Wu et al. An ant colony algorithm for drone path planning
Wu et al. An improved discrete pigeon-inspired optimisation algorithm for flexible job shop scheduling problem
Angelin A roc curve based k-means clustering for outlier detection using dragon fly optimization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170606

Termination date: 20200418

CF01 Termination of patent right due to non-payment of annual fee