CN105928624B - 基于空心金属波导光纤增强太赫兹波信号的装置及方法 - Google Patents

基于空心金属波导光纤增强太赫兹波信号的装置及方法 Download PDF

Info

Publication number
CN105928624B
CN105928624B CN201610238498.4A CN201610238498A CN105928624B CN 105928624 B CN105928624 B CN 105928624B CN 201610238498 A CN201610238498 A CN 201610238498A CN 105928624 B CN105928624 B CN 105928624B
Authority
CN
China
Prior art keywords
light
metal waveguide
hollow metal
waveguide fiber
terahertz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610238498.4A
Other languages
English (en)
Other versions
CN105928624A (zh
Inventor
彭滟
徐博伟
朱亦鸣
张腾飞
陈万青
戚彬彬
庄松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201610238498.4A priority Critical patent/CN105928624B/zh
Publication of CN105928624A publication Critical patent/CN105928624A/zh
Priority to PCT/CN2016/000613 priority patent/WO2017181310A1/zh
Application granted granted Critical
Publication of CN105928624B publication Critical patent/CN105928624B/zh
Priority to US16/258,345 priority patent/US10663397B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0216Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using light concentrators or collectors or condensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/06Gaseous, i.e. beam masers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0092Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种基于空心金属波导光纤增强太赫兹波信号的装置及方法,利用分束片、平面反射镜、合束片、机械可调延迟系统等简单的器件,使经由分束片分出的两束800 nm波长光产生一定的时间相位延迟,共同会聚在空心金属波导光纤中,并依次与400 nm波长光脉冲重合发生非线性作用,电离光纤内气体,产生太赫兹波;利用空心金属波导光纤的全反射特性将聚拢和传播产生的太赫兹光波。避免了空气中水分大量吸收太赫兹波,改善太赫兹波能量损失,克服了空气拉丝法产生太赫兹波时,两束不同波长光发生非线性作用时间太短,太赫兹波转换效率不高问题,有效地将太赫兹波的信号强度提升了3倍,并且本发明操作简便,成本较低。

Description

基于空心金属波导光纤增强太赫兹波信号的装置及方法
技术领域
本发明涉及一种增强太赫兹波装置,特别涉及一种基于空心金属波导光纤增强太赫兹波信号的装置及方法。
背景技术
近几十年来,太赫兹波以其广泛的应用前景,已成为国际上物理领域的一个重要研究课题。太赫兹辐射是频率在0.1到10 THz范围的电磁波,这一波段位于微波与红外之间,具有携带信息量丰富、高时空相干性、低光子能量等特性,在天文、生物、计算机、通信等科学领域有着巨大的应用价值。目前,主要的应用研究有太赫兹时域光谱技术、太赫兹成像技术、安全检查、太赫兹雷达、天文学、通信技术。
目前,以空气拉丝法产生太赫兹波是一种较为常见、简单、可靠的方法。其原理为:波长800 nm的激光脉冲会聚通过BBO倍频晶体时,部分转化为波长为400 nm的激光。根据激光的相关非线性性质,这两束光在脉冲重合时发生强相互作用,电离气体介质辐射出太赫兹波。
由于两种波长光在介质中传播时产生不同的折射率,它们的传播速度也不相同。而两束光的脉冲宽度都极小,所以两者能够脉宽重合、相互作用产生太赫兹波的时间很短。当两者脉冲随着各自的传播而逐渐分离时,两束光也将停止发生相互作用,不再产生太赫兹信号。这种方法的主要优点是所获得的太赫兹波带宽较宽,整套装置搭建方便,占地空间较小,综合成本相对较低。但同时也存在相干长度较短(通常在毫米量级),从而在很长一段传播距离内的激光能量无法被有效利用的问题。
此外,空气中含有较多水分,而水对太赫兹波有较强的吸收能力。因此,环境的温度、湿度等条件都会对太赫兹波的产生、探测、与收集等,有十分明显的影响。
以上这些问题都极大地降低了太赫兹波产生的效率和性价比。
发明内容
本发明是针对空气中水分会大量吸收太赫兹波,以及空气拉丝法产生太赫兹波时,两束不同波长光发生非线性作用时间太短,太赫兹波转换效率不高的两个问题,提出了一种基于空心金属波导光纤增强太赫兹波信号的装置及方法,改善太赫兹波能量损失和提升太赫兹波强度。
本发明的技术方案为:一种基于空心金属波导光纤增强太赫兹波信号的装置,激光源发出的波长为800 nm的入射激光经过分束片分为两束光,800 nm透射光经过平面反射镜组连续反射后,被第一凸透镜会聚进入BBO晶体,并部分转换成波长为400 nm的激光,从BBO晶体输出的光包括800 nm和400 nm的光;800 nm反射光经过第一平面反射镜、可调延迟系统、第二平面反射镜和第二凸透镜,与BBO晶体输出的800 nm光和400 nm光产生一定的时间相位延迟后,共同通过合束片,会聚进入充有干燥气体的空心金属波导光纤中,透射光和反射光经过凸透镜会聚后的焦点都位于空心金属波导光纤入口端,空心金属波导光纤输出太赫兹后被抛物面镜收集,进入探测系统。
所述装置的增强太赫兹波信号方法,打开激光源,在空心金属波导光纤中,初始状态下,从BBO晶体输出的800 nm光与400 nm光脉冲重合,作为第一束光,向前传输时发生非线性相互作用,电离气体介质辐射出太赫兹波,随着传播距离的增加,此时第一束光的800nm光与400 nm光脉冲逐步走离;调节可调延迟系统,使800 nm反射光相对脉冲延时,作为第二束光,使得第一束光的800 nm光脉冲与400 nm光脉冲刚好完全分离时,第二束光800 nm反射光的脉冲恰好与400 nm光脉冲开始重合,继续产生太赫兹,太赫兹从空心金属波导光纤输出后被抛物面镜收集,进入探测系统。
本发明的有益效果在于:本发明基于空心金属波导光纤增强太赫兹波信号的装置及方法,装置搭建简单,可直接、有效地将太赫兹波的信号强度提升了3倍。本发明的应用范围广,实用性强,操作简便,成本较低,改善太赫兹波能量损失和提升太赫兹波强度。
附图说明
图1为本发明基于空心金属波导光纤增强太赫兹波信号的装置结构示意图;
图2为本发明中利用BBO倍频晶体以空气拉丝法产生太赫兹波原理示意图;
图3为本发明中利用分束片引入第二束800nm光增强太赫兹波信号强度的原理示意图。
具体实施方式
如图1所示基于空心金属波导光纤增强太赫兹波信号的装置结构示意图,由激光源1、分束片2、平面反射镜3、平面反射镜4、平面反射镜5、平面反射镜6、凸透镜7、BBO晶体8、合束片9、空心金属波导光纤10、抛物面镜11、太赫兹波探测与应用部分12、凸透镜13、平面反射镜14、平面反射镜15、平面反射镜16、平面反射镜17、机械延时系统可移动电机18组成。
激光源1发出的波长为800 nm的入射激光经过分束片2后分为两束光。其中透射的第一束800 nm光经过由平面反射镜3、4、5、6组成的平面反射镜组连续反射后,被凸透镜7会聚进入BBO晶体7,并部分转换成波长为400 nm的激光(此处需特别注意,凸透镜7对第一束800 nm光起会聚作用,但并不是把光聚焦到BBO晶体上,因为BBO晶体易受高能激光的损坏),从BBO晶体7输出的光包括800 nm和400 nm的光;第二束800 nm反射光经过平面反射镜14、17、16、15(其中平面反射镜16、17固定在电机18上构成机械延迟系统)和凸透镜13,与BBO晶体7输出的800 nm光和400 nm光产生一定的时间相位延迟后,共同通过合束片9,会聚进入充有干燥气体的空心金属波导光纤10中。而两束光经透镜会聚后的焦点都位于空心金属波导光纤10入口端。在空心金属波导光纤10中,初始状态下,第一束800 nm光与400 nm光脉冲重合,它们向前传输时发生非线性相互作用,电离气体介质辐射出太赫兹波。随着传播距离的增加,第一束800 nm光与400 nm光脉冲逐步走离。当二者完全分开时,第一束800 nm光不再与400 nm光发生相互作用产生太赫兹波。通过机械延时系统可移动电机18调节可调延迟系统中两个平面反射镜16、17与第一平面反射镜15、第二平面反射镜14之间的距离,从而控制第二束800 nm光相对脉冲延时,使得当第一束800 nm光脉冲与通过BBO晶体产生的400 nm光脉冲刚好完全分离时,第二束800 nm光的脉冲恰好与400 nm光脉冲开始重合,从而继续产生太赫兹,最后输出时太赫兹强度可提升为原来的3倍。太赫兹输出后被抛物面镜11收集,进入探测系统12。
在下面的实施例中,以用1:1分束片分光,波长为800 nm入射光通过BBO倍频晶体以拉丝法产生太赫兹汇聚在充有干燥空气的空心金属波导光纤中并应用于太赫兹为例,其他波段的入射光、不同比例的分束片和在光纤内充入其他种类干燥气体的实施方法与本实施方法基本一致。
具体实现增强太赫兹信号的过程如下:激光源1发出的波长为800 nm的入射激光经过1:1分束片2后分为两束光。其中透射的第一束800 nm光经过平面反射镜组连续反射后,被凸透镜7会聚进入BBO晶体7,并部分转换成波长为400 nm的激光(凸透镜7对第一束800 nm光起会聚作用,但并不是把光聚焦到BBO晶体表面,因为BBO晶体易受高能激光的损坏);第二束800 nm光经过平面反射镜14、17、16、15(其中平面反射镜16、17固定在电机18上构成机械延迟系统)和凸透镜13,与第一束800 nm光和400 nm光产生一定的时间相位延迟后,共同通过合束片9,会聚在充有干燥气体的空心金属波导光纤10中。而两束光经透镜会聚后的焦点都位于空心金属波导光纤入口端。在空心金属波导光纤中,初始状态下,第一束800 nm光与400 nm光脉冲重合,如图2所示,它们向前传输时发生非线性相互作用,电离气体介质辐射出太赫兹波。随着传播距离的增加,第一束800 nm光与400 nm光脉冲逐步走离。当二者完全分开时,第一束800 nm光不再与400 nm光发生相互作用产生太赫兹波。通过机械延时系统可移动电机18控制第二束800 nm光相对脉冲延时,使得当第一束800 nm光脉冲与通过BBO晶体产生的400 nm光脉冲刚好完全分离时,第二束800 nm光的脉冲恰好与400nm光脉冲开始重合,从而继续产生太赫兹,最终输出的太赫兹波强度可提升为原来的3倍。太赫兹输出后被抛物面镜11收集,进入探测系统12。
如图3所示利用分束片引入第二束800nm光增强太赫兹波信号强度的原理示意图,波长为800 nm的光脉冲与波长为400 nm的光脉冲在三个相干长度Lc的距离内均有重合,并不断发生强相互作用产生太赫兹波。而如图2利用BBO倍频晶体以空气拉丝法产生太赫兹波原理示意图所示,现有的常规空气拉丝法产生太赫兹波的过程中,800 nm光与400 nm光只在一个相干长度Lc内有重合。因而简单对比,可知本发明的方法将太赫兹波信号强度提升为原来的3倍。
本发明装置一利用分束片、平面反射镜、合束片、机械延时系统等简单的器件,使经由分束片分出的第二束800 nm波长光与第一束800 nm光产生一定的时间相位延迟,共同会聚在空心金属波导光纤中,并依次与400 nm波长光脉冲重合发生非线性作用,电离光纤内气体,产生太赫兹波;装置二利用空心金属波导光纤的全反射特性将聚拢和传播产生的太赫兹光波。这两点设计可针对不同实际情况分别单独使用,更可以共同使用,从而大幅提升太赫兹波信号强度。

Claims (1)

1.一种基于空心金属波导光纤增强太赫兹波信号的方法,建立基于空心金属波导光纤增强太赫兹波信号装置:激光源发出的波长为800 nm的入射激光经过分束片分为两束光,800 nm透射光经过平面反射镜组连续反射后,被第一凸透镜会聚进入BBO晶体,并部分转换成波长为400 nm的激光,从BBO晶体输出的光包括800 nm和400 nm的光;800 nm反射光经过第一平面反射镜、可调延迟系统、第二平面反射镜和第二凸透镜,与BBO晶体输出的800 nm光和400 nm光产生一定的时间相位延迟后,共同通过合束片,会聚进入充有干燥气体的空心金属波导光纤中,透射光和反射光经过凸透镜会聚后的焦点都位于空心金属波导光纤入口端,空心金属波导光纤输出太赫兹后被抛物面镜收集,进入探测系统,其特征在于,打开激光源,在空心金属波导光纤中,初始状态下,从BBO晶体输出的800 nm光与400 nm光脉冲重合,作为第一束光,向前传输时发生非线性相互作用,电离气体介质辐射出太赫兹波,随着传播距离的增加,此时第一束光的800 nm光与400 nm光脉冲逐步走离;调节可调延迟系统,使800 nm反射光相对脉冲延时,作为第二束光,使得第一束光的800 nm光脉冲与400 nm光脉冲刚好完全分离时,第二束光800 nm反射光的脉冲恰好与400 nm光脉冲开始重合,继续产生太赫兹,太赫兹从空心金属波导光纤输出后被抛物面镜收集,进入探测系统。
CN201610238498.4A 2016-04-18 2016-04-18 基于空心金属波导光纤增强太赫兹波信号的装置及方法 Active CN105928624B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610238498.4A CN105928624B (zh) 2016-04-18 2016-04-18 基于空心金属波导光纤增强太赫兹波信号的装置及方法
PCT/CN2016/000613 WO2017181310A1 (zh) 2016-04-18 2016-11-07 基于空心金属波导光纤增强太赫兹波信号的装置及方法
US16/258,345 US10663397B2 (en) 2016-04-18 2019-01-25 Method and device of enhancing terahertz wave signals based on hollow metal waveguide optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610238498.4A CN105928624B (zh) 2016-04-18 2016-04-18 基于空心金属波导光纤增强太赫兹波信号的装置及方法

Publications (2)

Publication Number Publication Date
CN105928624A CN105928624A (zh) 2016-09-07
CN105928624B true CN105928624B (zh) 2018-10-12

Family

ID=56838303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610238498.4A Active CN105928624B (zh) 2016-04-18 2016-04-18 基于空心金属波导光纤增强太赫兹波信号的装置及方法

Country Status (3)

Country Link
US (1) US10663397B2 (zh)
CN (1) CN105928624B (zh)
WO (1) WO2017181310A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105928624B (zh) 2016-04-18 2018-10-12 上海理工大学 基于空心金属波导光纤增强太赫兹波信号的装置及方法
JP6843600B2 (ja) * 2016-11-28 2021-03-17 キヤノン株式会社 画像取得装置、これを用いた画像取得方法及び照射装置
CN106556938B (zh) * 2017-01-06 2019-02-15 上海理工大学 基于中空光纤管的相干太赫兹超连续谱调频装置
US10944232B2 (en) * 2017-03-24 2021-03-09 Macquarie University Terahertz lasers and terahertz extraction
CN107271470B (zh) * 2017-04-19 2019-03-29 电子科技大学 一种太赫兹波传输聚束系统
WO2020210787A1 (en) * 2019-04-12 2020-10-15 Kapteyn Murnane Laboratories, Inc. Processor-controlled high harmonic optimization with optimal gas handling
CN110048292B (zh) * 2019-05-20 2023-11-10 首都师范大学 一种利用双光束泵浦液体产生增强太赫兹波的系统和方法
CN110572207B (zh) * 2019-08-28 2022-03-18 南开大学 一种环境自适应“激光鞘”辅助激光通信装置及方法
CN112003119B (zh) * 2020-07-30 2022-03-04 北京空间机电研究所 一种长寿命双色双脉冲飞秒激光产生装置及方法
CN113206443B (zh) * 2021-04-26 2022-06-03 武汉大学 一种太赫兹气体激光器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411903A (zh) * 2013-07-29 2013-11-27 南开大学 光丝阵列增强THz辐射方法
CN103840366A (zh) * 2014-03-07 2014-06-04 上海理工大学 通过脉冲激光展宽实现太赫兹波中心频率连续可调的方法
CN104677497A (zh) * 2015-02-13 2015-06-03 上海理工大学 一种太赫兹波性能的检测装置和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004500582A (ja) * 2000-04-06 2004-01-08 レンセレイアー ポリテクニック インスティテュート テラヘルツトランシーバーならびにこのようなトランシーバーを用いるテラヘルツパルスの放出および検出のための方法
US7595491B2 (en) * 2005-12-27 2009-09-29 Rensselaer Polytechnic Institute Methods and systems for the enhancement of terahertz wave generation for analyzing a remotely-located object
US7531803B2 (en) * 2006-07-14 2009-05-12 William Marsh Rice University Method and system for transmitting terahertz pulses
US20090074016A1 (en) * 2006-10-18 2009-03-19 Orval Mamer Apparatus for Terahertz wave generation from water vapor
CN101335425B (zh) * 2007-06-25 2010-06-09 中国科学院物理研究所 一种产生超强太赫兹辐射的装置及方法
CN102868080A (zh) * 2012-10-22 2013-01-09 上海理工大学 一种通过外腔共振增强产生强太赫兹脉冲的装置
JP2016114523A (ja) * 2014-12-16 2016-06-23 アークレイ株式会社 テラヘルツ波測定装置、測定方法、及び測定用具
CN105928624B (zh) * 2016-04-18 2018-10-12 上海理工大学 基于空心金属波导光纤增强太赫兹波信号的装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411903A (zh) * 2013-07-29 2013-11-27 南开大学 光丝阵列增强THz辐射方法
CN103840366A (zh) * 2014-03-07 2014-06-04 上海理工大学 通过脉冲激光展宽实现太赫兹波中心频率连续可调的方法
CN104677497A (zh) * 2015-02-13 2015-06-03 上海理工大学 一种太赫兹波性能的检测装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
太赫兹波导的研究进展;钟任斌 等;《电子科技大学学报》;20120331;第41卷(第2期);第247-252页 *

Also Published As

Publication number Publication date
WO2017181310A1 (zh) 2017-10-26
CN105928624A (zh) 2016-09-07
US20190154575A1 (en) 2019-05-23
US10663397B2 (en) 2020-05-26

Similar Documents

Publication Publication Date Title
CN105928624B (zh) 基于空心金属波导光纤增强太赫兹波信号的装置及方法
CN103840366B (zh) 通过脉冲激光展宽实现太赫兹波中心频率连续可调的方法
CN105242280B (zh) 一种基于光学参量过程的关联成像装置和方法
CN104009378B (zh) 一种基于绿光光纤激光器泵浦的可见光超连续谱光源
CN105487320B (zh) 飞秒激光在透明光学介质中的阵列成丝装置和方法
US11964340B2 (en) Device for fabricating quartz microfluidic chip by femtosecond pulse cluster
CN104677497A (zh) 一种太赫兹波性能的检测装置和方法
CN110955107B (zh) 一种基于反射成像技术的超高速时间分辨摄像装置和方法
CN110572207B (zh) 一种环境自适应“激光鞘”辅助激光通信装置及方法
CN102810469A (zh) 一种晶圆的裂片装置和方法
CN102053303B (zh) 一种分布式传感光纤及其制备装置和方法
CN113328259B (zh) 一种超材料吸收器、装置、系统及其制备方法
CN102231475B (zh) 一种获取具有高度保真脉冲波形的受激布里渊散射光的方法及装置
CN106848828B (zh) 一种阿秒光脉冲的产生方法和装置
US10067288B2 (en) Method and device for producing at least one fiber Bragg grating
TWI473373B (zh) 間隔時間可調脈衝序列產生裝置
CN111650178B (zh) 基于波前整形的光纤级联光谱压缩装置和方法
CN105790045A (zh) 大能量周期量级超高信噪比飞秒种子脉冲产生装置
AU2020102859A4 (en) Method and device for speckle suppression based on chaotic laser
CN106953224A (zh) 连续倾斜脉冲波面泵浦铌酸锂产生太赫兹波的方法及装置
CN109065209B (zh) 一种基于空心光束的双模输出光镊
CN103138148A (zh) 扩展光谱宽度的装置及方法
CN107561813A (zh) 基于薄透镜组连续倾斜脉冲波面太赫兹波产生装置与方法
CN106556938B (zh) 基于中空光纤管的相干太赫兹超连续谱调频装置
CN104880256B (zh) 一种测试太赫兹横波和纵波相位动态变化的方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant