CN104009378B - 一种基于绿光光纤激光器泵浦的可见光超连续谱光源 - Google Patents

一种基于绿光光纤激光器泵浦的可见光超连续谱光源 Download PDF

Info

Publication number
CN104009378B
CN104009378B CN201410204625.XA CN201410204625A CN104009378B CN 104009378 B CN104009378 B CN 104009378B CN 201410204625 A CN201410204625 A CN 201410204625A CN 104009378 B CN104009378 B CN 104009378B
Authority
CN
China
Prior art keywords
laser
fiber
light
frequency
green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410204625.XA
Other languages
English (en)
Other versions
CN104009378A (zh
Inventor
阮双琛
郭春雨
林怀钦
余军
赵俊清
闫培光
华萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201410204625.XA priority Critical patent/CN104009378B/zh
Publication of CN104009378A publication Critical patent/CN104009378A/zh
Priority to PCT/CN2015/078718 priority patent/WO2015172700A1/zh
Application granted granted Critical
Publication of CN104009378B publication Critical patent/CN104009378B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明涉及光纤技术领域,尤其涉及一种基于绿光光纤激光器泵浦的可见光超连续谱光源。本发明通过基于Grin光纤耦合技术或空间耦合套件的全光纤化绿光光纤激光器泵浦光子晶体光纤,产生光谱能量主要集中在可见光波段的超连续谱光源。本装置可以实现纯可见光波段的高功率全光纤化超连续谱光源,可以更好地满足可见光超连续谱应用领域的需求。

Description

一种基于绿光光纤激光器泵浦的可见光超连续谱光源
技术领域
本发明涉及光纤技术领域,尤其涉及一种基于绿光光纤激光器泵浦的可见光超连续谱光源。
背景技术
光纤超连续谱光源可产生高亮度、高相干的宽带光,相当于宽带激光器,在生物医学、激光光谱学、环境监测、遥感探测等领域具有重要的应用前景,特别是可见光波段的超连续谱在细胞学、生物医学成像、生物光谱分析等领域具有无可替代的应用价值。然而,当前产生超连续谱的主流技术是利用成熟的1μm、1.5μm或2μm光纤激光泵浦而实现,导致输出超连续谱中大部分能量集中于800nm以上的红外波段,到纯可见光波段的能量转化效率很低。如著名的超连续谱光源供应商英国Fianium公司的10W超连续谱光源,在可见光波段仅有1.2W的功率。另一家知名超连续谱供应商丹麦NKT公司开发了可见光增强的超连续谱光源,提高了可见光波段的转化效率,但即便如此,输出功率为8W超连续谱光源在可见光波段也仅有2W的输出功率,而且还需要使用其内配的光谱分束器才可以将可见光波段光谱分离输出。常规超连续谱光源在可见光波段如此低的转化效率和功率利用率,极大地限制了可见光超连续谱的应用。
发明内容
本发明所要解决的技术问题是:针对现有技术中超连续谱光源光谱能量在可见光波段所占比例过低,从而限制了可见光超连续谱的应用的不足,本发明拟提供一种基于绿光光纤激光器泵浦的可见光超连续谱光源,使光谱能量主要集中于可见光波段。本发明是这样实现的:
一种基于绿光光纤激光器泵浦的可见光超连续谱光源,包括依次连接的绿光光纤激光器、光子晶体光纤、第一光纤端帽;
所述绿光光纤激光器用于产生绿色激光,作为泵浦所述光子晶体光纤从而使所述光子晶体光纤输出超连续谱的泵浦光;
所述第一光纤端帽用于避免所述光子晶体光纤的端面反射;
所述绿光光纤激光器包括依次连接的:
线偏振窄线宽光纤激光器,用于产生基频光;
偏振相关型光纤隔离器,用于防止所述基频光反馈回所述线偏振窄线宽光纤激光器;
全光纤激光倍频器,用于对所述偏振相关型光纤隔离器输出的基频光进行倍频,产生绿色倍频激光;
所述全光纤激光倍频器为如下两种结构中的任意一种:
结构1:所述全光纤激光倍频器包括依次连接的:
激光倍频器输入光纤,用于接收所述偏振相关型光纤隔离器输出的基频光;
第一无芯光纤,用于对经所述激光倍频器输入光纤输入的基频光进行扩束传输;
第一Grin光纤,用于对经所述第一无芯光纤扩束传输后输入的基频光进行准直及聚焦;
第二无芯光纤,用于对经所述第一Grin光纤准直及聚焦后的基频光进行聚焦传输;
倍频晶体,用于对经所述第二无芯光纤聚焦传输后输入的基频光进行倍频,产生绿色倍频激光;
第三无芯光纤,用于对所述倍频晶体产生的绿色倍频激光进行扩束传输;
第二Grin光纤,用于对经所述第三无芯光纤扩束传输后输入的绿色倍频激光进行准直及聚焦;
第四无芯光纤,用于对经所述第二Grin光纤准直及聚焦后的绿色倍频激光进行聚焦传输;
激光倍频器输出光纤,用于输出经所述第四无芯光纤聚焦传输后输入的绿色倍频激光,作为泵浦所述光子晶体光纤的泵浦光;
结构2:所述全光纤激光倍频器包括依次连接的:
激光倍频器输入光纤,用于接收所述偏振相关型光纤隔离器输出的基频光;
第二光纤端帽,用于对经所述激光倍频器输入光纤输入的基频光进行扩束传输,并避免端面反射;
第一激光准直透镜,用于对经所述第二光纤端帽扩束传输后输入的基频光进行准直;
第一激光聚焦透镜,用于对经所述第一激光准直透镜准直后的基频光进行聚焦;
倍频晶体,用于对经所述第一激光聚焦透镜聚焦后的基频光进行倍频,产生绿色倍频激光;
第二激光准直透镜,用于对所述倍频晶体产生的绿色倍频激光进行准直;
第二激光聚焦透镜,用于对经所述第二激光准直透镜准直后的绿色倍频激光进行聚焦;
第三光纤端帽,用于避免端面反射,并输出经所述第二激光聚焦透镜聚焦后的绿色倍频激光;
激光倍频器输出光纤,用于输出经所述第三光纤端帽输入的绿色倍频激光;
上述两种结构中:
所述偏振相关型光纤隔离器的输出端与所述激光倍频器输入光纤连接;
所述激光倍频器输出光纤与所述光子晶体光纤连接。
进一步地,所述激光倍频器输出光纤为截止波长低于0.5μm的单模保偏光纤。
进一步地,所述线偏振窄线宽光纤激光器的脉宽不大于10皮秒;
所述光子晶体光纤为非锥形石英光子晶体光纤或锥形石英光子晶体光纤;
所述非锥形石英光子晶体光纤的零色散波长位于近红外波段;
所述锥形石英光子晶体光纤的零色散波长在其锥形过渡区中从近红外波段逐渐降低到绿光波段,接近但小于所述绿光光纤激光器的输出波长。
进一步地,所述线偏振窄线宽光纤激光器的脉宽大于10皮秒;
所述光子晶体光纤为锥形石英光子晶体光纤;
所述锥形石英光子晶体光纤的零色散波长在其锥形过渡区中从近红外波段逐渐降低到绿光波段,接近但小于所述绿光光纤激光器的输出波长。
进一步地,所述线偏振窄线宽光纤激光器为工作波长为1μm的掺Yb光纤激光器。
进一步地,所述线偏振窄线宽光纤激光器的输出端的光纤、所述偏振相关型光纤隔离器的输入端及输出端的光纤及所述激光倍频器输入光纤为参数相同的保偏光纤。
与现有技术相比,本发明通过全光纤化的绿光光纤激光器产生泵浦光,通过Grin光纤耦合技术或透镜耦合技术,使超连续谱光源的光谱能量主要集中于可见光波段,可使激光器在当前功率条件输出的超连续谱光源在可见光波段的功率大大提高,从而可以实现更广泛的可见光超连续谱应用。
附图说明
图1:本发明实施例1提供的基于绿光光纤激光器泵浦的可见光超连续谱光源的结构示意图;
图2:本发明实施例2提供的另一种基于绿光光纤激光器泵浦的可见光超连续谱光源的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
图1及图2示出了两种结构的基于绿光光纤激光器泵浦的可见光超连续谱光源(以下简称光源)的结构。根据图1及图2所示,两种结构的光源均包括依次连接的绿光光纤激光器1、光子晶体光纤2及第一光纤端帽3。其中,绿光光纤激光器1用于产生绿光,作为泵浦光子晶体光纤2的泵浦光。第一光纤端帽3用于避免光子晶体光纤2的端面反射,使通过光子晶体光纤2输出的激光不会因其端面的反射而反射回绿光光纤激光器1中,从而保护绿光光纤激光器1免受损伤。
上述结构中,绿光光纤激光器1包括依次连接的线偏振窄线宽光纤激光器11、偏振相关型光纤隔离器12、全光纤激光倍频器14。其中,线偏振窄线宽光纤激光器11用于产生基频光。偏振相关型光纤隔离器12用于确保产生的基频光单向传输,防止其反馈回线偏振窄线宽光纤激光器1中对系统造成损伤。全光纤激光倍频器14用于对偏振相关型光纤隔离器12输出的基频光进行倍频,从而产生上述绿光。
根据绿光的波长范围,本实施例中,线偏振窄线宽光纤激光器优选采用工作波长在1μm波段的掺Yb光纤激光器,掺Yb光纤激光器具有增益带宽,可调谐范围宽,能获得高增益和高能量转换效率,其输出1μm线偏振窄线宽激光作为基频光。该基频光经偏振相关型光纤隔离器12进入全光纤激光倍频器14中倍频,从而获得波长为0.5μm的绿光。线偏振窄线宽光纤激光器11的输出端的光纤、偏振相关型光纤隔离器12的输入端及输出端的光纤为参数相同的保偏光纤。
上述两种结构的光源的不同点在于,全光纤激光倍频器14的结构不同。
如图1所示,其中一种结构的光源中,全光纤激光倍频器14包括依次连接的激光倍频器输入光纤1401、第一无芯光纤1402、第一Grin光纤1403、第二无芯光纤1404、倍频晶体1405、第三无芯光纤1406、第二Grin光纤1407、第四无芯光纤1408、激光倍频器输出光纤1409。其中,激光倍频器输入光纤1401用于接收偏振相关型光纤隔离器12输出的基频光。激光倍频器输入光纤1401、第一无芯光纤1402及第一Grin光纤1403三者的结合相当于空间聚焦透镜及其前后的自由空间,其利用自聚焦原理将基频光准直及聚焦到倍频晶体1405中心。具体而言,第一无芯光纤1402用于对经激光倍频器输入光纤1401输入的基频光进行扩束传输,使其进入第一Grin光纤1403时达到比较大的光斑直径。所谓的扩束传输是指:第一无芯光纤1402相当于空间聚焦透镜前的自由空间,激光倍频器输入光纤1401接收到的基频光进入第一无芯光纤1402后,在第一无芯光纤1402中传输,传输过程中,基频光的光束逐渐发散,从而起到扩束作用。第一无芯光纤1402的长度可根据实际需要计算得出。基频光经第一无芯光纤1402扩束传输后,进入第一Grin光纤1403。第一Grin光纤1403用于对经第一无芯光纤1402扩束传输后输入的基频光进行准直及聚焦。第二无芯光纤1404用于对经第一Grin光纤1403准直及聚焦后的基频光进行聚焦传输,使其在倍频晶体1405的中心处聚焦成为最小腰斑。所谓聚焦传输是指:第二无芯光纤1404相当于空间聚焦透镜后的自由空间。第一Grin光纤1403准直及聚焦后的基频光进入第二无芯光纤1404后,在第二无芯光纤1404中传输,在传输过程中,基频光的光束逐渐收拢,从而起到聚焦的作用。第二无芯光纤1404的长度可根据实际需要计算得出。基频光经第二无芯光纤1404聚焦传输后,进入倍频晶体1405。倍频晶体1405用于对经第二无芯光纤1404聚焦传输后输入的基频光进行倍频从而产生绿色倍频激光。与前述同理,第三无芯光纤1406、第二Grin光纤1407及第四无芯光纤1408相当于空间聚焦透镜及其前后的自由空间,其利用自聚焦原理将0.5μm倍频激光准直及聚焦进入激光倍频器输出光纤1409的纤芯中。具体而言,第三无芯光纤1406用于对倍频晶体1405产生的绿色倍频激光进行扩束传输,使其进入第二Grin光纤1407时达到比较大的光斑直径。第二Grin光纤1407用于对经第三无芯光纤1406扩束传输后输入的绿色倍频激光进行准直及聚焦。第四无芯光纤1408用于对经第二Grin光纤1407准直及聚焦后的倍频激光进行聚焦传输,并进入激光倍频器输出光纤1409。激光倍频器输出光纤1409用于输出经第四无芯光纤1408聚焦传输后输入的绿色倍频激光,作为泵浦光子晶体光纤2的泵浦光。
如图2所示,另一种结构的光源中,全光纤激光倍频器14包括依次连接的激光倍频器输入光纤1401、第二光纤端帽1410、第一激光准直透镜1411、第一激光聚焦透镜1412、倍频晶体1405、第二激光准直透镜1413、第二激光聚焦透镜1414、第三光纤端帽1415、激光倍频器输出光纤1409。其中,激光倍频器输入光纤1401用于接收偏振相关型光纤隔离器12输出的基频光。第二光纤端帽1410用于对经激光倍频器输入光纤1401输入的基频光进行扩束传输,避免高功率激光对输出端面的损伤,同时,避免基频光经端面反射回其前级系统,对前级系统造成损伤。第一激光准直透镜1411用于对经第二光纤端帽1410扩束传输后输入的基频光进行准直。第一激光聚焦透镜1412用于对经第一激光准直透镜1411准直后的基频光进行聚焦,使其在倍频晶体1405的中心处聚焦成为最小腰斑。倍频晶体1405用于对经第一激光聚焦透镜1412聚焦后的基频光进行倍频,产生绿色倍频激光。第二激光准直透镜1413用于对倍频晶体1405产生的绿色倍频激光进行准直。第二激光聚焦透镜1414用于对经第二激光准直透镜1413准直后的绿色倍频激光进行聚焦。第三光纤端帽1415用于避免端面反射从而对其前级系统造成损伤,聚焦后的绿色倍频激光进入激光倍频器输出光纤1409。激光倍频器输出光纤1409用于输出经第三光纤端帽1415输入的绿色倍频激光,作为泵浦光子晶体光纤2的泵浦光。在该种结构中,全光纤激光倍频器14还包括一固定件1416,用于固定第二光纤端帽1410、第一激光准直透镜1411、第一激光聚焦透镜1412、倍频晶体1405、第二激光准直透镜1413、第二激光聚焦透镜1414及第三光纤端帽1415。
以上两种结构的光源中,激光的光路如虚线所示。偏振相关型光纤隔离器12的输出端与激光倍频器输入光纤1401连接,激光倍频器输出光纤1409与光子晶体光纤2连接。激光倍频器输入光纤1401为与线偏振窄线宽光纤激光器11的输出端的光纤及偏振相关型光纤隔离器12的输入端及输出端的光纤参数相同的保偏光纤。激光倍频器输出光纤1409为截止波长低于0.5μm的单模保偏光纤。
光子晶体光纤2可采用非锥形石英光子晶体光纤或锥形石英光子晶体光纤。非锥形石英光子晶体光纤的零色散波长位于近红外波段。锥形石英光子晶体光纤的零色散波长在其锥形过渡区中从近红外波段逐渐降低到绿光波段,接近但小于绿光光纤激光器1的输出波长。如果线偏振窄线宽光纤激光器11选用脉宽不大于10皮秒的超短脉冲光纤激光器,光子晶体光纤2既可以采用非锥形石英光子晶体光纤,产生主要基于自相位调制非线性光学效应的可见光超连续谱,可也以采用锥形石英光子晶体光纤,产生主要基于调制不稳定性、交叉相位调制、四波混频、孤子自频移、孤子捕获等非线性光学效应的可见光超连续谱。如果线偏振窄线宽光纤激光器11选用脉宽大于10皮秒的长脉冲光纤激光器或连续波光纤激光器,光子晶体光纤则需采用锥形石英光子晶体光纤,产生主要基于调制不稳定性、孤子自频移、孤子捕获等非线性光学效应的可见光超连续谱。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种基于绿光光纤激光器泵浦的可见光超连续谱光源,其特征在于,包括依次连接的绿光光纤激光器、光子晶体光纤、第一光纤端帽;
所述绿光光纤激光器用于产生绿色激光,作为泵浦所述光子晶体光纤从而使所述光子晶体光纤输出超连续谱的泵浦光;
所述第一光纤端帽用于避免所述光子晶体光纤的端面反射;
所述绿光光纤激光器包括依次连接的:
线偏振窄线宽光纤激光器,用于产生基频光;
偏振相关型光纤隔离器,用于防止所述基频光反馈回所述线偏振窄线宽光纤激光器;
全光纤激光倍频器,用于对所述偏振相关型光纤隔离器输出的基频光进行倍频,产生绿色倍频激光;
所述全光纤激光倍频器为如下两种结构中的任意一种:
结构1:所述全光纤激光倍频器包括依次连接的:
激光倍频器输入光纤,用于接收所述偏振相关型光纤隔离器输出的基频光;
第一无芯光纤,用于对经所述激光倍频器输入光纤输入的基频光进行扩束传输;
第一Grin光纤,用于对经所述第一无芯光纤扩束传输后输入的基频光进行准直及聚焦;
第二无芯光纤,用于对经所述第一Grin光纤准直及聚焦后的基频光进行聚焦传输;
倍频晶体,用于对经所述第二无芯光纤聚焦传输后输入的基频光进行倍频,产生绿色倍频激光;
第三无芯光纤,用于对所述倍频晶体产生的绿色倍频激光进行扩束传输;
第二Grin光纤,用于对经所述第三无芯光纤扩束传输后输入的绿色倍频激光进行准直及聚焦;
第四无芯光纤,用于对经所述第二Grin光纤准直及聚焦后的绿色倍频激光进行聚焦传输;
激光倍频器输出光纤,用于输出经所述第四无芯光纤聚焦传输后输入的绿色倍频激光,作为泵浦所述光子晶体光纤的泵浦光;
结构2:所述全光纤激光倍频器包括依次连接的:
激光倍频器输入光纤,用于接收所述偏振相关型光纤隔离器输出的基频光;
第二光纤端帽,用于对经所述激光倍频器输入光纤输入的基频光进行扩束传输,并避免端面反射;
第一激光准直透镜,用于对经所述第二光纤端帽扩束传输后输入的基频光进行准直;
第一激光聚焦透镜,用于对经所述第一激光准直透镜准直后的基频光进行聚焦;
倍频晶体,用于对经所述第一激光聚焦透镜聚焦后的基频光进行倍频,产生绿色倍频激光;
第二激光准直透镜,用于对所述倍频晶体产生的绿色倍频激光进行准直;
第二激光聚焦透镜,用于对经所述第二激光准直透镜准直后的绿色倍频激光进行聚焦;
第三光纤端帽,用于避免端面反射,并输出经所述第二激光聚焦透镜聚焦后的绿色倍频激光;
激光倍频器输出光纤,用于输出经所述第三光纤端帽输入的绿色倍频激光;
上述两种结构中:
所述偏振相关型光纤隔离器的输出端与所述激光倍频器输入光纤连接;
所述激光倍频器输出光纤与所述光子晶体光纤连接。
2.如权利要求1所述的基于绿光光纤激光器泵浦的可见光超连续谱光源,其特征在于,所述激光倍频器输出光纤为截止波长低于0.5μm的单模保偏光纤。
3.如权利要求1所述的基于绿光光纤激光器泵浦的可见光超连续谱光源,其特征在于,所述线偏振窄线宽光纤激光器的脉宽不大于10皮秒;
所述光子晶体光纤为非锥形石英光子晶体光纤或锥形石英光子晶体光纤;
所述非锥形石英光子晶体光纤的零色散波长位于近红外波段;
所述锥形石英光子晶体光纤的零色散波长在其锥形过渡区中从近红外波段逐渐降低到绿光波段,接近但小于所述绿光光纤激光器的输出波长。
4.如权利要求1所述的基于绿光光纤激光器泵浦的可见光超连续谱光源,其特征在于,所述线偏振窄线宽光纤激光器的脉宽大于10皮秒;
所述光子晶体光纤为锥形石英光子晶体光纤;
所述锥形石英光子晶体光纤的零色散波长在其锥形过渡区中从近红外波段逐渐降低到绿光波段,接近但小于所述绿光光纤激光器的输出波长。
5.如权利要求1所述的基于绿光光纤激光器泵浦的可见光超连续谱光源,其特征在于,所述线偏振窄线宽光纤激光器为工作波长为1μm的掺Yb光纤激光器。
6.如权利要求1所述的基于绿光光纤激光器泵浦的可见光超连续谱光源,其特征在于,所述线偏振窄线宽光纤激光器的输出端的光纤、所述偏振相关型光纤隔离器的输入端及输出端的光纤及所述激光倍频器输入光纤为参数相同的保偏光纤。
CN201410204625.XA 2014-05-15 2014-05-15 一种基于绿光光纤激光器泵浦的可见光超连续谱光源 Expired - Fee Related CN104009378B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410204625.XA CN104009378B (zh) 2014-05-15 2014-05-15 一种基于绿光光纤激光器泵浦的可见光超连续谱光源
PCT/CN2015/078718 WO2015172700A1 (zh) 2014-05-15 2015-05-12 一种基于绿光光纤激光器泵浦的可见光超连续谱光源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410204625.XA CN104009378B (zh) 2014-05-15 2014-05-15 一种基于绿光光纤激光器泵浦的可见光超连续谱光源

Publications (2)

Publication Number Publication Date
CN104009378A CN104009378A (zh) 2014-08-27
CN104009378B true CN104009378B (zh) 2017-03-29

Family

ID=51369933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410204625.XA Expired - Fee Related CN104009378B (zh) 2014-05-15 2014-05-15 一种基于绿光光纤激光器泵浦的可见光超连续谱光源

Country Status (2)

Country Link
CN (1) CN104009378B (zh)
WO (1) WO2015172700A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009379A (zh) * 2014-05-14 2014-08-27 深圳大学 一种全光纤化激光混频器及其混频光纤激光器
CN104009378B (zh) * 2014-05-15 2017-03-29 深圳大学 一种基于绿光光纤激光器泵浦的可见光超连续谱光源
CN105811237A (zh) * 2016-06-01 2016-07-27 中国工程物理研究院激光聚变研究中心 一种白光激光产生装置
CN106936066A (zh) * 2017-05-17 2017-07-07 北京华岸科技有限公司 超连续谱激光产生装置及系统
CN107370015B (zh) * 2017-08-15 2023-05-05 中国科学技术大学 一种波分复用的多波长倍频光纤激光装置
CN108508677B (zh) * 2018-03-12 2021-04-20 中国人民解放军国防科技大学 一种基于ppln晶体的超连续谱变频激光器
CN112382918A (zh) * 2020-11-24 2021-02-19 浙江德扬精密仪器有限公司 一种染料激光器
CN113131335A (zh) * 2021-04-13 2021-07-16 山东大学 一种基于自倍频激光在农业中对植物光合作用的补偿系统
CN113938205A (zh) * 2021-10-08 2022-01-14 浙江大学 一种应用于水下无线光通信发射端的直接调制mopa脉冲光纤激光器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226317A (zh) * 2006-12-14 2008-07-23 Jds尤尼弗思公司 具有多个光学对准焊接元件的小型光学封装
CN103022867A (zh) * 2012-12-18 2013-04-03 中国人民解放军国防科学技术大学 一种高功率高效率的超连续谱光源
CN103050870A (zh) * 2012-10-17 2013-04-17 北京工业大学 可光纤输出的新型微片激光器
CN203491501U (zh) * 2013-10-22 2014-03-19 无锡津天阳激光电子有限公司 一种风速仪用四端输出双808nm与532nm与1064nm波长光纤激光器
CN204012175U (zh) * 2014-05-15 2014-12-10 深圳大学 基于绿光光纤激光器泵浦的可见光超连续谱光源

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009378B (zh) * 2014-05-15 2017-03-29 深圳大学 一种基于绿光光纤激光器泵浦的可见光超连续谱光源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226317A (zh) * 2006-12-14 2008-07-23 Jds尤尼弗思公司 具有多个光学对准焊接元件的小型光学封装
CN103050870A (zh) * 2012-10-17 2013-04-17 北京工业大学 可光纤输出的新型微片激光器
CN103022867A (zh) * 2012-12-18 2013-04-03 中国人民解放军国防科学技术大学 一种高功率高效率的超连续谱光源
CN203491501U (zh) * 2013-10-22 2014-03-19 无锡津天阳激光电子有限公司 一种风速仪用四端输出双808nm与532nm与1064nm波长光纤激光器
CN204012175U (zh) * 2014-05-15 2014-12-10 深圳大学 基于绿光光纤激光器泵浦的可见光超连续谱光源

Also Published As

Publication number Publication date
CN104009378A (zh) 2014-08-27
WO2015172700A1 (zh) 2015-11-19

Similar Documents

Publication Publication Date Title
CN104009378B (zh) 一种基于绿光光纤激光器泵浦的可见光超连续谱光源
US11982834B2 (en) Microstructured optical fiber, supercontinuum light source comprising microstructured optical fiber and use of such light source
CN103633537B (zh) 一种载波包络相移频率可控的低噪声光纤激光频率梳装置
US9368932B2 (en) Optical pulse compressing based on chirped fiber bragg gratings for pulse amplification and fiber lasers
CN104201545B (zh) 基于双波段光纤激光器的超宽带超连续谱光源
US8830567B2 (en) Fiber lasers for producing amplified laser pulses with reduced non-linearity
CN104283097A (zh) 一种780nm的高功率光纤飞秒激光器
CN108512020B (zh) 一种光谱可控、输出功率可调谐的非相干超连续谱光源
US9256114B2 (en) Supercontinuum generation system
CN104541198A (zh) 一种超连续谱光源、测量系统和测量方法
CN104852260A (zh) 双波长调q脉冲光纤激光器
CN102983489A (zh) 一种基于光纤激光器做非线性差频而产生的中红外激光源
CN204012175U (zh) 基于绿光光纤激光器泵浦的可见光超连续谱光源
CN102841480A (zh) 一种基于光子晶体光纤四波混频效应的全光波长转换器
CN109411995A (zh) 一种中红外超快激光源装置
CN105790045B (zh) 大能量周期量级超高信噪比飞秒种子脉冲产生装置
CN107045210A (zh) 大啁啾量激光环形光栅压缩器
CN204088868U (zh) 一种780nm的高功率光纤飞秒激光器
CN103490274A (zh) 高效率多波长超短脉冲激光产生装置
CN104009379A (zh) 一种全光纤化激光混频器及其混频光纤激光器
CN204012174U (zh) 全光纤化激光混频器及其混频光纤激光器
CN106340797A (zh) 基于体光栅构成环形腔光学参量振荡器的2μm可调谐激光器
Saint-Jalm et al. Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons
CN110380324A (zh) 一种超短脉冲光纤激光器
CN105762626B (zh) 一种超大带宽超连续谱激光光源

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170329