CN105915038B - 一种电压源换流器过负荷限电流方法 - Google Patents

一种电压源换流器过负荷限电流方法 Download PDF

Info

Publication number
CN105915038B
CN105915038B CN201610219293.1A CN201610219293A CN105915038B CN 105915038 B CN105915038 B CN 105915038B CN 201610219293 A CN201610219293 A CN 201610219293A CN 105915038 B CN105915038 B CN 105915038B
Authority
CN
China
Prior art keywords
active
pole
power
idle
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610219293.1A
Other languages
English (en)
Other versions
CN105915038A (zh
Inventor
胡兆庆
董云龙
卢宇
李海英
曹冬明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NR Electric Co Ltd
NR Engineering Co Ltd
Original Assignee
NR Electric Co Ltd
NR Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NR Electric Co Ltd, NR Engineering Co Ltd filed Critical NR Electric Co Ltd
Priority to CN201610219293.1A priority Critical patent/CN105915038B/zh
Publication of CN105915038A publication Critical patent/CN105915038A/zh
Priority to BR112018068136-9A priority patent/BR112018068136B1/pt
Priority to EA201891757A priority patent/EA035321B1/ru
Priority to US16/081,437 priority patent/US10270332B2/en
Priority to KR1020187025608A priority patent/KR102084345B1/ko
Priority to PCT/CN2017/079636 priority patent/WO2017174015A1/zh
Application granted granted Critical
Publication of CN105915038B publication Critical patent/CN105915038B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • H02H5/041Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature additionally responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1216Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for AC-AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/001Measuring real or reactive component; Measuring apparent energy
    • G01R21/002Measuring real component
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/001Measuring real or reactive component; Measuring apparent energy
    • G01R21/003Measuring reactive component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种电压源换流器过负荷限电流方法。电压源型换流器应用在柔性直流输电系统中单极或者双极拓扑中,极控制系统收到水冷过负荷限制电流指令时,按照指定斜率同时改变有功和无功指令,使得换流器的桥臂电流绝对值按照固定的斜率下降,并且可以保证有功和无功同时降到0,实现通过降桥臂电流方式达到换流器水冷限负荷目标,在极控制系统收到的水冷过负荷限制功率指令解除后,有功和无功保持当前数值不变,下次收到水冷过负荷限制功率指令后继续在当前的功率数值基础上继续下降,直到下降到0功率为止,本方法在电压源型单极或者双极拓扑中实现水冷过负荷限制功率功能,保证换流阀过负荷时安全运行,操作过程简单可靠,易于实现。

Description

一种电压源换流器过负荷限电流方法
技术领域
本发明属于直流输电领域,特别涉及一种电压源换流器过负荷限电流方法。
背景技术
柔性直流输电采用电压源换流器,可以独立调节有功和无功的传输、提高交流系统的输电能力,易于构成多端直流输电系统,在可再生能源的发电并网、孤岛城市供电以及交流系统互联等应用领域,具有明显的竞争力。
目前柔性直流输电电压源换流器拓扑多采用模块化多电平(modular multi-level converter)技术,换流器正常工作状态下六个桥臂通过电流,以及模块自身开关器件开通关断引起热损耗,需要一定水冷冷却容量降低温度,保证模块正常工作,但如果水冷容量不足情况下,会引起阀出水水温过高导致系统无法正常工作,此时水冷控制系统检测水温过高会预先给上位机控制系统发送水冷过负荷限制电流指令。
目前上位机收到水冷过负荷限制电流指令后,处理方式可以一般可以采用降低运行直流电流方式,或者采用动态电流限幅控制方式,前者多用于电流源型传统直流输电方式,后者属于内环电流限制,多用于暂态电流限制,在电压源换流器过负荷限电流时都有一定应用的局限性,因为电压源换流器的桥臂电流不仅包括有功成分,同时也包括无功电流成分,仅仅在降低直流电流后不能完全满足过负荷限制桥臂电流目标,暂态电流限制具有较快响应速度,一般用于暂态控制,不适合过负荷时要求的电流限制要求。本文提出的方法适用于单极或者双极拓扑电压源型换流器的过负荷限制。
发明内容
本发明的目的是提供一种电压源换流器过负荷限电流方法。该方法应用在柔性直流输电系统中单极或者双极拓扑中,极控制系统收到水冷过负荷限制电流指令时,通过同时按照指定斜率改变有功和无功指令,使得换流器的桥臂电流绝对值按照固定的斜率下降,并且可以保证有功和无功同时降到0,实现通过降桥臂电流方式达到换流器水冷限负荷目标,保证换流阀过负荷时安全运行。
为了达成上述目的,本发明的解决方案是:
上层控制主机收到水冷过负荷限制电流指令时,通过同时按照指定斜率同时改变有功和无功指令,使得换流器的桥臂电流绝对值按照固定的斜率下降,功率下降过程中,有功指令和无功指令按照斜率变化方法如下:
有功指令为:
P0为水冷限负荷前换流器输出有功功率,sig(P0)表示取初始有功功率的正负符号,RAMP_P为正的数值,表示斜率,一般取一个正的常数,表示每分钟多少MW,±取正或者负由初始有功功率P0的正负决定,如果初始有功功率P0>0,取负,如果初始有功功率P0<0,取正,无功指令变化将按照初始有功和无功的比例以固定斜率改变指令大小。
无功指令变化为:
在上层控制主机收到的水冷过负荷限制电流指令解除后,有功功率和无功功率保持当前数值不变,手动重新设置新的功率变化斜率和功率指令数值,有功或者无功将按照新的变化斜率升/降到新的功率指令大小,下次收到水冷过负荷限制电流指令后在当前的功率数值基础上继续下降,直到下降到0功率为止。
按照这种方式改变过负荷限制极有功和无功,可以保证桥臂电流按照斜率均匀下降变化,用于消除因为桥臂电流引起压源换流器损耗发热导致水冷却容量不足引起换流器过载现象。
以上所述电压源换流器过负荷限电流方法,有功指令变化和无功指令变化是相互独立的,可以按照上述方式同时降有功和无功,也可以不改变本站无功指令,仅仅改变有功指令。
以上述电压源换流器过负荷限电流方法,当有功功率控制站收到水冷过负荷限制电流指令后,同时按照指定斜率改变有功和无功指令,使得换流器的桥臂电流绝对值按照固定的斜率下降;直流电压控制站收到水冷过负荷限制电流指令,通过站间通讯向功率控制站发送请求降有功指令,同时改变直流电压控制站无功指令,有功功率控制站收到直流电压控制站请求降功率指令,按照上述方式改变有功指令,即按照指定斜率改变有功指令,使得换流器的桥臂电流绝对值按照固定的斜率下降,但并不改变有功功率控制站无功指令。
以上所述电压源换流器过负荷限电流方法,在双极拓扑结构中,每个极过负荷受限后单独改变每个极自身的有功和无功,另外一个极的有功和无功根据需要调整,有功可以跟随功率受限的极的大小同样变化,也可以保持总的有功不变为目的,调整自身有功功率大小,无功功率以保持总的有功不变为目的,调整自身无功功率大小。
以上所述电压源换流器过负荷限电流方法应用在双极拓扑结构中时,如果双极拓扑结构采用金属回线运行方式时,当一个极由于过负荷受限后单独改变本极有功和无功,另外一个极保持总的有功和无功不变的方法是,让过负荷受限制的极切换到单极功率控制,并且按照指定斜率改变有功和无功指令,使得换流器的桥臂电流绝对值按照固定的斜率下降,单独改变自身有功功率以及无功指令,另外一个极则保持控制方式不变,通过通讯方式得到过负荷限制一极的实测有功和无功数值,用总的有功和无功指令减去受限制极的有功和无功数值,作为不受限制极的有功和无功指令。
以上所述电压源换流器过负荷限电流方法应用在双极拓扑结构中时,如果双极拓扑结构采用大地回线运行方式时,当极1由于过负荷受限后单独改变本极有功和无功,极2跟踪受限制极1,通过通讯接收受限制极1的实测有功数值,极2的功率指令等于受限制极1的实测功率大小,从而保持大地回线电流始终等于0;无功则用总的无功指令减去受限制极的实测无功数值,作为另外一极的无功指令,从而保持总的无功不变。
采用上述方案后,本发明的有益效果为:
(1)按照这种方式改变过负荷限制极有功和无功,可以保证桥臂电流按照斜率均匀下降变化,用于消除因为桥臂电流引起压源换流器损耗发热导致水冷却容量不足引起换流器过载现象。
(2)该方法适用于双极拓扑中金属回线运行方式以及大地回线方式运行时,当其中一个极过负荷限制时,通过另外一个极的有功和无功补偿作用保持总的有功和无功不变,或者保持大地回线方式运行的接地电流始终为0。
附图说明
图1(a)是双极拓扑下金属回线运行;(b)是双极拓扑下大地回线运行,MMC表示modular multi-level converter模块化多电平换流器;
图2是本发明中换流器最大输出有功功率和网侧交流电压之间关系图。
具体实施方式
本发明的目的是提供一种电压源换流器过负荷限电流方法。该方法应用在柔性直流输电系统中单极或者双极拓扑中,见图2所示,极1上层控制主机103收到水冷控制系统101过负荷限制电流指令102时,通过同时按照指定斜率同时改变有功和无功指令,使得换流器的桥臂电流绝对值按照固定的斜率下降,并且可以保证有功和无功同时降到0,实现通过降桥臂电流方式达到换流器水冷限负荷目标,采用该方式可以在极控制系统收到的水冷过负荷限制功率指令解除后,有功和无功保持当前数值不变,下次收到水冷过负荷限制功率指令后继续在当前的功率数值基础上继续下降,直到下降到0功率为止,本方法可以在电压源型单极或者双极拓扑中实现水冷过负荷限制功率功能,保证换流阀过负荷时安全运行。
为了达成上述目的,本发明的实施方式为:
上层控制主机103收到水冷控制系统101过负荷限制电流指令102时,通过同时按照指定斜率同时改变有功和无功指令,使得换流器的桥臂电流绝对值按照固定的斜率下降,功率下降过程中,有功指令和无功指令按照斜率变化方法如下:
有功指令为:
P0为水冷限负荷前换流器输出有功功率,sig(P0)表示取初始有功功率的正负符号,RAMP_P为正的数值,表示斜率,一般取一个正的常数,表示每分钟多少MW,±取正或者负由初始有功功率P0的正负决定,如果初始有功功率P0>0,取负,如果初始有功功率P0<0,取正,无功指令变化将按照初始有功和无功的比例以固定斜率改变指令大小。
无功指令变化为:
在上层控制主机收到的水冷过负荷限制电流指令解除后,有功功率和无功功率保持当前数值不变,手动重新设置新的功率变化斜率和功率指令数值,有功或者无功将按照新的变化斜率升/降到新的功率指令大小,下次收到水冷过负荷限制电流指令后在当前的功率数值基础上继续下降,直到下降到0功率为止。
按照这种方式改变过负荷限制极有功和无功,可以保证桥臂电流按照斜率均匀下降变化,用于消除因为桥臂电流引起压源换流器损耗发热导致水冷却容量不足引起换流器过载现象。
以上所述电压源换流器过负荷限电流方法,有功指令变化和无功指令变化是相互独立的,可以按照上述方式同时降有功和无功,也可以不改变本站无功指令,仅仅改变有功指令。
以上述电压源换流器过负荷限电流方法,当有功功率控制站收到水冷过负荷限制电流指令后,同时按照指定斜率改变有功和无功指令,使得换流器的桥臂电流绝对值按照固定的斜率下降;直流电压控制站收到水冷过负荷限制电流指令,通过站间通讯向功率控制站发送请求降有功指令,同时改变直流电压控制站无功指令,有功功率控制站收到直流电压控制站请求降功率指令,按照上述方式改变有功指令,即按照指定斜率改变有功指令,使得换流器的桥臂电流绝对值按照固定的斜率下降,但并不改变有功功率控制站无功指令。
以上所述电压源换流器过负荷限电流方法,在双极拓扑结构中,一个极上层控制主机103过负荷受限后单独改变每个极自身的有功和无功,另外一个极上层控制主机104的有功和无功根据需要调整,有功可以跟随功率受限的极的大小同样变化,也可以保持总的有功不变为目的,调整自身有功功率大小,无功功率以保持总的无功不变为目的,调整自身无功功率大小。
以上所述电压源换流器过负荷限电流方法应用在双极拓扑结构中时,如果双极拓扑结构在降功率过程中不要求双极平衡运行时,如下图1(a)所示,当一个极103由于过负荷受限后单独改变本极有功和无功,另外一个极104保持总的有功和无功不变的方法是,让过负荷受限制的极切换到单极功率控制,并且按照指定斜率改变有功和无功指令,使得换流器的桥臂电流绝对值按照固定的斜率下降,单独改变自身有功功率以及无功指令,另外一个极104则保持控制方式不变,通过通讯方式105得到过负荷限制一极的实测有功和无功数值,用总的有功和无功指令减去受限制极的有功和无功数值,作为不受限制极的有功和无功指令。
以上所述电压源换流器过负荷限电流方法应用在双极拓扑结构中时,如果双极拓扑结构在降功率过程中要求双极保持平衡运行时,如下图1(b)所示,当一个极103由于过负荷受限后单独改变本极有功和无功,另外一个极104跟踪受限制极,通过通讯105接收实测有功数值,功率指令等于另外一极的实测功率大小,因此保持大地回线电流始终等于0。无功则用总的无功指令减去受限制极的实测无功数值,作为另外一极104的无功指令,目的是保持总的无功不变。

Claims (5)

1.一种电压源换流器过负荷限电流方法,其特征在于,上层控制主机收到水冷过负荷限制电流指令时,通过同时或者独立按照指定斜率改变有功和无功指令,使得换流器的桥臂电流绝对值按照固定的斜率下降;
功率下降过程中,有功指令和无功指令按照斜率变化方法如下:
有功指令为:
P0为收到水冷过负荷限制电流指令前换流器输出有功功率,sig(P0)表示取初始有功功率的正负符号,RAMP_P为正的常数,表示斜率,表示功率变化速度,±取正或者负由初始有功功率P0的正负决定,如果初始有功功率P0>0,取负,如果初始有功功率P0<0,取正;
无功指令则按照初始有功和无功的比例以固定斜率改变指令大小,
无功指令变化为:
Q0为收到水冷过负荷限制电流指令前换流器输出无功功率;
在上层控制主机收到的水冷过负荷限制电流指令解除后,有功功率和无功功率保持当前数值不变,手动重新设置新的功率变化斜率和功率指令数值,有功或者无功将按照新的变化斜率升/降到新的功率指令大小,下次收到水冷过负荷限制电流指令后在当前的功率数值基础上继续下降,直到下降到0功率为止。
2.如权利要求1所述电压源换流器过负荷限电流方法,其特征在于,在有功功率控制站收到水冷过负荷限制电流指令后,同时按照指定斜率改变有功和无功指令,使得换流器的桥臂电流绝对值按照固定的斜率下降;直流电压控制站收到水冷过负荷限制电流指令,通过站间通讯向有功功率控制站发送请求降有功指令,同时改变直流电压控制站无功指令,有功功率控制站收到直流电压控制站请求降有功指令,按照上述方式改变有功指令,即按照指定斜率改变有功指令,使得换流器的桥臂电流绝对值按照固定的斜率下降,但并不改变有功功率控制站无功指令。
3.如权利要求1所述电压源换流器过负荷限电流方法,其特征在于,在双极拓扑结构中,一个极过负荷受限后单独改变自身的有功和无功,设定为极1;另外一个极的有功和无功根据运行需要调整,设定为极2;极1和极2的有功功率大小同样变化,或者保持按总的有功不变的原则,用总的有功指令减去极1的实测有功数值;无功功率按保持总的无功不变的原则,用总的无功指令减去极1的实测无功数值,作为极2的无功指令。
4.如权利要求3所述电压源换流器过负荷限电流方法,其特征在于,应用在双极拓扑结构中时,如果双极拓扑结构采用金属回线运行方式时,当极1由于过负荷受限后单独改变本极有功和无功,极2保持总的有功和无功不变的方法是,让极1切换到单极功率控制,并且按照指定斜率改变有功和无功指令,使得换流器的桥臂电流绝对值按照固定的斜率下降,极2则保持控制方式不变,通过通讯方式得到极1的实测有功和无功数值,用总的有功和无功指令减去极1的有功和无功数值,作为极2的有功和无功指令。
5.如权利要求3所述电压源换流器过负荷限电流方法,其特征在于,应用在双极拓扑结构中时,如果双极拓扑结构采用大地回线运行方式时,当极1由于过负荷受限后单独改变本极有功和无功,极2跟踪极1,通过通讯接收极1的实测有功数值,极2的有功功率指令等于极1的实测有功数值大小,从而保持大地回线电流始终等于0;无功则用总的无功指令减去极1的实测无功数值,作为另外一极的无功指令,从而保持总的无功不变。
CN201610219293.1A 2016-04-08 2016-04-08 一种电压源换流器过负荷限电流方法 Active CN105915038B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201610219293.1A CN105915038B (zh) 2016-04-08 2016-04-08 一种电压源换流器过负荷限电流方法
BR112018068136-9A BR112018068136B1 (pt) 2016-04-08 2017-04-06 Método de limitação de corrente de sobrecarga para conversor de fonte de tensão
EA201891757A EA035321B1 (ru) 2016-04-08 2017-04-06 Способ ограничения тока перегрузки для преобразователя напряжения
US16/081,437 US10270332B2 (en) 2016-04-08 2017-04-06 Overload current limiting method for voltage source converter
KR1020187025608A KR102084345B1 (ko) 2016-04-08 2017-04-06 전압원 컨버터의 과부하 전류 제한 방법
PCT/CN2017/079636 WO2017174015A1 (zh) 2016-04-08 2017-04-06 一种电压源换流器过负荷限电流方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610219293.1A CN105915038B (zh) 2016-04-08 2016-04-08 一种电压源换流器过负荷限电流方法

Publications (2)

Publication Number Publication Date
CN105915038A CN105915038A (zh) 2016-08-31
CN105915038B true CN105915038B (zh) 2018-11-23

Family

ID=56744812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610219293.1A Active CN105915038B (zh) 2016-04-08 2016-04-08 一种电压源换流器过负荷限电流方法

Country Status (6)

Country Link
US (1) US10270332B2 (zh)
KR (1) KR102084345B1 (zh)
CN (1) CN105915038B (zh)
BR (1) BR112018068136B1 (zh)
EA (1) EA035321B1 (zh)
WO (1) WO2017174015A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105915038B (zh) 2016-04-08 2018-11-23 南京南瑞继保电气有限公司 一种电压源换流器过负荷限电流方法
CN107579537A (zh) * 2017-10-11 2018-01-12 贵州电网有限责任公司电力调度控制中心 柔性直流环网的过负荷保护方法及装置
EP3973625A1 (en) * 2019-05-20 2022-03-30 Hitachi Energy Switzerland AG Method for operating a power electronic converter, and power electronic converter
WO2022017618A1 (de) * 2020-07-24 2022-01-27 Siemens Aktiengesellschaft Anordnung und verfahren zu dessen betrieb
CN113224801B (zh) * 2021-04-25 2022-06-03 杭州电子科技大学 一种适用于直流式互联微网系统的功率协调控制方法
CN116388111B (zh) * 2023-04-18 2024-02-20 杭州欣美成套电器制造有限公司 电气微电网的就地测控保护一体化装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022522A (zh) * 2014-06-09 2014-09-03 山东大学 一种多端柔性直流输电系统协调控制方法
CN104333032A (zh) * 2014-11-20 2015-02-04 北京荣信慧科科技有限公司 降低柔性直流输电换流阀电流峰值的环流控制策略
CN104882911A (zh) * 2015-06-01 2015-09-02 贵州电力试验研究院 一种小水电集群的地区电网风光水气发电互补控制方法
JP5830484B2 (ja) * 2013-03-27 2015-12-09 株式会社日立製作所 無効電力比率制御器、無効電力比率制御方法、およびこれを用いた発電システム
CN105140948A (zh) * 2015-07-06 2015-12-09 南京南瑞继保电气有限公司 柔性直流输电系统功率协调控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8904338B2 (en) * 2011-06-08 2014-12-02 Raytheon Company Predicting performance of a software project
US9217766B2 (en) * 2011-08-17 2015-12-22 Analog Devices, Inc. Apparatus and method for measuring active/reactive powers
KR20150090625A (ko) * 2014-01-29 2015-08-06 엘에스산전 주식회사 계통 연계 인버터의 무효 전력 주입 제어 장치
KR101604906B1 (ko) * 2014-05-13 2016-03-18 엘에스산전 주식회사 고전압 직류 송전 시스템
CN105915038B (zh) * 2016-04-08 2018-11-23 南京南瑞继保电气有限公司 一种电压源换流器过负荷限电流方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5830484B2 (ja) * 2013-03-27 2015-12-09 株式会社日立製作所 無効電力比率制御器、無効電力比率制御方法、およびこれを用いた発電システム
CN104022522A (zh) * 2014-06-09 2014-09-03 山东大学 一种多端柔性直流输电系统协调控制方法
CN104333032A (zh) * 2014-11-20 2015-02-04 北京荣信慧科科技有限公司 降低柔性直流输电换流阀电流峰值的环流控制策略
CN104882911A (zh) * 2015-06-01 2015-09-02 贵州电力试验研究院 一种小水电集群的地区电网风光水气发电互补控制方法
CN105140948A (zh) * 2015-07-06 2015-12-09 南京南瑞继保电气有限公司 柔性直流输电系统功率协调控制方法

Also Published As

Publication number Publication date
CN105915038A (zh) 2016-08-31
EA035321B1 (ru) 2020-05-28
US10270332B2 (en) 2019-04-23
KR102084345B1 (ko) 2020-03-03
US20190081551A1 (en) 2019-03-14
KR20180108795A (ko) 2018-10-04
BR112018068136B1 (pt) 2023-04-25
EA201891757A1 (ru) 2019-03-29
BR112018068136A2 (pt) 2019-01-08
WO2017174015A1 (zh) 2017-10-12

Similar Documents

Publication Publication Date Title
CN105915038B (zh) 一种电压源换流器过负荷限电流方法
WO2022001262A1 (zh) 一种基于光伏逆变器的配变台区电能质量优化方法
CN108418244B (zh) 一种基于多微网柔性互联系统及其储能容量优化方法
CN105140948B (zh) 柔性直流输电系统功率协调控制方法
CN105429163B (zh) 一种直流输电系统换流阀触发角控制方法和控制系统
CN102157952A (zh) 恒流多回路回馈电网蓄电池智能放电节能装置
CN106602608A (zh) 一种直流配电网中光伏储能系统及其运行控制方法
CN105244900B (zh) 一种基于移频控制的微电网离网能量平衡控制方法
CN108336743B (zh) 一种基于分布式电源并网逆变器的本地电压控制方法
CN215628322U (zh) 一种动态制氢过程的热集成系统
CN204316103U (zh) 一种交直流混合微电网系统
CN104426158B (zh) 直流输电分层接入系统及方法
CN104539023A (zh) 基于网电互补的风力发电供电系统
CN107681687B (zh) 基于储能的分布式系统母线过电压抑制控制方法和系统
CN115347577A (zh) 基于分布式光伏的多区域限值电压调控方法及装置
CN107565574A (zh) 一种柔性环网控制器与稳控装置的协调配合方法
US20140139027A1 (en) Control device for hybrid electric power system
CN202772656U (zh) 备用电源在线装置
CN206559137U (zh) 通信基站光伏双极化供电系统
CN206908305U (zh) 一种农村分布式光伏钒液电池储能微电网系统
CN201830016U (zh) 具有断硅链保护的自动调压装置
CN109347111A (zh) 一种考虑电压变化率的柔性直流换流站有功无功控制方法
CN204669309U (zh) 一种太阳能光伏直流电站
CN107846037A (zh) 电源转换模块、发电系统及其控制方法
CN204190478U (zh) 一种小型风力发电机的充电电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant