CN105923674A - 超临界co2热泵驱动的双热源海水淡化系统 - Google Patents

超临界co2热泵驱动的双热源海水淡化系统 Download PDF

Info

Publication number
CN105923674A
CN105923674A CN201610405772.2A CN201610405772A CN105923674A CN 105923674 A CN105923674 A CN 105923674A CN 201610405772 A CN201610405772 A CN 201610405772A CN 105923674 A CN105923674 A CN 105923674A
Authority
CN
China
Prior art keywords
effect
distillator
outlet
vaporizer
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610405772.2A
Other languages
English (en)
Other versions
CN105923674B (zh
Inventor
刘玉东
苏闯建
刘佑骐
耿世超
王江情
高永坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201610405772.2A priority Critical patent/CN105923674B/zh
Publication of CN105923674A publication Critical patent/CN105923674A/zh
Application granted granted Critical
Publication of CN105923674B publication Critical patent/CN105923674B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/08Thin film evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

本发明公开了一种超临界CO2热泵驱动的双热源海水淡化系统,CO2压缩机与首效第一蒸馏器相连,首效第一蒸馏器与涡流管相连,涡流管的热端出口与首效第二蒸馏器相连,首效第二蒸馏器出来的CO2在涡流管的冷端出管汇合,涡流管的冷端出管与第一蒸发器和第二蒸发器相连,第一蒸发器和第二蒸发器与CO2压缩机的吸气口相连;海水经过水蒸汽冷凝器和预热器后进入首效第一蒸馏器,然后依次经过首效第一蒸馏器、首效第二蒸馏器和第二效蒸馏器进行蒸馏。首效第一和第二蒸馏器的水蒸汽出口与第二效蒸馏器连接,第二效蒸馏器的水蒸汽出口与水蒸汽冷凝器的水蒸汽入口连接,淡水水蒸汽经过第一蒸发器冷凝,浓海水经第二蒸发器冷凝,高效节能环保。

Description

超临界CO2热泵驱动的双热源海水淡化系统
技术领域
本发明涉及一种海水淡化系统,特别涉及一种超临界CO2热泵驱动的双热源海水淡化系统。
背景技术
淡水资源是人类社会赖以生存与发展的最重要基本物质之一,然而地球上淡水资源含量不足3%且大部分是难以被利用的。伴随着工业技术发展,人口数量增加,生活水平提高和水污染加重,世界上大部分地区已经出现不同程度的淡水不足的问题。研究表明海水淡化是解决淡水资源缺乏的有效途径。海水淡化技术就是将盐分和水分分离的技术,目前有十多种方式,最主要的包括蒸馏法、膜法等。蒸馏法主要有多级闪蒸(MSF)、低温多效蒸馏(LT-MED)、压汽蒸馏(VC),法膜主要是反渗透(RO)。上述海水淡化方法都需要消耗大量化石能源与电力,这加剧了地球温室效应和环境污染等问题。对于热法海水淡化方法,为了降低海水淡化系统运行成本,通常还要求该海水淡化装置的规模大且依赖热电厂等产生的余热作为热源,这大大限制了此方法的适用范围和实用性。因此,开发新的、环保的、能耗低的海水淡化系统迫在眉睫。
目前,在制冷、热泵等领域广泛采用氯氟烃(CFCs)和氢氯氟烃(HCFCs)等,由于它们对臭氧层的破坏正逐渐被淘汰。CFCs、HCFCs不仅破坏臭氧层,而且也是温室气体,其全球变暖潜能值(GWP)普遍较高。在臭氧层破坏以及全球变暖的双重压力下,将停止使用CFCs和HCFCs等含氯化物,因此寻找更加环保的替代工质也势在必行。
发明内容
针对现有的问题,本发明的目的在于提供一种环保、节能、不破坏臭氧层的超临界CO2热泵驱动的双热源海水淡化系统。
为了实现上述目的,本发明的技术方案为:一种超临界CO2热泵驱动的双热源海水淡化系统,其特征在于:包括CO2压缩机、首效第一蒸馏器、首效第二蒸馏器、涡流管、第二效蒸馏器、水蒸汽冷凝器、预热器、第一蒸发器、第二蒸发器和海水泵,所述CO2压缩机的出口与首效第一蒸馏器的换热管入口相连,所述首效第一蒸馏器的换热管出口与涡流管的喷嘴相连,所述涡流管的热端出口与首效第二蒸馏器的换热管入口相连,从所述首效第二蒸馏器出来的低温CO2与涡流管的冷端出口出来的低温CO2汇合后进入第一蒸发器和第二蒸发器的制冷剂入口,所述第一蒸发器和第二蒸发器的制冷剂出口与CO2压缩机的吸气口相连;
所述海水泵的出口与水蒸汽冷凝器的海水进口相连,所述水蒸汽冷凝器的海水出口与预热器的海水进口相连,所述预热器的海水出口与首效第一蒸馏器的海水进口相连,所述首效第一蒸馏器的浓海水出口与首效第二蒸馏器的海水进口相连,所述首效第二蒸馏器的浓海水出口与第二效蒸馏器的海水入口相连;
所述首效第一蒸馏器的水蒸汽出口与首效第二蒸馏器的水蒸汽出口汇合后与第二效蒸馏器换热管入口相连,所述第二效蒸馏器的水蒸汽出口与水蒸汽冷凝器的水蒸汽入口连接,所述第二效蒸馏器的换热管出口与水蒸汽冷凝器的水蒸汽出口汇合后与第一蒸发器的淡水入口连接;第一蒸发器的淡水出口与淡水泵连接,所述第二效蒸馏器的浓海水出口与预热器浓海水进口相连,所述预热器的浓海水出口与第二蒸发器的浓海水进口相连,所述第二蒸发器的浓海水出口与浓海水泵相连。
采用上述方案,CO2压缩机压缩后形成的高温高压制冷剂CO2进入首效第一蒸馏器进行等压冷凝,然后由喷嘴进入涡流管;在涡流管的涡流室中制冷剂CO2在Ranque-Hilsch效应作用下分离为低温和高温两股气流,高温气流从热端出口喷出后进入首效第二蒸馏器放热;低温制冷剂从冷端出管出来和从首效第二蒸馏器出来的制冷剂CO2混合后,进入第一,第二蒸发器蒸发吸热,然后进入CO2压缩机压缩。
原料海水在海水泵作用下在水蒸汽冷凝器和预热器中吸热升温,进入首效第一蒸馏器;被均匀喷洒在首效第一蒸馏器的水平换热管上进行降膜蒸发;未蒸发浓海水在重力和压差作用下进入首效第二蒸馏器继续进行降膜蒸发;首效第二蒸馏器未蒸发浓海水进入第二效蒸馏器继续降膜蒸发,第二效蒸馏器的热量来自首效第一,第二蒸馏器中产生的水蒸汽;在第二效蒸馏器中未蒸发的浓海水在预热器和第二蒸发器中放热后由浓海水泵排出。
首效第一蒸馏器和首效第二蒸馏器产出的水蒸汽在第二效蒸馏器冷凝放热;第二效蒸馏器产出的水蒸汽经水蒸汽冷凝器冷凝;第二效蒸馏器和水蒸汽冷凝器换热管出来的淡水在第一蒸发器中放热后由淡水泵排出。
本发明采用的制冷剂为CO2。期相比于CFCs、HCFCs,CO2对大气臭氧层没有破坏,而且全球变暖潜势值几乎为0。
在上述方案中:所述首效第一蒸馏器、首效第二蒸馏器、第二效蒸馏器均采用减压蒸馏。真空泵通过真空管与第二效蒸馏器相连,所述首效第二蒸馏器与第二效蒸馏器通过真空管连通,所述首效第一蒸馏器与首效第二蒸馏器通过真空管连通,从首效第一蒸馏器、首效第二蒸馏器到第二效蒸馏器真空度逐渐增大。海水沸点逐渐降低。这保证了海水、水蒸汽的稳定流动和不同温度的高品位热源梯度利用。
在上述方案中:所述涡流管的冷端出口分别通过第一膨胀阀和第二膨胀阀与第一蒸发器和第二蒸发器相连。第一膨胀阀和第二膨胀阀起到节流的作用。
本发明的有益效果是:
1、本发明采用超临界CO2热泵驱动海水淡化系统,在保证系统能效基本不变的情况下充分利用超临界二氧化碳温度较高的特性,将压缩机排出的超临界二氧化碳在首效第一蒸馏器中等压冷凝,使首效第一蒸馏器中产出更多具有高品位热能的水蒸汽。利用涡流管的Ranque–Hilsch效应将首效第一蒸馏器出来的高压低温制冷剂气体分离为高温气流和低温气流,高温气流进入首效第二蒸馏器作为海水蒸发的热源,在无额外能量输入的情况下实现了低品位热能向高品位热能的转化从而降低了海水淡化成本。
2、本发明的首效蒸馏单元包含两个热源温度不同的蒸馏器,这使得首效蒸馏器产生更多的水蒸汽,由于首效水蒸汽也是第二效蒸馏器的热源,故第二效也可以产生更多水蒸汽,进而提高了淡水产出速率和系统经济性。
3、从首效第一蒸馏器、首效第二蒸馏器到第二效蒸馏器内的真空度逐渐增大,海水沸点逐渐降低。这保证了海水、水蒸汽的稳定流动和不同温度的高品位热源梯度利用。
4、本发明中海水进入首效第一蒸馏器前,先在水蒸汽冷凝器和预热器中吸热升温,这提高了蒸馏器中高品位热能的利用效率。
5、采用涡流管出来的低温二氧化碳气流对淡水和浓海水进行冷凝,既利用了热能,也合理利用冷能。
附图说明:
图1为本发明的工艺流程图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步的描述:
实施例1
如图1所示,超临界CO2热泵驱动的双热源海水淡化系统由CO2压缩机1、首效第一蒸馏器2、首效第二蒸馏器3、涡流管4、真空泵5、第二效蒸馏器6、水蒸汽冷凝器7、预热器8、第一蒸发器9、第二蒸发器10、第一膨胀阀11、第二膨胀阀12、海水泵13、淡水泵14、浓海水泵15等部件组成。
二氧化碳在CO2压缩机1内压缩后,形成的超临界高温高压制冷剂CO2气流。CO2压缩机1的出口与首效第一蒸馏器2的换热管入口相连,首效第一蒸馏器2的换热管出口与涡流管4的喷嘴相连,涡流管4的结构为现有技术,包括喷嘴、涡流发生室、冷端出口和热端出口。本发明将CO2压缩机1排出的超临界CO2在首效第一蒸馏器2中等压冷凝,使首效第一蒸馏器2中产出更多具有高品位热能的水蒸气,但是系统能耗基本不变。
涡流管4的热端出口与首效第二蒸馏器3的换热管入口相连。首效蒸馏单元包含两个热源温度不同的蒸馏器,这使得首效产生更多的水蒸汽,由于首效水蒸汽也是第二效蒸馏器6的热源,故第二效也可以产生更多水蒸汽,进而提高了系统经济性和淡水产出速率。
从首效第二蒸馏器3出来的CO2与涡流管4的冷端出口出来的低温CO2汇合后分别进入第一蒸发器9和第二蒸发器10的制冷剂入口,在第一蒸发器9和第二蒸发器10内蒸发吸热。优选:涡流管4的冷端出口通过第一膨胀阀11于第一蒸发器9相连,通过第二膨胀阀12与第二蒸发器10相连。
第一蒸发器9和第二蒸发器10的制冷剂出口与CO2压缩机1的吸气口相连。
首效第一蒸馏器2、首效第二蒸馏器3、第二效蒸馏器(6)采用减压蒸馏。
具体的,真空泵5与第二效蒸馏器6相连,首效第二蒸馏器3通过真空管与第二效蒸馏器6相连,首效第一蒸馏器2通过真空管与首效第一蒸馏器3相连。由于真空泵5与第二效蒸馏器6相连,第二效蒸馏器6内真空度最大。也就是说,从首效第一蒸馏器2、首效第二蒸馏器3到第二效蒸馏器6的真空度逐渐增大。这使得各效间维持一个较好的压差。该低温多效蒸馏系统首效拥有两个热源温度不同的蒸馏器,首效第一蒸馏器2热源的温度比首效第二蒸馏器3的温度稍高。这保证了海水、水蒸气的稳定流动和不同温度的高品位热源梯度利用。
海水泵13的出口与水蒸汽冷凝器7的海水进口相连,水蒸汽冷凝器7的海水出口与预热器8的海水进口相连,预热器8的海水出口与首效第一蒸馏器2的海水进口相连,海水进入首效第一蒸馏器2前,先在水蒸汽冷凝器7和预热器8中吸热升温,这提高了蒸馏器中高品位热能的利用效率。
首效第一蒸馏器2的浓海水出口与首效第二蒸馏器3的海水进口相连,首效第二蒸馏器3的浓海水出口与第二效蒸馏器6的海水入口相连。
首效第一蒸馏器2的水蒸汽出口与首效第二蒸馏器3的水蒸汽出口汇合后与第二效蒸馏器6换热管入口连接,第二效蒸馏器6的水蒸汽出口与水蒸汽冷凝器7的水蒸汽入口连接,第二效蒸馏器6的换热管出口与水蒸汽冷凝器7的水蒸汽出口并联后与第一蒸发器9的淡水入口连接;第一蒸发器9的淡水出口与淡水泵14连接,第二效蒸馏器6的浓海水出口与预热器8浓海水进口相连,预热器8的浓海水出口与第二蒸发器10的浓海水进口相连,第二蒸发器10的浓海水出口与浓海水泵15相连。从第二效整流器6出来的浓海水用作预热器8和第二蒸发器10的热源。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (4)

1.一种超临界CO2热泵驱动的双热源海水淡化系统,其特征在于:包括CO2压缩机(1)、首效第一蒸馏器(2)、首效第二蒸馏器(3)、涡流管(4)、第二效蒸馏器(6)、水蒸汽冷凝器(7)、预热器(8)、第一蒸发器(9)、第二蒸发器(10)和海水泵(13),所述CO2压缩机(1)的出口与首效第一蒸馏器(2)的换热管入口相连,所述首效第一蒸馏器(2)的换热管出口与涡流管(4)的喷嘴相连,所述涡流管(4)的热端出口与首效第二蒸馏器(3)的换热管入口相连,从所述首效第二蒸馏器(3)出来的低温CO2与涡流管(4)的冷端出口出来的低温CO2汇合后进入第一蒸发器(9)和第二蒸发器(10)的制冷剂入口,所述第一蒸发器(9)和第二蒸发器(10)的制冷剂出口与CO2压缩机(1)的吸气口相连;
所述海水泵(13)的出口与水蒸汽冷凝器(7)的海水进口相连,所述水蒸汽冷凝器(7)的海水出口与预热器(8)的海水进口相连,所述预热器(8)的海水出口与首效第一蒸馏器(2)的海水进口相连,所述首效第一蒸馏器(2)的浓海水出口与首效第二蒸馏器(3)的海水进口相连,所述首效第二蒸馏器(3)的浓海水出口与第二效蒸馏器(6)的海水入口相连;
所述首效第一蒸馏器(2)的水蒸汽出口与首效第二蒸馏器(3)的水蒸汽出口汇合后与第二效蒸馏器(6)换热管入口相连,所述第二效蒸馏器(6)的水蒸汽出口与水蒸汽冷凝器(7)的水蒸汽入口连接,所述第二效蒸馏器(6)的换热管出口与水蒸汽冷凝器(7)的水蒸汽出口汇合后与第一蒸发器(9)的淡水入口连接;第一蒸发器(9)的淡水出口与淡水泵(14)连接,所述第二效蒸馏器(6)的浓海水出口与预热器(8)浓海水进口相连,所述预热器(8)的浓海水出口与第二蒸发器(10)的浓海水进口相连,所述第二蒸发器(10)的浓海水出口与浓海水泵(15)相连。
2.根据权利要求1所述超临界CO2热泵驱动的双热源海水淡化系统,其特征在于:所述首效第一蒸馏器(2)、首效第二蒸馏器(3)、第二效蒸馏器(6)均采用减压蒸馏。
3.根据权利要求2所述超临界CO2热泵驱动的双热源海水淡化系统,其特征在于:真空泵(5)通过真空管与第二效蒸馏器(6)相连,所述首效第二蒸馏器(3)与第二效蒸馏器(6)通过真空管连通,所述首效第一蒸馏器(2)与首效第二蒸馏器(3)通过真空管连通,从首效第一蒸馏器(2)、首效第二蒸馏器(3)到第二效蒸馏器(6)真空度逐渐增大。
4.根据权利要求1所述超临界CO2热泵驱动的双热源海水淡化系统,其特征在于:所述涡流管(4)的冷端出口分别通过第一膨胀阀(11)和第二膨胀阀(12)与第一蒸发器(9)和第二蒸发器(10)相连。
CN201610405772.2A 2016-06-07 2016-06-07 超临界co2热泵驱动的双热源海水淡化系统 Expired - Fee Related CN105923674B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610405772.2A CN105923674B (zh) 2016-06-07 2016-06-07 超临界co2热泵驱动的双热源海水淡化系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610405772.2A CN105923674B (zh) 2016-06-07 2016-06-07 超临界co2热泵驱动的双热源海水淡化系统

Publications (2)

Publication Number Publication Date
CN105923674A true CN105923674A (zh) 2016-09-07
CN105923674B CN105923674B (zh) 2018-12-11

Family

ID=56833636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610405772.2A Expired - Fee Related CN105923674B (zh) 2016-06-07 2016-06-07 超临界co2热泵驱动的双热源海水淡化系统

Country Status (1)

Country Link
CN (1) CN105923674B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830136A (zh) * 2017-03-29 2017-06-13 上海理工大学 基于涡流管制冷的海水淡化系统
CN108408805A (zh) * 2018-03-12 2018-08-17 南京航空航天大学 热泵海水淡化联产电系统及方法
CN108892191A (zh) * 2018-09-06 2018-11-27 武汉凯龙技术开发有限责任公司 制冷法海水淡化系统
CN109945292A (zh) * 2019-03-18 2019-06-28 山东大学 带辅助压缩机的双热源两级压缩热泵热水系统及方法
CN110282678A (zh) * 2019-06-14 2019-09-27 天津理工大学 基于涡流管的风光互补两级闪蒸海水淡化系统及工作方法
CN110697821A (zh) * 2019-09-27 2020-01-17 中国科学院工程热物理研究所 一种海水源跨临界二氧化碳热泵循环多效海水淡化系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1554589A (zh) * 2003-12-26 2004-12-15 国家海洋局天津海水淡化与综合利用研 一种高效的蒸馏法海水淡化装置及淡化方法
UA17246U (en) * 2006-03-27 2006-09-15 Univ Donetsk Nat Technical Method for water purification
CN101852490A (zh) * 2010-05-31 2010-10-06 华北电力大学(保定) 一种空气能二氧化碳热泵热水器
WO2011046458A1 (en) * 2009-10-12 2011-04-21 Oleszkiewicz Blazej The compression heat pump with thermal accelerator
CN102338496A (zh) * 2011-09-30 2012-02-01 浙江大学 一种带涡流管的多温区制冷系统
CN103265089A (zh) * 2013-05-07 2013-08-28 西安交通大学 一种高温高效的多效蒸馏海水淡化装置及方法
WO2014028832A1 (en) * 2012-08-16 2014-02-20 University Of South Florida Systems and methods for water desalination and power generation
KR20150069348A (ko) * 2013-12-13 2015-06-23 한라비스테온공조 주식회사 차량용 에어컨시스템

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1554589A (zh) * 2003-12-26 2004-12-15 国家海洋局天津海水淡化与综合利用研 一种高效的蒸馏法海水淡化装置及淡化方法
UA17246U (en) * 2006-03-27 2006-09-15 Univ Donetsk Nat Technical Method for water purification
WO2011046458A1 (en) * 2009-10-12 2011-04-21 Oleszkiewicz Blazej The compression heat pump with thermal accelerator
CN101852490A (zh) * 2010-05-31 2010-10-06 华北电力大学(保定) 一种空气能二氧化碳热泵热水器
CN102338496A (zh) * 2011-09-30 2012-02-01 浙江大学 一种带涡流管的多温区制冷系统
WO2014028832A1 (en) * 2012-08-16 2014-02-20 University Of South Florida Systems and methods for water desalination and power generation
CN103265089A (zh) * 2013-05-07 2013-08-28 西安交通大学 一种高温高效的多效蒸馏海水淡化装置及方法
KR20150069348A (ko) * 2013-12-13 2015-06-23 한라비스테온공조 주식회사 차량용 에어컨시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宁静红等: "涡流分离热气体再加热的CO2热泵系统的分析", 《流体机械》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830136A (zh) * 2017-03-29 2017-06-13 上海理工大学 基于涡流管制冷的海水淡化系统
CN106830136B (zh) * 2017-03-29 2019-12-03 上海理工大学 基于涡流管制冷的海水淡化系统
CN108408805A (zh) * 2018-03-12 2018-08-17 南京航空航天大学 热泵海水淡化联产电系统及方法
CN108892191A (zh) * 2018-09-06 2018-11-27 武汉凯龙技术开发有限责任公司 制冷法海水淡化系统
CN108892191B (zh) * 2018-09-06 2024-02-13 武汉凯龙技术开发有限责任公司 制冷法海水淡化系统
CN109945292A (zh) * 2019-03-18 2019-06-28 山东大学 带辅助压缩机的双热源两级压缩热泵热水系统及方法
CN110282678A (zh) * 2019-06-14 2019-09-27 天津理工大学 基于涡流管的风光互补两级闪蒸海水淡化系统及工作方法
CN110697821A (zh) * 2019-09-27 2020-01-17 中国科学院工程热物理研究所 一种海水源跨临界二氧化碳热泵循环多效海水淡化系统
CN110697821B (zh) * 2019-09-27 2021-10-26 中国科学院工程热物理研究所 一种海水源跨临界二氧化碳热泵循环多效海水淡化系统

Also Published As

Publication number Publication date
CN105923674B (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN105923674A (zh) 超临界co2热泵驱动的双热源海水淡化系统
Hu et al. Water vapor compression and its various applications
US11339556B2 (en) Device and method for obtaining water from air on island
CN104609488B (zh) 梯级海水淡化系统及其方法
CN105923675B (zh) 一种热泵蒸发耦合多效蒸发的海水淡化装置
CN201384862Y (zh) 间接蒸汽再压缩蒸发系统
WO2021169324A1 (zh) 一种节能零排放低温常压蒸发结晶系统及其工作方法
CN105923676A (zh) 高效太阳能海水淡化与空调制冷联合运行方法与系统
Shaikh et al. A review on recent technological advancements in humidification dehumidification (HDH) desalination
CN106006801B (zh) 利用空气作为传热介质的纳米流体海水淡化系统
CN102345306A (zh) 一种空气制水机
CN103265140B (zh) 太阳能线聚光-风能协同超声波海水淡化装置及淡化方法
CN105344119A (zh) 一种低温喷淋蒸发的废水处理装置及废水处理方法
CN109133236A (zh) 一种工业余热驱动喷射式制冷的海水淡化装置及应用方法
WO2022126671A1 (zh) 通过溴化锂机组将高含盐废水浓缩结晶淡化水处理装置
CN103550941B (zh) 一种低温蒸发浓缩装置及高浓度废水浓缩方法
WO2016187928A1 (zh) 热泵蒸发冷凝一体机及浓缩方法
Liu et al. Recent advances in heat pump-coupled desalination systems: a systematic review
CN203007081U (zh) 低温多效蒸发海水淡化装置
KR20010106805A (ko) 기계적 증기재압축식 해수담수화 장치
CN1194901C (zh) 双级吸收压缩式高温热泵海水淡化装置
CN203256082U (zh) 太阳能线聚光-风能协同超声波海水淡化装置
CN101666566B (zh) 一种防霜溶液与冷凝水分离装置
CN203754456U (zh) 一种氮气循环的低温蒸发浓缩装置
Wang et al. Brief introduction of dehumidification technology and research progress

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181211

Termination date: 20210607

CF01 Termination of patent right due to non-payment of annual fee