CN105907949A - 一种从红土镍矿中低温酸化酸解综合回收镍钴铁的新工艺 - Google Patents

一种从红土镍矿中低温酸化酸解综合回收镍钴铁的新工艺 Download PDF

Info

Publication number
CN105907949A
CN105907949A CN201610320367.0A CN201610320367A CN105907949A CN 105907949 A CN105907949 A CN 105907949A CN 201610320367 A CN201610320367 A CN 201610320367A CN 105907949 A CN105907949 A CN 105907949A
Authority
CN
China
Prior art keywords
nickel
cobalt
sulphuric acid
ore
nickel ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610320367.0A
Other languages
English (en)
Inventor
范艳青
蒋训雄
汪胜东
冯林永
蒋伟
张登高
刘巍
靳冉公
李达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing General Research Institute of Mining and Metallurgy
Original Assignee
Beijing General Research Institute of Mining and Metallurgy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute of Mining and Metallurgy filed Critical Beijing General Research Institute of Mining and Metallurgy
Priority to CN201610320367.0A priority Critical patent/CN105907949A/zh
Publication of CN105907949A publication Critical patent/CN105907949A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/06Sulfating roasting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种从红土镍矿中低温酸化酸解综合回收镍钴铁的新工艺,属于红土镍矿综合利用领域。本发明将红土镍矿磨细处理后,与适量浓硫酸混合均匀、熟化后,硫酸熟化料在还原剂作用下,进行高温快速还原焙烧脱硫,含硫烟气通过制酸实现硫酸再生循环利用,还原焙砂采用水浸出,得到镍钴溶液进行常规冶金处理,制备镍钴产品,水浸渣进行磁选富集回收铁精矿。本发明可以有效解决现有红土镍矿处理工艺存在资源利用率低、能耗高、环境污染严重等不足,尤其是褐铁型红土镍矿中伴生有价元素铁的综合利用问题,是一种实现红土镍矿短流程、低成本、高效率、环保清洁开发的新工艺。

Description

一种从红土镍矿中低温酸化酸解综合回收镍钴铁的新工艺
技术领域
本发明属于红土镍矿综合利用领域,涉及一种从红土镍矿中综合回收镍、钴、铁的方法,尤其是通过低温酸化酸解工艺综合回收镍钴铁金属。
背景技术
红土镍矿是世界上最早被发现和利用的镍矿资源,具有如下开发利用优势:(1)红土型镍矿资源丰富,全球约有4100万t镍金属量,勘查成本低;(2)可露天开采,采矿成本极低;(3)选冶工艺已逐渐成熟;(4)不锈钢生产的发展,对烧结氧化镍、镍铁或通用镍的需求增加,而这些镍产品主要是由氧化镍矿生产的;(5)世界红土型镍资源主要分布于近赤道地区,大部分靠近海岸,便于外运。
我国相关企业通常采用传统火法冶炼镍铁、鼓风炉硫化熔炼镍锍和传统湿法提取镍钴等工艺处理。这虽然在一定程度上暂时缓解了国内镍的供需矛盾,但传统的处理方法导致该类资源利用率低、试剂消耗和能耗高、环境污染严重。如何绿色、高效且经济地利用红土镍矿已成为目前的一大研究热点。
根据红土镍矿处理工艺的特点,大致可将其分为火法和湿法两种。同时,针对低品位镍红土矿的处理,在生物浸出、微波浸出、离析焙烧浸出、超声波浸出等方面也进行了大量的研究工作。
镍红土矿火法冶金工艺主要包括还原-熔炼镍铁工艺、还原-硫化熔炼生产镍锍工艺、回转窑还原-磁选生产镍铁工艺以及高炉生产镍铁工艺,镍铁合金可用于生产不锈钢,镍锍产品可经转炉进一步吹炼生产高冰镍。主要处理Fe/Ni较低、含镍较高的腐植土型镍红土矿。火法工艺的主要优点是处理量大,缺点是能耗高、原料适应性较差、综合回收率低。随着全球能源供应日益紧张以及高品位矿石的大幅度减少,镍红土矿火法冶金工艺将面临挑战。
目前普遍采用的镍红土矿湿法冶金工艺主要有三种:即还原焙烧-氨浸工艺(简称为RRAL)、加压酸浸工艺(简称为HPAL)、以及常压硫酸浸法(AL)。镍红土矿湿法处理工艺的主要优点是金属回收率高、能够综合回收镍钴铁等有价金属、能耗低、能够处理低品位矿石等。
还原焙烧-氨浸工艺:这个流程是由Caron教授发明的,又称为Caron工艺。还原焙烧过程中,镍红土矿中的硅酸镍和氧化镍最大限度地被还原成金属,大部分Fe还原成Fe3O4、少部分Fe被还原成金属,焙烧矿再用NH3及CO2将金属镍和钴转为镍氨及钴氨络合物进入溶液,铁、镁等杂质则留在浸出渣中,从而实现镍、钴与铁等杂质的初步分离。这个流程的最大缺点是:镍钴回收率低,全流程镍的回收率75%~80%,钴的回收率40-50%。
加压酸浸工艺:该工艺最早应用于古巴的毛阿镍厂,在250~270℃、4~5MPa的高温高压条件下,用稀硫酸将镍、钴等有价金属与铁、铝矿物一起溶解,在随后的反应中,控制一定的PH值等条件,使铁、铝和硅等杂质元素水解进入渣中,镍、钴选择性进入溶液。浸出液用硫化氢还原中和、沉淀,产出高质量的镍钴硫化物。镍钴硫化物通过传统的精炼工艺配套产出最终产品。
硫酸加压浸出工艺的优点是镍钴回收率高、加工成本低。缺点是投资费用高、加压釜容易结垢而造成生产周期短以及建设周期长。
常压酸浸工艺:常压酸浸法被称为镍红土矿床的下一代湿法冶炼工艺。常压酸浸法采用工业常用的硫酸在较高温度常压下浸出,该工艺具有工艺短,设备简单,易于实现工业化,无高温高压,无腐蚀材质,投资小等特点,并且仅适宜处理含铁低的硅镁镍红土矿。目前,我国云南元江镍业、广西玉林伟镍、江西锂业等生产厂家已经采用常压硫酸浸出工艺处理镍红土矿。
目前红土镍矿火法工艺处理生产镍铁合金具有流程短、效率高等优点,但能耗较高,其操作成本中的最大构成项是能源消耗,如采用电炉熔炼,仅电耗就约占操作成本的50%,再加上氧化镍矿熔炼前的干燥、焙烧预处理工艺的燃料消耗,操作成本中的能耗成本可能要占65%以上。红土镍矿湿法处理工艺复杂、流程长、工艺条件对设备要求高。解决火湿法结合工艺中技术难点以及火法工艺能耗高的难题和开发新的湿法工艺处理红土镍矿将是今后镍冶炼的发展方向。
发明内容
本发明提出的红土镍矿低温酸化酸解综合回收镍钴铁新工艺,可以有效解决现有红土镍矿处理工艺存在资源利用率低、能耗高、环境污染严重及核心技术难掌握等不足,尤其是褐铁型红土镍矿中伴生有价元素铁的综合利用问题。是低品位红土镍矿实现短流程、低成本、高效率、环保清洁开发的重要研究方向。
为实现上述发明目的,本发明的一种从红土镍矿低温酸化酸解综合回收镍钴铁新工艺,包括下述步骤:
(1)硫酸熟化:将红土镍矿进行磨细处理后与浓硫酸按一定比例混合均匀后进行熟化,得到硫酸熟化料。
(2)还原焙烧:将上述步骤(1)得到的硫酸熟化料与适量补充还原剂一起在一定温度下进行还原焙烧,得到焙砂和含硫烟气,含硫烟气收集后制酸返回步骤(1)循环使用。
(3)焙砂水浸:将上述步骤(2)得到的焙砂用水进行浸出,浸出完成后液固分离,得到硫酸镍钴溶液和含铁浸出渣。
(4)制备镍、钴产品:将上述步骤(3)所得到的硫酸镍钴溶液进行常规冶金处理制备镍钴产品。浸出液经萃取分离富集,得到硫酸镍和硫酸钴,电积制备金属镍和金属钴产品。或采用其他冶金方式制备硫酸镍、草酸钴、氧化钴等产品。
(5)磁选回收铁:将步骤(3)得到的浸出渣磁选富集分离铁,得到铁精矿和磁选尾矿,磁选尾矿作为建材用料。
本发明中,除另有说明的以外,比例、百分比、浓度均以质量为基准。
进一步地,步骤(1)中将红土镍矿进行磨细处理,粒度为0.074mm以下的占80%以上,压滤后磨细红土矿含水率小于30%。
进一步地,步骤(1)中硫酸熟化中,硫酸加入量为所述红土镍矿干基质量的0.1-0.8倍,硫酸的浓度≥35%。
进一步地,步骤(1)中硫酸熟化,其熟化温度100-500℃,优选150-350℃,熟化时间2-48h。
进一步地,步骤(2)中的补充还原剂为煤粉、煤矸石粉、煤气、天然气、硫磺或石油焦等低值含碳燃料中的一种或多种,补充还原剂的配入量根据红土镍矿中的铁的含量调节。
进一步地,步骤(2)中的补充还原剂为煤粉,煤粉的配入比为所述硫酸熟化料质量的0-30%,配入比根据红土镍矿中的铁的含量调节。
进一步地,步骤(2)中还原焙烧温度500-900℃,还原焙烧时间1-60min。
进一步地,步骤(2)中所述的还原焙烧为快速流态化焙烧,焙烧炉为循环流态化焙烧炉、气态悬浮焙烧炉或流态闪速焙烧炉中的一种。
进一步地,步骤(3)所述的水浸为常压浸出,其浸出条件为:溶出温度50-100℃,浸出时间20-120min,液固比2:1-5:1,硫酸加入量0-15%。
进一步地,步骤(4)所述的制备镍钴产品,可采用萃取富集分离和电积的方法,萃取后液可返回进行焙砂浸出,电积后液可返回反萃,制备金属镍和金属钴。或采用其他冶金方式制备硫酸镍、草酸钴、氧化钴等产品。
进一步地,步骤(5)所述的含铁浸出渣在磁场强度大于800kA/m下进行磁选,磁选富集制备铁精矿,磁选尾矿可作建材用料。
本发明的中所述的硫酸熟化,是利用浓硫酸的高温反应活性,和红土镍矿的主要物相发生反应,红土矿中主要金属镍、钴、铁、钙和镁与硫酸反应的吉布斯自由能都小于零,都易于与硫酸反应,生成相应的硫酸盐,且反应从易到难趋势为:钙-镁-铁-钴-镍。
序号 化学反应
1 NiO+H2SO4(l)=NiSO4+H2O(g)
2 Fe2O3+3H2SO4(l)=Fe2(SO4)3+3H2O(g)
3 CoO+H2SO4(l)=CoSO4+H2O(g)
4 CaO+H2SO4(l)=CaSO4+H2O(g)
5 MgO+H2SO4(l)=MgSO4+H2O(g)
本发明的中所述的还原焙烧,是将红土镍矿硫酸熟化料直接用还原剂进行还原焙烧。
在1000℃内的温度范围,硫酸钙、硫酸镁、硫酸镍、硫酸钴不发生分解反应,硫酸铁的三个分解反应都易发生,且反应从易到难趋势为:Fe3O4-FeO-Fe2O3。由此分析可知,通过还原脱硫条件的控制,达到镍、钴不分解,同时铁转化为四氧化三铁磁性铁原理上是可行的。
序号 化学反应
1 Fe2(SO4)3+2C=2FeO+2CO2(g)+3SO2(g)
2 1.5Fe2(SO4)3+2.5C=Fe3O4+2.5CO2(g)+4.5SO2(g)
3 Fe2(SO4)3+1.5C=Fe2O3+1.5CO2(g)+3SO2(g)
本发明中所述的焙砂水浸,因所述还原焙烧得到的焙砂中硫酸镍和硫酸钴不分解,水浸直接进入溶液。采用萃取分离富集和电积工艺,得到电解镍和电解钴。或采用其他冶金方式制备硫酸镍、草酸钴、氧化钴等产品。
本发明利用浓硫酸高温反应强化了红土镍矿中主要物相的分解,与传统酸法不同,不直接进行硫酸镍的浸出,而是利用还原剂实现硫酸熟化料的脱硫分解,并保证硫酸镍、钴的物性,脱硫产生的烟气通过制酸实现主要试剂硫酸的再生。同时脱硫焙砂中的硫酸镍钴,可以进行水浸溶出,并进行常规冶金处理,制备镍钴产品。水浸渣进行磁选富集制备铁精矿和磁选尾矿,尾矿可作为建材用料,实现红土矿中镍钴铁的综合回收利用。
附图说明
附图是本发明方法的原则工艺流程图。
具体实施方式
以下结合附图对本发明做出进一步说明。
将红土镍矿进行磨细处理,粒度为0.074mm以下的占80%以上,压滤后含水率30%以下的红土镍矿与硫酸按一定比例混合,硫酸加入量为所述红土镍矿(干计)质量的0.1-0.8倍,硫酸的浓度≥35%,熟化温度100-500℃,优选150-350℃,熟化时间1-48h。
将硫酸熟化料与还原剂一起进行还原焙烧,还原剂煤粉的配入比为所述硫酸熟化料质量的0-30%,还原焙烧焙烧温度500-900℃,焙烧时间1-60min。还原焙烧产出的含硫烟气收集制取硫酸,实现硫酸的再生循环利用。
将还原焙砂用水进行浸出,其浸出条件为:浸出温度50-100℃,浸出时间20-120min,液固比2:1-5:1,硫酸加入量0-15%。水浸矿浆固液分离后得到的硫酸镍、钴溶液,采用萃取分离富集和电积工艺,得到电解镍和电解钴。或采用其他冶金方式制备硫酸镍、草酸钴、氧化钴等产品。水浸渣在磁场强度大于800kA/m下进行磁选,磁选富集制备铁精矿和磁选尾矿,磁选尾矿可作为建筑用料。
以下用非限定性实施例对本发明的方法作进一步的说明,以有助于理解本发明的内容及其优点,而不作为对本发明保护范围的限定,本发明的保护范围由权利要求书决定。
本发明适用不同化学成分的镍红土矿。下表是本发明试验所采用的红土矿主要成分。
元素 Ni Co Fe CaO MgO SiO2
含量% 1.2 0.1 40.20 0.56 1.50 35.51
实施例1
将红土镍矿进行磨细处理,粒度为0.074mm以下占85%左右,将一定含水量的红土镍矿与硫酸混合,硫酸加入量为所述红土镍矿质量的0.2倍,此时硫酸浓度为70%,混合均匀后,在熟化温度200℃,熟化时间48h条件下得到硫酸熟化料。硫酸熟化料按煤比8%混合均匀,在温度750℃进行快速还原焙烧,焙烧时间5min。
对还原焙砂进行水浸,溶出条件为:溶出温度100℃,时间60min,液固比3:1,硫酸加入量1%。此时,镍的浸出率83%,钴的浸出率为87%,对镍钴浸出液进行常规冶金处理,制备镍钴产品,水浸渣在磁场强度800kA/m下进行磁选,制备铁含量60%的铁精矿,铁回收率为75%。
实施例2
将红土镍矿进行磨细处理,粒度为0.074mm以下占95%左右,将一定含水量的红土镍矿与硫酸混合,硫酸加入量为所述红土镍矿质量的0.3倍,此时硫酸浓度为60%,混合均匀后,在熟化温度180℃,熟化时间24h条件下得到硫酸熟化料。硫酸熟化料按煤比12%混合均匀,在温度700℃进行快速还原焙烧,焙烧时间10min。
对还原焙砂进行水浸,溶出条件为:溶出温度50℃,时间60min,液固比4:1,硫酸加入量0%。此时,镍的浸出率91%,钴的浸出率为92%,对镍钴浸出液进行常规冶金处理,制备镍钴产品,水浸渣在磁场强度850kA/m下进行磁选,制备铁含量60%的铁精矿,铁回收率为68%。
实施例3
将红土镍矿进行磨细处理,粒度为0.074mm以下占90%左右,将一定含水量的红土镍矿与硫酸混合,硫酸加入量为所述红土镍矿质量的0.4倍,此时硫酸浓度为70%,混合均匀后,在熟化温度220℃,熟化时间36h条件下得到硫酸熟化料。硫酸熟化料按煤比15%混合均匀,在温度720℃进行快速还原焙烧,焙烧时间30min。
对还原焙砂进行水浸,溶出条件为:溶出温度80℃,时间30min,液固比5:1,硫酸加入量0%。此时,镍的浸出率94%,钴的浸出率为93%,对镍钴浸出液进行常规冶金处理,制备镍钴产品,水浸渣在磁场强度850kA/m下进行磁选,制备铁含量60%的铁精矿,铁回收率为74%。
实施例4
将红土镍矿进行磨细处理,粒度为0.074mm以下占88%左右,将一定含水量的红土镍矿与硫酸混合,硫酸加入量为所述红土镍矿质量的0.5倍,此时硫酸浓度为80%,混合均匀后,在熟化温度300℃,熟化时间10h条件下得到硫酸熟化料。硫酸熟化料按煤比25%混合均匀,在温度800℃进行快速还原焙烧,焙烧时间20min。
对还原焙砂进行水浸,溶出条件为:溶出温度80℃,时间30min,液固比3:1,硫酸加入量0%。此时,镍的浸出率96%,钴的浸出率为95%,对镍钴浸出液进行常规冶金处理,制备镍钴产品,水浸渣在磁场强度850kA/m下进行磁选,制备铁含量60%的铁精矿,铁回收率为76%。
实施例5
将红土镍矿进行磨细处理,粒度为0.074mm以下占85%左右,将一定含水量的红土镍矿与硫酸混合,硫酸加入量为所述红土镍矿质量的0.7倍,此时硫酸浓度为85%,混合均匀后,在熟化温度450℃,熟化时间8h条件下得到硫酸熟化料。硫酸熟化料按煤比22%混合均匀,在温度850℃进行快速还原焙烧,焙烧时间50min。
对还原焙砂进行水浸,溶出条件为:溶出温度80℃,时间30min,液固比3:1,硫酸加入量0%。此时,镍的浸出率96%,钴的浸出率为95%,对镍钴浸出液进行常规冶金处理,制备镍钴产品,水浸渣在磁场强度950kA/m下进行磁选,制备铁含量60%的铁精矿,铁回收率为69%。
实施例6
将红土镍矿进行磨细处理,粒度为0.074mm以下占98%左右,将一定含水量的红土镍矿与硫酸混合,硫酸加入量为所述红土镍矿质量的0.4倍,此时硫酸浓度为75%,混合均匀后,在熟化温度400℃,熟化时间4h条件下得到硫酸熟化料。硫酸熟化料按煤比8%混合均匀,在温度750℃进行快速还原焙烧,焙烧时间20min。
对还原焙砂进行水浸,溶出条件为:溶出温度60℃,时间30min,液固比3:1,硫酸加入量6%。此时,镍的浸出率94%,钴的浸出率为90%,对镍钴浸出液进行常规冶金处理,制备镍钴产品,水浸渣在磁场强度950kA/m下进行磁选,制备铁含量60%的铁精矿,铁回收率为72%。

Claims (10)

1.一种从红土镍矿中低温酸化酸解综合回收镍钴铁的新工艺,其特征在于,包括以下步骤:
(1)硫酸熟化:将红土镍矿进行磨细处理,磨细的红土镍矿与硫酸按一定比例混合均匀后进行熟化,得到硫酸熟化料;
(2)还原焙烧:将步骤(1)得到的硫酸熟化料与适量补充还原剂一起在一定温度下进行还原焙烧,得到焙砂和含硫烟气,含硫烟气收集后制酸返回步骤(1)循环使用;
(3)焙砂水浸:将步骤(2)得到的焙砂用水浸出,浸出完成后液固分离得到硫酸镍钴溶液和浸出渣;
(4)制备镍钴产品:将步骤(3)得到的硫酸镍钴溶液经常规冶金处理制备镍钴产品;
(5)磁选回收铁:将步骤(3)得到的浸出渣磁选富集分离铁,得到铁精矿和磁选尾矿,磁选尾矿作为建材用料。
2.根据权利要求1所述的工艺,其特征在于,步骤(1)中所述的磨细处理,是将红土镍矿磨细至粒度为0.074mm以下的占80%以上,压滤后含水率在30%以下。
3.根据权利要求1所述的工艺,其特征在于,步骤(1)中硫酸加入量为所述红土镍矿干基质量的0.1-0.8倍,硫酸的浓度≥35%。
4.根据权利要求1所述的工艺,其特征在于,步骤(1)中熟化温度100-500℃,优选150-350℃,熟化时间1-48h。
5.根据权利要求1所述的工艺,其特征在于,步骤(2)中的补充还原剂为煤粉、煤矸石粉、煤气、天然气、硫磺或石油焦等低值含碳燃料中的一种或多种,补充还原剂的配入量根据红土镍矿中铁含量调节。
6.根据权利要求1所述的工艺,其特征在于,步骤(2)中的补充还原剂为煤粉,煤粉的配入比为所述硫酸熟化料质量的0-40%,配入比根据红土镍矿中铁含量调节。
7.根据权利要求1所述的工艺,其特征在于,步骤(2)中还原焙烧温度500-900℃,优选650-800℃,还原焙烧时间1-60min。
8.根据权利要求1所述的工艺,其特征在于,步骤(2)中所述的还原焙烧为快速流态化焙烧,焙烧炉为循环流态化焙烧炉、气态悬浮焙烧炉或流态闪速焙烧炉中的一种。
9.根据权利要求1所述的工艺,其特征在于,步骤(3)所述的水浸条件为:浸出温度50-100℃,浸出时间20-120min,液固比2:1-5:1,硫酸加入量0-15%。
10.根据权利要求1所述的工艺,其特征在于,步骤(5)中所述的浸出渣磁选富集分离铁,在磁场强度大于800kA/m下进行磁选。
CN201610320367.0A 2016-05-14 2016-05-14 一种从红土镍矿中低温酸化酸解综合回收镍钴铁的新工艺 Pending CN105907949A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610320367.0A CN105907949A (zh) 2016-05-14 2016-05-14 一种从红土镍矿中低温酸化酸解综合回收镍钴铁的新工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610320367.0A CN105907949A (zh) 2016-05-14 2016-05-14 一种从红土镍矿中低温酸化酸解综合回收镍钴铁的新工艺

Publications (1)

Publication Number Publication Date
CN105907949A true CN105907949A (zh) 2016-08-31

Family

ID=56749092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610320367.0A Pending CN105907949A (zh) 2016-05-14 2016-05-14 一种从红土镍矿中低温酸化酸解综合回收镍钴铁的新工艺

Country Status (1)

Country Link
CN (1) CN105907949A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111910074A (zh) * 2019-05-10 2020-11-10 刘慧南 一种镍矿提取镍钴的方法
CN113122724A (zh) * 2021-03-31 2021-07-16 衢州华友钴新材料有限公司 一种镍钴湿法冶炼废渣资源化的处理工艺
CN115838863A (zh) * 2023-02-22 2023-03-24 中国科学院过程工程研究所 协同提取褐铁型红土镍矿和腐泥土型红土镍矿中镍钴的方法
CN116219198A (zh) * 2023-01-16 2023-06-06 昆明理工精诚冶金技术有限公司 一种酸溶性金属化镍锍制备方法
CN116949282A (zh) * 2023-04-28 2023-10-27 浙江华友钴业股份有限公司 红土镍矿浸出渣的处理方法及其设备
CN117947261A (zh) * 2024-03-26 2024-04-30 扬州一川镍业有限公司 一种利用悬浮磁化焙烧处理红土镍矿浸出渣的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245414A (zh) * 2007-02-15 2008-08-20 邓彤 从红土矿提取金属的方法
CN101250626A (zh) * 2008-03-18 2008-08-27 贵研铂业股份有限公司 一种从铁质镍矿中提取金属镍钴的方法
CN102345018A (zh) * 2011-10-25 2012-02-08 北京矿冶研究总院 一种处理氧化镍矿的方法
CN103526015A (zh) * 2013-09-30 2014-01-22 中国恩菲工程技术有限公司 含镍褐铁矿的浸出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245414A (zh) * 2007-02-15 2008-08-20 邓彤 从红土矿提取金属的方法
CN101250626A (zh) * 2008-03-18 2008-08-27 贵研铂业股份有限公司 一种从铁质镍矿中提取金属镍钴的方法
CN102345018A (zh) * 2011-10-25 2012-02-08 北京矿冶研究总院 一种处理氧化镍矿的方法
CN103526015A (zh) * 2013-09-30 2014-01-22 中国恩菲工程技术有限公司 含镍褐铁矿的浸出方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111910074A (zh) * 2019-05-10 2020-11-10 刘慧南 一种镍矿提取镍钴的方法
CN113122724A (zh) * 2021-03-31 2021-07-16 衢州华友钴新材料有限公司 一种镍钴湿法冶炼废渣资源化的处理工艺
CN116219198A (zh) * 2023-01-16 2023-06-06 昆明理工精诚冶金技术有限公司 一种酸溶性金属化镍锍制备方法
CN115838863A (zh) * 2023-02-22 2023-03-24 中国科学院过程工程研究所 协同提取褐铁型红土镍矿和腐泥土型红土镍矿中镍钴的方法
CN115838863B (zh) * 2023-02-22 2023-04-28 中国科学院过程工程研究所 协同提取褐铁型红土镍矿和腐泥土型红土镍矿中镍钴的方法
CN116949282A (zh) * 2023-04-28 2023-10-27 浙江华友钴业股份有限公司 红土镍矿浸出渣的处理方法及其设备
CN116949282B (zh) * 2023-04-28 2024-02-13 浙江华友钴业股份有限公司 红土镍矿浸出渣的处理方法及其设备
CN117947261A (zh) * 2024-03-26 2024-04-30 扬州一川镍业有限公司 一种利用悬浮磁化焙烧处理红土镍矿浸出渣的方法
CN117947261B (zh) * 2024-03-26 2024-05-28 扬州一川镍业有限公司 一种利用悬浮磁化焙烧处理红土镍矿浸出渣的方法

Similar Documents

Publication Publication Date Title
CN105907949A (zh) 一种从红土镍矿中低温酸化酸解综合回收镍钴铁的新工艺
CN101413055B (zh) 一种由红土镍矿直接制取镍铁合金粉的工艺
Zhai et al. A green process for recovering nickel from nickeliferous laterite ores
CN109097562B (zh) 一种红土镍矿选择性硫化焙烧的方法
CN102051471B (zh) 用微波处理红土镍矿富集镍铁的方法
WO2017185946A1 (zh) 一种处理低品位红土镍矿的方法及其选矿方法
CN112322909B (zh) 一种用硫酸浸出法提取红土镍矿有价金属元素及酸碱再生循环的方法
CN108396157A (zh) 一种红土镍矿硫酸浸出液和硅胶螯合树脂提纯生产硫酸镍钴的方法
CN106086469B (zh) 一种利用红土镍矿提取氧化镍的方法及系统
CN114350977B (zh) 一种红土镍矿循环硫化提取镍钴的方法
CN101230422A (zh) 一种从红土镍矿中富集镍及联产铁红的方法
CN103740933B (zh) 一种氧化镍物料生产镍铁合金的方法
CN103509955B (zh) 两矿联合法处理红土镍矿和软锰矿的工艺
CN108034805A (zh) 一种含多种有价元素的硫精砂的综合利用方法
CN103509936A (zh) 一种气基选择性还原红土镍矿生产高品位镍精矿的方法
CN102851490B (zh) 流态化还原焙烧氧化镍矿制备优质焙砂的方法
CN105568001A (zh) 一种钴合金和氧化钴矿联合高压酸浸的方法
CN103555930B (zh) 高镁质贫镍红土矿还原焙烧方法
CN104928464A (zh) 一种微波加热预处理提取含钒物料中有价金属的方法
CN104805310A (zh) 一种含高价钴氧化物原料浸出钴的方法
CN117926027A (zh) 一种红土镍矿石的综合利用方法
CN106086468B (zh) 一种利用镍铁粉提取氧化镍的方法与系统
CN109439892B (zh) 一种铜镍硫化型矿物中有价金属的提取方法
CN101481756A (zh) 一种红土镍矿的热压转化法
CN115747477A (zh) 红土镍矿分离镍精矿的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160831