CN105892293B - 一种硅微陀螺数字化驱动闭环控制系统 - Google Patents

一种硅微陀螺数字化驱动闭环控制系统 Download PDF

Info

Publication number
CN105892293B
CN105892293B CN201610209836.1A CN201610209836A CN105892293B CN 105892293 B CN105892293 B CN 105892293B CN 201610209836 A CN201610209836 A CN 201610209836A CN 105892293 B CN105892293 B CN 105892293B
Authority
CN
China
Prior art keywords
temperature
gyroscope
silicon micro
driving
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610209836.1A
Other languages
English (en)
Other versions
CN105892293A (zh
Inventor
徐大诚
钱超
盛斌
程梦梦
卢月娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201610209836.1A priority Critical patent/CN105892293B/zh
Publication of CN105892293A publication Critical patent/CN105892293A/zh
Application granted granted Critical
Publication of CN105892293B publication Critical patent/CN105892293B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Gyroscopes (AREA)

Abstract

本发明涉及一种基于FPGA带温度补偿的硅微陀螺数字化驱动闭环控制系统,硅微陀螺敏感检测电容信号经电荷放大、低通滤波、幅度放大以及量化后,经FPGA实现驱动闭环控制以及温度补偿功能;驱动闭环通过均方根(RMS)解调、低通滤波、PI控制来实现稳幅功能;通过希尔伯特鉴相、低通滤波、PI控制以及Cordic算法实现相位跟踪功能;通过谐振频率与温度信号的线性关系实现了角速度信号输出的温度补偿功能。本发明克服了模拟电路结构复杂、噪声大和温度漂移等问题,具有灵活方便、低噪声、可移植、能够温度补偿、易于实现单片集成化ASIC电路的优点。

Description

一种硅微陀螺数字化驱动闭环控制系统
技术领域
本发明涉及硅微陀螺驱动闭环领域,特别涉及基于FPGA带温度补偿的硅微陀螺数字化驱动闭环控制系统。
背景技术
硅微陀螺是一种用来测量角速度的惯性器件,具有体积小、重量轻、功耗低、抗过载能力强、易于集成和智能化等优点,因此,硅微陀螺可广泛应用于汽车牵引控制系统、行驶稳定系统、摄像机稳定系统、飞机稳定系统以及军事等领域,相关的研究备受国内外的关注与重视。硅微陀螺的研究开始于20世纪80年代末,经过二十余年的发展已经取得了显著的成果,目前国内已经有很多公司或研究机构提供基于MEMS(Micro-Electro-MechanicalSystems,微机电系统)技术的硅微陀螺产品,根据不同的性能指标,可以分为三个等级:惯性级、战术级和角速率级。
传统的微机械陀螺驱动环路采用模拟电路实现,为进一步改善陀螺的性能,须采用数字电路实现陀螺的外围信号处理。目前,国内外已有很多相关机构进行了利用FPGA(现场可编程逻辑门阵列)实现模拟闭环控制方法的数字化,并取得了一定的成果,但是随着硅微陀螺仪性能的进一步提高,数字化方案在适应范围和控制精度方面很难满足要求,从而影响陀螺仪的性能。
MEMS陀螺无论是应用在军事领域还是商业领域,都不可避免会涉及到一些变化的温度环境,而不同的温度是MEMS陀螺零偏、标度因子性能漂移的主要来源。温度变化会导致SOG工艺MEMS陀螺硅和玻璃之间热失配,热应力使读出电容发生漂移。此外,温度变化会改变硅材料的杨氏模量以及真空封装胶体中气体的热运动特性,从而导致谐振频率和Q值(品质因数)发生变化。目前,MEMS陀螺零偏和标度因子温度漂移越来越受到关注,成为了国内外研究的热点。
发明内容
针对上述技术问题,本发明为克服模拟电路结构复杂,灵活性差,噪声大和温度漂移等不足以及数字化后适应范围有限、控制精度不足等问题,提供了一种灵活方便、低噪声、可移植、带温度补偿的硅微陀螺驱动闭环控制系统。
本发明的硅微陀螺驱动闭环控制系统,所述硅微陀螺的驱动端与敏感端均连接有将电容信号转换为数字信号的C/V转换电路、低通滤波器、幅度放大器和ADC转换器;所述驱动端与敏感端的数字信号分别与基于FPGA的驱动闭环控制电路和温度补偿电路连接;所述驱动闭环控制电路的驱动反馈信号传输给所述硅微陀螺的驱动电极,所述温度补偿电路的角速度信号传输给控制终端。
进一步的,所述驱动端的数字信号经归一化处理后与所述驱动闭环控制电路连接,所述驱动闭环控制电路包括稳幅支路和稳频支路,所述稳幅支路包括依次连接的均方根解调器、FIR低通滤波器和PI控制器;所述稳频支路包括依次连接的数字鉴相器、FIR低通滤波器、PI控制器和DDS,所述DDS信号反馈给所述数字鉴相器。
进一步的,所述稳幅支路与稳频支路的输出信号相乘后经运放器、DAC转换器及低通滤波器形成所述驱动反馈信号传输给所述硅微陀螺的驱动电极。
进一步的,所述敏感端的数字信号经归一化处理后与所述温度补偿电路连接,所述温度补偿电路包括依次连接的均方根解调器、FIR低通滤波器、温度补偿器,所述温度补偿器还输入有所述DDS的频率反馈信号。
进一步的,所述温度补偿器通过485接口与所述控制终端连接。
进一步的,所述数字鉴相器为希尔伯特变换器。
进一步的,所述温度补偿器采用BP神经网络拟合实现,其实现步骤为:
(1)建立输入角速度ω1、谐振频率f和输出角速度ω2三者间的结构模型;
(2)根据输入输出数据确定BP神经网络的结构;
(3)通过BP神经网络构建、训练和预测三步获得温度模型所需的权值W及阈值θ,得到温度补偿后的角速度其中,Ψ选用线性函数purelin,选用非线性函数logsig。
借由上述方案,本发明采用FPGA系统实现了硅微陀螺驱动闭环的数字化控制系统,并采用神经网络相关算法实现了角速度输出温度漂移的抑制功能,克服了模拟电路结构复杂、噪声大和温度漂移等问题,具有灵活方便、低噪声、可移植、能够温度补偿、易于实现单片集成化ASIC电路的优点。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是本发明的系统框图;
图2是本发明中均方根(RMS)解调器实现框图;
图3是本发明中希尔伯特变换器实现框图;
图4是BP神经网络温度补偿算法框图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
参见图1,本发明一较佳实施例所述的一种硅微陀螺数字化驱动闭环控制系统,硅微陀螺的驱动端与敏感端均连接有将电容信号转换为数字信号的C/V转换电路、低通滤波器、幅度放大器和ADC转换器;驱动端与敏感端的数字信号分别与基于FPGA的驱动闭环控制电路和温度补偿电路连接;驱动闭环控制电路的驱动反馈信号传输给硅微陀螺的驱动电极,温度补偿电路的角速度信号传输给控制终端。
具体的,驱动端的数字信号经归一化处理后与驱动闭环控制电路连接,驱动闭环控制电路包括稳幅支路和稳频支路,稳幅支路包括依次连接的均方根(RMS)解调器、FIR低通滤波器和PI控制器;稳频支路包括依次连接的数字鉴相器、FIR低通滤波器、PI控制器和DDS,所述DDS信号反馈给所述数字鉴相器。稳幅支路与稳频支路的输出信号相乘后经运放器、DAC转换器及低通滤波器形成驱动反馈信号传输给硅微陀螺的驱动电极。
敏感端的数字信号经归一化处理后与温度补偿电路连接,温度补偿电路包括依次连接的均方根(RMS)解调器、FIR低通滤波器、温度补偿器,温度补偿器还输入有DDS的频率反馈信号。本发明中温度补偿器通过485接口与控制终端连接。
硅微陀螺驱动与敏感两路检测电容信号经C/V转成电压信号,接着经低通滤波、幅度放大及模数转换后成为数字信号,然后驱动端数字信号经稳幅、稳频及加偏置电压后经模数转换、低通滤波回到硅微陀螺驱动电极上形成闭环控制回路;敏感端数字信号经均方根(RMS)解调、FIR低通、温度补偿后通过RS485接口传输给控制终端。通过均方根(RMS)解调、FIR低通及PI控制实现幅度自动控制;通过数字鉴相、FIR低通、PI控制及DDS实现相位跟踪功能;通过谐振频率与温度信号的线性关系实现了角速度信号输出的温度补偿功能。
如图2所示,均方根(RMS)解调器采用正弦信号有效值提取方法,具体方法为:
设fs为采样频率、f为陀螺谐振频率、x(n)为被测输入信号、y(n)为幅度输出、N=fs\f+1为设定阈值,
若n<N则,
否则,
通过乘法累加器、FIR低通滤波器及开根运算,可以快速准确地获得被测信号的幅度。即通过对输入信号平方得到关于幅度的低频分量以及高频噪声信号,然后通过FIR低通滤波器将高频成分滤除得到低频的幅度信号,再经过开根调整即可得到输入信号的幅度A。
如图3所示,本发明中数字鉴相器采用全数字方法-希尔伯特变换方法将输入信号x(n)希尔伯特变换为Hx(n),即将输入信号x(n)=Acos(wn+θ)通过希尔伯特变换器,得到Hx(n)=Asin(wn+θ);再将Hx(n)与x(n)作除法运算,得到tan(wn+θ);;再对对tan(wn+θ)求反正切,得到相位wn+θ。
进一步的,希尔伯特变换器采用希尔伯特滤波器实现,理想的希尔伯特变换是幅度为1、正频率方向延时-π/2、负频率方向延时π/2的变换,而实际的希尔伯特滤波器是幅度为1、带有延时N/2个采样周期的变换结果,N为希尔伯特滤波器的阶数。因此,希尔伯特变换器的实现方法为:
设输入信号x(n)的希尔伯特滤波器传递函数为Hx’(n),希尔伯特滤波器阶数为N,将输入信号x(n)=Acos(wn+θ)通过希尔伯特变换器得到将输入信号x(n)=Acos(wn+θ)通过延时N/2得到将Hx’(n)与x’(n)作除法运算,得到采用Cordic算法,对求反正切得到相位将输入信号与DDS输出正弦信号分别经过上述的运算得到通过减法运算得到相位差其中,希尔伯特变换通过Matlab工具包FDA TOOL设计实现,反正切运算采用FPGA的IP核Cordic实现。
如图4所示,本发明中温度补偿器采用BP神经网络拟合实现,首先通过实验获取神经网络学习样本(输入角速度ω1、谐振频率f及输出角速度ω2),然后将样本代入BP神经网络训练得到温度模型需要的权值W及阈值θ,经多次网络迭代训练,得到最优的权值W及阈值θ,由此得到拟合函数其中,Ψ选用线性函数purelin,选用非线性函数logsig。具体步骤为:
(1)建立输入角速度ω1、谐振频率f和输出角速度ω2三者间的结构模型;
(2)根据输入输出数据特点可以确定BP神经网络的结构为2-N-1型,即两个输入节点(谐振频率、输入角速度)、N个隐层节点以及1个输出节点(输出角速度),其中N由仿真调试后确定;
(3)通过BP神经网络构建、训练和预测三步得到温度模型所需的权值W及阈值θ,从而得到补偿后的角速度其中,Ψ选用线性函数purelin,选用非线性函数logsig,Xi表示输入的样本值,k为神经网络输出层节点个数,Wij表示输入层第i个节点与隐含层第j个节点之间的权值,Wjk表示隐含层第j个节点与输出层k个节点之间的权值,θj表示隐含层第j个节点的阈值,θk表示输出层第k个节点的阈值。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (3)

1.一种硅微陀螺数字化驱动闭环控制系统,其特征在于:所述硅微陀螺的驱动端与敏感端均连接有将电容信号转换为数字信号的C/V转换电路、低通滤波器、幅度放大器和ADC转换器;所述驱动端与基于FPGA的驱动闭环控制电路连接,所述敏感端与温度补偿电路连接;所述驱动闭环控制电路的驱动反馈信号传输给所述硅微陀螺的驱动电极,所述温度补偿电路的角速度信号传输给控制终端;
所述驱动端的数字信号经归一化处理后与所述驱动闭环控制电路连接,所述驱动闭环控制电路包括稳幅支路和稳频支路,所述稳幅支路包括依次连接的均方根解调器、FIR低通滤波器和PI控制器;所述稳频支路包括依次连接的数字鉴相器、FIR低通滤波器、PI控制器和DDS,所述DDS信号反馈给所述数字鉴相器;
所述敏感端的数字信号经归一化处理后与所述温度补偿电路连接,所述温度补偿电路包括依次连接的均方根解调器、FIR低通滤波器、温度补偿器,所述温度补偿器还输入有所述DDS的频率反馈信号;
所述温度补偿器通过485接口与所述控制终端连接;
所述温度补偿器采用BP神经网络拟合实现,其实现步骤为:
(1)建立输入角速度ω1、谐振频率f和输出角速度ω2三者间的结构模型;
(2)根据输入输出数据样本确定BP神经网络的结构;
(3)通过BP神经网络构建、训练和预测三步获得温度模型所需的权值W及阈值θ,得到温度补偿后的角速度其中,Ψ选用线性函数purelin,选用非线性函数logsig,Xi表示输入的样本值,k为神经网络输出层节点个数,Wij表示输入层第i个节点与隐含层第j个节点之间的权值,Wjk表示隐含层第j个节点与输出层k个节点之间的权值,θj表示隐含层第j个节点的阈值,θk 表示输出层第k个节点的阈值。
2.根据权利要求1所述的硅微陀螺数字化驱动闭环控制系统,其特征在于:所述稳幅支路与稳频支路的输出信号相乘后经运放器、DAC转换器及低通滤波器形成所述驱动反馈信号传输给所述硅微陀螺的驱动电极。
3.根据权利要求1所述的硅微陀螺数字化驱动闭环控制系统,其特征在于:所述数字鉴相器为希尔伯特变换器。
CN201610209836.1A 2016-04-06 2016-04-06 一种硅微陀螺数字化驱动闭环控制系统 Active CN105892293B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610209836.1A CN105892293B (zh) 2016-04-06 2016-04-06 一种硅微陀螺数字化驱动闭环控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610209836.1A CN105892293B (zh) 2016-04-06 2016-04-06 一种硅微陀螺数字化驱动闭环控制系统

Publications (2)

Publication Number Publication Date
CN105892293A CN105892293A (zh) 2016-08-24
CN105892293B true CN105892293B (zh) 2018-07-24

Family

ID=57012986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610209836.1A Active CN105892293B (zh) 2016-04-06 2016-04-06 一种硅微陀螺数字化驱动闭环控制系统

Country Status (1)

Country Link
CN (1) CN105892293B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106370170A (zh) * 2016-08-29 2017-02-01 南京理工大学 硅微陀螺机电结合带通sigma‑delta闭环检测环路参数获取方法
CN106370172B (zh) * 2016-08-30 2020-01-07 上海交通大学 基于数字化嵌入式系统的微陀螺驱动与检测装置及方法
CN108007473A (zh) * 2016-10-28 2018-05-08 敦宏科技股份有限公司 应用于微机电系统的电子电路
CN106597852A (zh) * 2016-12-27 2017-04-26 中国船舶重工集团公司第七0五研究所 一种基于rbf神经网络的mems陀螺仪温度补偿方法
CN107132763B (zh) * 2017-05-11 2019-12-03 北方电子研究院安徽有限公司 一种mems陀螺仪闭环驱动用自动增益控制电路
CN107145468B (zh) * 2017-07-19 2020-01-03 中国科学技术大学 一种信号发生与读出装置及控制方法
CN108489512B (zh) * 2018-02-28 2020-12-18 北京控制工程研究所 一种半球谐振陀螺标度因数的补偿标定方法及装置
CN114964195B (zh) * 2022-07-27 2022-10-11 中国船舶重工集团公司第七0七研究所 一种半球谐振陀螺角速度信号温度补偿方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194701A (ja) * 2005-01-12 2006-07-27 Japan Aviation Electronics Industry Ltd 振動ジャイロ
CN101013035A (zh) * 2007-02-08 2007-08-08 北京航空航天大学 一种基于神经网络进行温度补偿的光纤陀螺
CN103162680A (zh) * 2013-03-19 2013-06-19 中国人民解放军国防科学技术大学 基于力平衡闭环控制的硅微机械陀螺性能提升方法及装置
CN103776469A (zh) * 2014-02-26 2014-05-07 东南大学 一种基于fpga的硅微陀螺仪温控温补电路装置
CN105222765A (zh) * 2015-09-18 2016-01-06 工业和信息化部电子第五研究所 Mems陀螺的温度补偿方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194701A (ja) * 2005-01-12 2006-07-27 Japan Aviation Electronics Industry Ltd 振動ジャイロ
CN101013035A (zh) * 2007-02-08 2007-08-08 北京航空航天大学 一种基于神经网络进行温度补偿的光纤陀螺
CN103162680A (zh) * 2013-03-19 2013-06-19 中国人民解放军国防科学技术大学 基于力平衡闭环控制的硅微机械陀螺性能提升方法及装置
CN103776469A (zh) * 2014-02-26 2014-05-07 东南大学 一种基于fpga的硅微陀螺仪温控温补电路装置
CN105222765A (zh) * 2015-09-18 2016-01-06 工业和信息化部电子第五研究所 Mems陀螺的温度补偿方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于傅里叶解调算法的硅微陀螺仪控制系统设计与试验;杨成 等;《东南大学学报(自然科学版)》;20140531;第44卷(第3期);第550-555页 *

Also Published As

Publication number Publication date
CN105892293A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
CN105892293B (zh) 一种硅微陀螺数字化驱动闭环控制系统
CN103869098B (zh) 一种硅微谐振式加速度计电路控制系统
CN105222765B (zh) Mems陀螺的温度补偿方法及系统
CN103776469A (zh) 一种基于fpga的硅微陀螺仪温控温补电路装置
CN104101368B (zh) 基于全差分开关电容原理的电容式传感器检测读出电路
CN205427032U (zh) 一种基于锁相环的弱信号检测装置
CN206075652U (zh) 一种荷控忆容器的电路模拟器
CN103185832B (zh) 汽车中的霍尔传感器温度补偿方法和相关的霍尔传感器
CN103162680A (zh) 基于力平衡闭环控制的硅微机械陀螺性能提升方法及装置
RU2513667C1 (ru) Компенсационный акселерометр
CN103513097A (zh) 用于汽车的霍尔传感器温度补偿方法和霍尔传感器
CN102735230A (zh) 微机电混合陀螺仪的电路系统
CN103640480B (zh) 一种车辆档位识别方法及装置
CN103840795A (zh) 一种基于dds芯片移相的正交检波电路
CN103344228B (zh) 摇动质量体声波固体波动微陀螺驱动与检测电路
CN106052668B (zh) 一种大量程硅微陀螺仪非线性数字补偿方法
CN102435186A (zh) 一种光纤陀螺的数字信号处理方法、装置及光纤陀螺仪
CN105548710B (zh) 一种增强型自动平衡桥及其实现阻抗测量的方法
CN110865225B (zh) 一种比例阀电流采集方法、系统及电子设备
CN106932093B (zh) 自动锁频光电等效平衡系统
CN110570734A (zh) 一种测控电路的便携式综合实验箱及方法
CN102183249B (zh) 一种光纤陀螺仪的萨格奈克相移跟踪方法
CN103713159A (zh) 一种闭环微机械加速度计反馈方法
CN204244188U (zh) 基于锁定放大器的信号放大与检测电路
CN110764037B (zh) 航空高温超导全张量磁梯度仪失锁检测自动恢复方法及电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant