CN105895727A - 基于弛豫GeSn材料的光电探测器 - Google Patents

基于弛豫GeSn材料的光电探测器 Download PDF

Info

Publication number
CN105895727A
CN105895727A CN201610255106.5A CN201610255106A CN105895727A CN 105895727 A CN105895727 A CN 105895727A CN 201610255106 A CN201610255106 A CN 201610255106A CN 105895727 A CN105895727 A CN 105895727A
Authority
CN
China
Prior art keywords
gesn
relaxation
layer
region
type district
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610255106.5A
Other languages
English (en)
Other versions
CN105895727B (zh
Inventor
张春福
韩根全
王轶博
汪银花
张进成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201610255106.5A priority Critical patent/CN105895727B/zh
Publication of CN105895727A publication Critical patent/CN105895727A/zh
Application granted granted Critical
Publication of CN105895727B publication Critical patent/CN105895727B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic Table

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于弛豫GeSn材料的光电探测器,包括衬底、弛豫层、n+型区、光吸收区、p+型区、保护层和金属电极。弛豫层、n+型区、光吸收区、p+型区均采用GeSn材料;发射极区、基极区、光吸收区、集电极区依次竖直分布,钝化层包围在器件的外围。本发明通过在衬底和n+型区之间插入一层Sn的组份高于n+型区、光吸收区、p+型区GeSn合金的GeSn层作为应变弛豫层,使得采用该材料生长方法和结构的光电探测器较于传统GeSn探测器有着相同Sn组份下更好的光电特性和更宽的探测范围。

Description

基于弛豫GeSn材料的光电探测器
技术领域
本发明属于光电子技术领域,更进一步涉及半导体光电红外探测技术领域中的一种基于弛豫GeSn材料的光电探测器。本发明可在光电红外探测领域进行近中红外光信号探测。
背景技术
随着集成电路技术的迅猛发展,技术不断进步,快速处理和传输大规模信息数据成为现今大规模电子器件发展的瓶颈,而将微电子技术和光电子技术有效融合成为解决这一难题的有效方式。
IV族的GeSn材料,随着GeSn合金中Sn组份的不断增加,可以使其带隙不断减小,由间接带隙转变为直接带隙材料,在0~0.66eV范围内实现连续可调,因而在近中红外波段实现探测波长的红移,拓展到3μm附近。
Thach Pham等作者在其发表的“Systematic study of Si-based GeSn photodiodes with2.6μm detector cutoff for short-wave infrared detection”(Optics Express,vol.24,pp.4519-4531,2016)论文中公开了一种GeSn二极管型光电探测器。该GeSn二极管型光电探测器由于采用了具有更窄带隙和更高光吸收系数的IV族GeSn新材料,克服了现有技术制作的III-V族材料的近中红外器件难以硅基集成的难题,具有与金属互补氧化物半导体CMOS(Complementary Metal Oxide Semiconductor)标准工艺相兼容的优点;同时相比于现今使用的IV族Ge探测器探测范围较窄和光吸收系数较低的不足,GeSn光电探测器有着探测范围更宽和光吸收效率更高的优点,而且由于该GeSn二极管型光电探测器中Sn组份提升到10%,因而将探测截止波长拓展到了2.6μm。但是,该GeSn二极管型光电探测器仍然存在的不足之处是,由于GeSn材料生长在晶格常数小于GeSn合金的Ge材料上,因而在GeSn中引入了较大的压应变,导致其禁带宽度增大,从而减小了该GeSn二极管型光电探测器的探测波长,并且使得GeSn合金的缺陷增多,质量变差。
由于锡在锗中的平衡固溶度很低(低于1%),而且锗锡材料与硅的晶格失配也很大,并且锗与锡的晶格常数相差15%,因而,这些固有属性对于高组分的锗锡合金的外延带来很多困难。即便如此,现今利用分子束外延(MBE)、低温化学气相外延(CVD)、磁控溅射技术,已经成功制备出Sn组份达到15%的高质量的GeSn合金。但是,Sn组份越高,在Si或Ge衬底上异质外延生长GeSn越困难,对衬底以及生长技术的要求越高,因而充分利用每一组份下材料的最大特性是非常必要的。而现今直接生长在Si或Ge衬底上的GeSn合金,由于Si和Ge的晶格常数均小于GeSn的晶格常数,从而在外延的GeSn合金中引入垂直于生长方向平面内的面内双轴压应变。根据相关实验测试结果和理论分析计算结论,GeSn合金中面内双轴张应变的引入将会导致其能带结构的变化,使其禁带宽度相较于无应变存在的相同Sn组份的GeSn合金的禁带宽度增大很多,并且根据实验测试,无应变存在的GeSn合金在Sn组份为8%~11%范围内将由间接带隙材料转变为直接带隙材料。
现有技术中的所有的硅基GeSn光电探测器均具有在GeSn光吸收区中存在压应变,因而使得GeSn合金间接带隙向直接带隙转变所对应的Sn组份进一步增加。而且由于较大的应变的存在使得GeSn合金中缺陷增多、材料质量变差。
发明内容
本发明的目的在于针对现已公开的GeSn光电探测器中,由于GeSn光吸收层中存在压应变导致其探测波长减小、质量变差的缺点,采用应变较小或没有应变存在的GeSn层作为光吸收区,制备基于弛豫GeSn材料的光电探测器,从而实现在同一Sn组份条件下所制备的GeSn探测器具有更大的探测波长和更好材料质量的优势。
实现本发明目的的具体思路是,根据材料特性研究表明,IV族复合材料GeSn合金具有比Ge更高的光吸收系数,而且随着GeSn合金中负带隙材料Sn的组份的增加,GeSn合金的带隙不断减小,理论上可以实现在0~0.66eV范围内连续可调。但是,由于Sn在Ge中的固溶度很低,因而质量很好的高Sn组份含量的GeSn合金难以制备,因而在相同Sn组份下实现GeSn光电探测器探测波长最大化是可以拓宽探测范围的有效方式,同时,尽可能提高同一组份下材料的质量是极为必要的。然而,现今已公开的GeSn光电探测器均由于生长在晶格常数小于GeSn晶格常数的Ge或Si衬底上,而且由于GeSn中Sn组份越高,GeSn与Ge或Si衬底的晶格失配度越高,因而会在GeSn中引入大的压应变,使GeSn的禁带宽度减小,导致其实际探测范围的减小,并且,由于较大的压应变的存在,使得GeSn合金的材料质量变差。本发明中的基于弛豫GeSn材料的光电探测器针对现有技术中存在的不足,在传统GeSn探测器结构中引入GeSn弛豫层,在GeSn弛豫层上进行同质外延生长Sn组份低于弛豫层中Sn组份的GeSn,因而制备得到的GeSn中应变将会减小甚至无应变存在,从而使得制备的基于弛豫GeSn材料的光电探测器具有在相同Sn组份条件下具有更大的光探测范围和更好的质量。
本发明包括衬底、n+型区、光吸收区、p+型区、保护层以及金属电极;衬底和n+型区之间设置有弛豫层。弛豫层、n+型区、光吸收区、p+型区在衬底上依次由下至上竖直分布,保护层环绕覆盖在光电探测器的四周;弛豫层、n+型区、光吸收区、p+型区均采用通式为GeSn的IV族复合材料。
与现有技术相比,本发明具有如下优点:
第一,由于本发明在衬底上引入GeSn弛豫层,克服了现已公开的GeSn光电探测器由于GeSn层中存在较大的压应变作用,导致探测截止波长减小的不足,使得本发明具有在相同Sn组份的GeSn探测器中探测范围更大的优点,拓宽探测范围。
第二,由于本发明在GeSn弛豫层上同质外延生长GeSn材料,采用应变减小甚至无应变存在的GeSn材料作为光吸收区,克服现有技术中GeSn材料生长在晶格常数小于GeSn合金的Ge材料上,因而在GeSn中引入了较大的压应变,导致其禁带宽度增大的不足,使得本发明的光电探测器件的光吸收区中GeSn材料中压应变的减少,GeSn材料中的缺陷进一步减小,光电性能进一步提升。
附图说明
图1为本发明的剖面图;
图2为本发明实施例中(004)晶面的高分辨率X射线衍射(HRXRD)图;
图3为本发明实施例中(224)晶面的高分辨率X射线衍射(HRXRD)图。
具体实施方式
下面结合附图对本发明做进一步的描述。
参照图1,本发明基于弛豫GeSn材料的光电探测器包括:衬底1、弛豫层2、n+型区3、光吸收区4、p+型区5、保护层6以及金属电极7;弛豫层2、n+型区3、光吸收区4、p+型区5在衬底上依次由下至上竖直分布,且保护层6环绕覆盖在器件的四周;弛豫层2、n+型区3、光吸收区4、p+型区5均采用通式为GeSn的IV族复合材料。在衬底1和n+型区3之间增加弛豫层2,并且弛豫层2中GeSn材料的Sn组份高于n+型区3、光吸收区4、p+型区5中GeSn合金中的Sn组份,使得制备n+型区3、光吸收区4、p+型区5的GeSn材料压应变减小甚至为无应变存在的GeSn合金,使得GeSn材料的质量进一步提高。衬底1既可以采用单晶Si材料,也可以采用单晶Ge材料。
本发明实施例为在单晶Si衬底1上外延生长Sn的组份为0.4的Ge0.6Sn0.4合金300nm作为弛豫层2,在弛豫层2上外延生长Sn的组份为0.35的Ge0.65Sn0.35合金200nm,并进行离子注入形成n+型区3、光吸收区4和p+型区5。
对本发明实施例进行高分辨率X射线衍射测试,图2为本发明实施例的(004)晶面的高分辨率X射线衍射(HRXRD)扫描曲线图,图3为本发明实施例的(224)晶面的高分辨率X射线衍射(HRXRD)图。
由图2和图3可以看到质量良好的单晶Si衬底1具有陡直的尖峰和小的半宽度以及较少的侧峰,而直接外延在单晶Si衬底1上的Ge0.6Sn0.4弛豫层2由于垂直外延生长方向的平面内存在由单晶Si衬底1引入的较大的双轴压应变,因而生长质量很差,如图2和图3中虚线圆圈所标注,存在很多侧峰和宽的半宽度,而且在图3中虚线圆圈所标注的区域难以找到图线主峰值,表明Ge0.6Sn0.4弛豫层2中缺陷较多、质量较差,存在较大的应变。分析图2和图3中Ge0.65Sn0.35所对应的高分辨率X射线衍射(HRXRD)扫描曲线,相较于Ge0.6Sn0.4弛豫层2所对应的高分辨率X射线衍射(HRXRD)扫描曲线,有着少的侧峰、清晰的主峰以及相对较小的半宽度,表明生长在Ge0.6Sn0.4弛豫层2上的n+型区3、光吸收区4和p+型区5Ge0.65Sn0.35层中缺陷大量减少、材料质量极大提升,同时材料内应变减小,禁带宽度相较于相同Sn的组份的GeSn合金减小,所制备的探测器探测波长得到延拓,有着更好的光电特性。

Claims (4)

1.一种基于弛豫GeSn材料的光电探测器,包括:衬底(1)、n+型区(3)、光吸收区(4)、p+型区(5)、保护层(6)以及金属电极(7);其特征在于,所述的衬底(1)和n+型区(3)之间设置有弛豫层(2),所述的弛豫层(2)、n+型区(3)、光吸收区(4)、p+型区(5)在衬底上依次由下至上竖直分布,所述的保护层(6)环绕覆盖在光电探测器的四周;所述的弛豫层(2)、n+型区(3)、光吸收区(4)、p+型区(5)均采用通式为GeSn的IV族复合材料。
2.根据权利要求1所述基于弛豫GeSn材料的光电探测器,其特征在于,所述的衬底(1)采用单晶Si材料。
3.根据权利要求1所述基于弛豫GeSn材料的光电探测器,其特征在于,所述的衬底(1)采用单晶Ge材料。
4.根据权利要求1所述基于弛豫GeSn材料的光电探测器,其特征在于,所述的弛豫层(2)中GeSn合金的Sn的组份高于n+型区(3)、光吸收区(4)、p+型区(5)中GeSn合金的Sn的组份。
CN201610255106.5A 2016-04-22 2016-04-22 基于弛豫GeSn材料的光电探测器 Expired - Fee Related CN105895727B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610255106.5A CN105895727B (zh) 2016-04-22 2016-04-22 基于弛豫GeSn材料的光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610255106.5A CN105895727B (zh) 2016-04-22 2016-04-22 基于弛豫GeSn材料的光电探测器

Publications (2)

Publication Number Publication Date
CN105895727A true CN105895727A (zh) 2016-08-24
CN105895727B CN105895727B (zh) 2017-07-28

Family

ID=56704348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610255106.5A Expired - Fee Related CN105895727B (zh) 2016-04-22 2016-04-22 基于弛豫GeSn材料的光电探测器

Country Status (1)

Country Link
CN (1) CN105895727B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346713A (zh) * 2017-01-24 2018-07-31 中国科学院半导体研究所 可见-短波红外探测器及其制备方法
CN110797431A (zh) * 2018-08-02 2020-02-14 上海新微技术研发中心有限公司 驰豫GeSn红外雪崩光电探测器及其制造方法
CN111211182A (zh) * 2018-11-19 2020-05-29 上海新微技术研发中心有限公司 一种波导型光电探测器及其制造方法
CN111312827A (zh) * 2018-11-27 2020-06-19 上海新微技术研发中心有限公司 一种单向载流子传输光电探测器及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080237572A1 (en) * 2007-03-27 2008-10-02 Chi On Chui Forming a type i heterostructure in a group iv semiconductor
JP2008288395A (ja) * 2007-05-17 2008-11-27 Univ Nagoya 伸張歪ゲルマニウム薄膜の作製方法、伸張歪ゲルマニウム薄膜、及び多層膜構造体
US7915104B1 (en) * 2007-06-04 2011-03-29 The Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Methods and compositions for preparing tensile strained Ge on Ge1-ySny buffered semiconductor substrates
CN104300013A (zh) * 2014-05-05 2015-01-21 重庆大学 带有应变源的GeSn红外探测器
CN105006500A (zh) * 2015-06-18 2015-10-28 西安电子科技大学 横向ⅳ族元素量子阱光电探测器及制备方法
CN105514209A (zh) * 2015-12-17 2016-04-20 西安电子科技大学 基于GeSn红外探测器的红外夜视仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080237572A1 (en) * 2007-03-27 2008-10-02 Chi On Chui Forming a type i heterostructure in a group iv semiconductor
JP2008288395A (ja) * 2007-05-17 2008-11-27 Univ Nagoya 伸張歪ゲルマニウム薄膜の作製方法、伸張歪ゲルマニウム薄膜、及び多層膜構造体
US7915104B1 (en) * 2007-06-04 2011-03-29 The Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Methods and compositions for preparing tensile strained Ge on Ge1-ySny buffered semiconductor substrates
CN104300013A (zh) * 2014-05-05 2015-01-21 重庆大学 带有应变源的GeSn红外探测器
CN105006500A (zh) * 2015-06-18 2015-10-28 西安电子科技大学 横向ⅳ族元素量子阱光电探测器及制备方法
CN105514209A (zh) * 2015-12-17 2016-04-20 西安电子科技大学 基于GeSn红外探测器的红外夜视仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F.GENCARELLI ET AL: "Crystalline Properties and Strain Relaxation Mechanism CVD Grown GeSn", 《ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346713A (zh) * 2017-01-24 2018-07-31 中国科学院半导体研究所 可见-短波红外探测器及其制备方法
CN108346713B (zh) * 2017-01-24 2020-01-31 中国科学院半导体研究所 可见-短波红外探测器及其制备方法
CN110797431A (zh) * 2018-08-02 2020-02-14 上海新微技术研发中心有限公司 驰豫GeSn红外雪崩光电探测器及其制造方法
CN110797431B (zh) * 2018-08-02 2021-11-02 上海新微技术研发中心有限公司 驰豫GeSn红外雪崩光电探测器及其制造方法
CN111211182A (zh) * 2018-11-19 2020-05-29 上海新微技术研发中心有限公司 一种波导型光电探测器及其制造方法
CN111312827A (zh) * 2018-11-27 2020-06-19 上海新微技术研发中心有限公司 一种单向载流子传输光电探测器及其制造方法
CN111312827B (zh) * 2018-11-27 2022-03-01 上海新微技术研发中心有限公司 一种单向载流子传输光电探测器及其制造方法

Also Published As

Publication number Publication date
CN105895727B (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
Lei et al. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors
Tran et al. High performance Ge0. 89Sn0. 11 photodiodes for low-cost shortwave infrared imaging
Werner et al. Germanium-tin pin photodetectors integrated on silicon grown by molecular beam epitaxy
Du et al. Improved photoresponsivity of semiconducting BaSi2 epitaxial films grown on a tunnel junction for thin-film solar cells
CN105895727A (zh) 基于弛豫GeSn材料的光电探测器
Craig et al. Mid-infrared InAs0. 79Sb0. 21-based nBn photodetectors with Al0. 9Ga0. 2As0. 1Sb0. 9 barrier layers, and comparisons with InAs0. 87Sb0. 13 pin diodes, both grown on GaAs using interfacial misfit arrays
Cicek et al. Crack-free AlGaN for solar-blind focal plane arrays through reduced area epitaxy
US11784265B2 (en) Mercury cadmium telluride-black phosphorous van der waals heterojunction infrared polarization detector and preparation method thereof
Cai et al. AlGaN ultraviolet avalanche photodiodes based on a triple-mesa structure
Mathews et al. InAlAs solar cell on a GaAs substrate employing a graded InxGa1− xAs–InP metamorphic buffer layer
Atalla et al. Dark current in monolithic extended-SWIR GeSn PIN photodetectors
Evirgen et al. InSb photodetectors with PIN and nBn designs
Fastenau et al. MBE growth of GaSb-based photodetectors on 6-inch diameter GaAs substrates via select buffers
Zeller et al. Development of Ge PIN photodetectors on 300 mm Si wafers for near-infrared sensing
Reddy et al. HgCdTe growth on 6 cm× 6 cm CdZnTe substrates for large-format dual-band infrared focal-plane arrays
Chen et al. GaAs-based In0. 83Ga0. 17As photodetector structure grown by gas source molecular beam epitaxy
Loubychev et al. Large-format multi-wafer production of 5" GaSb-based photodetectors by molecular beam epitaxy
Han et al. Epitaxial GaSb films directly grown on on-axis Si (001) with low defect density by MBE
US20190371947A1 (en) Optoelectronic devices formed over a buffer
Khoshakhlagh et al. High performance long-wave type-II superlattice infrared detectors
Poplawsky et al. Directly Linking Low-Angle Grain Boundary Misorientation to Device Functionality for GaAs Grown on Flexible Metal Substrates
Langer et al. Graded band gap GaInNAs solar cells
Li et al. Performance improvement for epitaxially grown SiGe on Si solar cell using a compositionally graded SiGe base
CN106784075B (zh) 探测范围可调的iv族红外光电探测器及其制备方法
US20140077338A1 (en) Si-Ge-Sn ON REO TEMPLATE

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170728