CN105887188A - 单晶硅生长方法 - Google Patents

单晶硅生长方法 Download PDF

Info

Publication number
CN105887188A
CN105887188A CN201610364030.XA CN201610364030A CN105887188A CN 105887188 A CN105887188 A CN 105887188A CN 201610364030 A CN201610364030 A CN 201610364030A CN 105887188 A CN105887188 A CN 105887188A
Authority
CN
China
Prior art keywords
single crystal
silicon single
crystal rod
cooling tube
growing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610364030.XA
Other languages
English (en)
Inventor
张俊宝
刘浦锋
宋洪伟
陈猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI ADVANCED SILICON TECHNOLOGY Co Ltd
Original Assignee
SHANGHAI ADVANCED SILICON TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI ADVANCED SILICON TECHNOLOGY Co Ltd filed Critical SHANGHAI ADVANCED SILICON TECHNOLOGY Co Ltd
Priority to CN201610364030.XA priority Critical patent/CN105887188A/zh
Publication of CN105887188A publication Critical patent/CN105887188A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Abstract

本发明是一种单晶硅生长方法,首先通过采用模拟单晶硅棒及热电偶检测单晶硅棒上的温度分布状态,确定单晶硅棒上920℃‑700℃温度区间的实际位置,并对这一位置区间设置冷却管,对晶棒进行冷却;使单晶硅棒在920℃‑700℃温度区间的停留时间小于180min,以确定单晶硅提拉速度,防止氧化堆垛缺陷(OSF)的形成。本发明在不降低生产效率的前提下,可生长长度大于1.0m的单晶硅棒,不形成OSF缺陷。

Description

单晶硅生长方法
技术领域
本发明涉及一种单晶硅生长方法,具体涉及直拉法单晶硅生长时控制热氧施主的形成和n型转变的方法。特别涉及直拉法单晶硅生长工艺中单晶硅棒的温度检测与在特定温度下停留时间的控制。
背景技术
在单晶硅的制造工艺中,最常使用的是直拉法(Czochralski,缩写CZ),在直拉法中,将多晶硅填充在石英玻璃坩埚(也称石英坩埚)中,然后加热熔融形成硅熔液,将籽晶浸入硅熔液中后向上旋转提拉,硅在籽晶与熔液的界面处凝固结晶,形成单晶硅锭。
在单晶硅中可能存在多种缺陷,包括位错、空位、间隙原子、堆垛、掺杂元素分布不均等。众所周知,在这些缺陷中堆垛缺陷是在单晶硅氧化过程中形成的,被称为氧化诱导堆垛缺陷(Oxidation induced Stacking-Faults,简称OSF),OSF缺陷对电子器件的制造有害。OSF缺陷是在晶体提拉生长过程的特定条件下形成,非专利文献G. Rozgonyi, p149, Semiconductor Silicon 2002 vol1, Electrochemical Society proceeding volume 2002-2,对此做过详细的研究,OSF晶核在一些特定的V/G范围内形成(V是单晶硅棒的提拉速度,G是单晶硅棒生长界面处的温度梯度)。对于p型单晶硅,OSF成核主要与V/G值范围相关。但是对于n型单晶硅,OSF成核不仅与V/G值范围相关,还与单晶硅棒的热历史(即,降温工艺制度)以及单晶硅棒中的氧含量及其分布相关。因此,通常n型单晶硅中的OSF晶核,不仅可以在p型OSF晶核形成条件下形成,而且可以在比p型OSF晶核形成条件要宽松的多的条件下形成。
通常情况下,硅晶体中氧原子在450℃下形成氧施主,可称为热氧施主。最近工业上采用Czochralski 法生长单晶硅,所生长的单晶硅棒都非常长,通常超过1m以上。而这么长的单晶硅棒在450℃下停留的时间也很长,从而更容易形成热氧施主。而且一旦形成这种热氧施主,即使生长的是p型单晶硅棒,有些时候晶体也会转变成n型。这种现象被称为晶体生长过程中的n型转变。由于在n型晶体中,OSF缺陷形成条件更加宽松。因此一旦发生这种n型转换,在n型转换区域内更容易形成OSF缺陷,增加了控制晶体质量的难度。
抑制OSF缺陷形成最简单的方法是,减少单晶硅棒在450℃下保持的时间,从而抑制单晶硅的n型转变。但是对于长尺寸单晶硅棒而言,减少单晶硅棒在450℃下停留的时间是十分困难的。如果采用降低单晶硅棒长度的方法来减少单晶硅棒在450℃下停留的时间,将大大降低生产效率。
发明内容
本发明的目的在于提供一种单晶硅生长方法,在不降低生产效率的前提下,抑制n型转变,防止OSF成核的发生,并具有所采用的测量方法简便直观、结果精确的优点。
我们发现,采用直拉法生长单晶硅时,将单晶硅棒在920℃-700℃温度区间的停留时间降低到180min以下时,没有OSF成核。对于电阻值在10-5Ω/cm范围的单晶硅,晶棒在920℃-700℃温度区间的停留时间最长可以到200min而不出现OSF成核。对于电阻率小于5Ω/cm的低电阻率的单晶硅棒,则很少发生n型转变,也没有OSF晶核形成。
为了达到以上的目的,本发明工艺技术通过以下方法实现:通过减少单晶硅棒在920℃-700℃温度区间的停留时间,控制n型转变,防止形成OSF晶核。
本发明的特征在于,减少单晶硅棒在920℃-700℃温度区间的停留时间通过在提拉腔体内设置冷却管的方法来实现,冷却管的长度覆盖单晶硅棒上920℃-700℃的实际位置。
单晶硅棒的温度不仅与提拉速度相关,而且更与单晶硅棒与熔体表面的距离相关。本发明专利的特征在于,单晶硅棒上920℃-700℃的实际位置可以通过采用模拟单晶硅棒及热电偶测量直接获得。
具体的,本发明提供一种单晶硅生长方法,其中采用直拉法单晶硅生长工艺,其特征在于,首先通过采用模拟单晶硅棒及热电偶检测单晶硅棒上的温度分布状态,确定单晶硅棒上920℃-700℃温度区间的实际位置,并在提拉腔体内对这一位置区间设置冷却管,对单晶硅棒进行冷却;使单晶硅棒在920℃-700℃温度区间的停留时间小于180min,以此确定单晶硅提拉速度V。
进一步的,本发明的特征在于,采用带有热电偶的模拟单晶硅棒测量单晶硅棒上920℃-700℃温度区间的实际位置,记录为P920和P700;其中P920为单晶硅棒上920℃位置到熔体表面的距离,P700为单晶硅棒上700℃位置到熔体表面的距离;热电偶采用R型(Pt/Pt-Rh 13%)热电偶。
进一步的,本发明的特征在于,在提拉腔体内设置冷却管,冷却管的长度覆盖单晶硅棒上920℃-700℃温度区间的实际位置,冷却管的长度至少为L= P920- P700
进一步的,本发明的特征在于,单晶硅棒920℃的位置到熔体表面的距离P920为250mm,单晶硅棒700℃的位置到熔体表面的距离P700为450mm,冷却管的位置为熔体表面以上250mm至450mm。
进一步的,本发明的特征在于,单晶硅棒在920℃-700℃的停留时间小于180min,提拉速度V≥L/180。
进一步的,本发明的特征在于,本专利中采用的冷却管可以是普通冷却管,例如,专利CN1406291A提供的水冷却管;水冷却管中冷却水的入口温度为23℃,出口温度低于28℃。
进一步的,本发明的特征在于,冷却管也可以采用无水的碳冷却管,如果采用碳冷却管,冷却管内壁与晶棒表面的距离就成为非常重要的参数,其适当的距离是20mm。
进一步的,本发明的特征在于,采用无水的碳冷却管时,要求在碳管内采用氩气冷却,其适合的流量是大于200L/min 且小于 400L/min。当大于200L/min时,可以充分冷却。但是当流量大于400L/min时,将产生振动,影响晶体生长。
本发明工艺的优点在于:所采用的测量方法简便直观、结果精确,可直接测量获得单晶硅棒上的温度分布状态,进而确定单晶硅棒上920℃-700℃温度区间的实际位置;可在不降低生产效率的前提下,抑制n型转变,防止OSF成核的发生。
附图说明
图1为本发明单晶硅生长冷却管位置图。
具体实施方式
实施例1
生长直径为8英吋的单晶硅棒的方法,其中,采用28英吋石英坩埚,熔化140kg多晶硅;采用不锈钢制备的水冷却管,冷却管的位置为熔体表面以上250-450mm,冷却管的内径为260mm。
在生长晶体之前,晶体的温度状态采用模拟单晶硅棒和R型热电偶进行测量,模拟单晶硅棒920℃的位置距离熔体表面为268mm,模拟单晶硅棒700℃的位置距离熔体表面为416mm,模拟单晶硅棒在920℃-700℃之间的距离L=416-268=148mm。这说明要使单晶硅棒在920℃-700℃的停留时间小于180min,提拉速度至少为V=148/180=0.823mm/min。
利用以上信息,生长电阻率为10-15Ω/cm的单晶硅时,控制提拉速度为0.9mm/min,冷却水的入口温度为23℃,出口温度低于28℃,单晶硅棒在920℃-700℃的停留时间为165min。晶体生长后,在头部取晶片分析,电学特征为n型,电阻为15Ω,形成了热氧施主,但未观察到OSF缺陷。
实施例2
利用以上信息,生长电阻率为10-15Ω/cm的单晶硅时,控制提拉速度为1.2mm/min,冷却水的入口温度为23℃,出口温度低于28℃,单晶硅棒在920℃-700℃的停留时间为123min。晶体生长后,在头部取晶片分析,电学特征为p型,电阻为15Ω,未形成热氧施主,未观察到OSF缺陷。
对比例1
采用与实施例1相同的方法,生产10-15Ω/cm的p型单晶硅时,控制提拉速度为0.7mm/min,单晶硅棒在920℃- 700℃的停留时间为211min。晶体生长后,在头部取晶片分析,电学特征为n型,电阻为12Ω,形成了热氧施主,在晶片边缘观察到OSF缺陷形成。
实施例3
生长直径为8英吋的单晶硅棒的方法,其中,采用28英吋石英坩埚,熔化140kg多晶硅;采用碳制备的冷却管,冷却管的位置为熔体表面以上250-450mm,冷却管的内径为238mm。
在生长晶体之前,晶体的温度状态采用模拟单晶硅棒和R型热电偶进行测量,模拟单晶硅棒920℃的位置距离熔体表面为272mm,模拟单晶硅棒700℃的位置距离熔体表面为431mm,说明要使单晶硅棒在920℃-700℃的位置包含在碳冷却管的范围内,碳冷却管的长度至少为L=431-272=159mm;要使单晶硅棒在920℃-700℃的停留时间小于180min,提拉速度至少为V=159/180=0.883mm/min。
利用以上信息,生长电阻率为10-15Ω/cm的单晶硅时,控制提拉速度为0.9mm/min,氩气的流量大于220 L/min,单晶硅棒在920℃- 700℃的停留时间为178min。晶体生长后,在头部取晶片分析,电学特征为n型,电阻为11Ω,形成了热氧施主,但未观察到OSF缺陷。
实施例4
利用以上信息,生长电阻率为10-15Ω/cm的单晶硅时,控制提拉速度为1.3mm/min,氩气的流量大于380 L/min,单晶硅棒在920℃-700℃的停留时间为123min。晶体生长后,在头部取晶片分析,电学特征为P型,电阻为13Ω,未形成热氧施主,未观察到OSF缺陷。
对比例2
采用与实施例3相同的方法,生产电阻率为10-15Ω/cm的p型单晶硅时,控制提拉速度为0.8mm/min,单晶硅棒在920℃-700℃的停留时间为200min。晶体生长后,在头部取晶片分析,电学特征为n型,电阻为9Ω,形成了热氧施主,在晶片边缘观察到OSF缺陷形成。

Claims (11)

1.单晶硅生长方法,采用直拉法单晶硅生长工艺,其特征在于,首先通过采用模拟单晶硅棒及热电偶检测单晶硅棒上的温度分布状态,确定单晶硅棒上920℃-700℃温度区间的实际位置,并在提拉腔体内对这一位置区间设置冷却管,对单晶硅棒进行冷却;使单晶硅棒在920℃-700℃温度区间的停留时间小于180min,以此确定单晶硅提拉速度V。
2.根据权利要求1所述的单晶硅生长方法,其特征在于,采用带有热电偶的模拟单晶硅棒测量单晶硅棒上920℃-700℃温度区间的实际位置,记录为P920和P700;其中P920为单晶硅棒上920℃位置到熔体表面的距离,P700为单晶硅棒上700℃位置到熔体表面的距离;热电偶采用R型热电偶,R型热电偶为Pt/Pt-Rh 13%热电偶。
3.根据权利要求2所述的单晶硅生长方法,其特征在于,在提拉腔体内设置冷却管,冷却管的长度覆盖单晶硅棒上920℃-700℃温度区间的实际位置,冷却管的长度至少为L= P920- P700
4.根据权利要求3所述的单晶硅生长方法,其特征在于,单晶硅的提拉速度V≥L/180。
5.根据权利要求3所述的单晶硅生长方法,其特征在于,所采用的冷却管为水冷却管,水冷却管中冷却水的入口温度为23℃,出口温度低于28℃。
6.根据权利要求3所述的单晶硅生长方法,其特征在于,所采用的冷却管为无水的碳冷却管,冷却管内壁与晶棒表面的距离是20mm。
7.根据权利要求6所述的单晶硅生长方法,其特征在于,在碳冷却管内采用氩气冷却,氩气流量范围为大于200 L/min且小于400 L/min。
8.根据权利要求3所述的单晶硅生长方法,其特征在于,单晶硅棒920℃的位置到熔体表面的距离P920为250mm,单晶硅棒700℃的位置到熔体表面的距离P700为450mm,冷却管的位置为熔体表面以上250mm至450mm。
9.根据权利要求8所述的单晶硅生长方法,其特征在于,所采用的冷却管为水冷却管,水冷却管中冷却水的入口温度为23℃,出口温度低于28℃。
10.根据权利要求8所述的单晶硅生长方法,其特征在于,所采用的冷却管为无水的碳冷却管,冷却管内壁与晶棒表面的距离是20mm。
11.根据权利要求10所述的单晶硅生长方法,其特征在于,在碳冷却管内采用氩气冷却,氩气流量范围为大于200L/min且小于400L/min。
CN201610364030.XA 2016-05-30 2016-05-30 单晶硅生长方法 Pending CN105887188A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610364030.XA CN105887188A (zh) 2016-05-30 2016-05-30 单晶硅生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610364030.XA CN105887188A (zh) 2016-05-30 2016-05-30 单晶硅生长方法

Publications (1)

Publication Number Publication Date
CN105887188A true CN105887188A (zh) 2016-08-24

Family

ID=56717123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610364030.XA Pending CN105887188A (zh) 2016-05-30 2016-05-30 单晶硅生长方法

Country Status (1)

Country Link
CN (1) CN105887188A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107815729A (zh) * 2016-09-12 2018-03-20 上海新昇半导体科技有限公司 一种单晶炉
CN108998829A (zh) * 2017-06-07 2018-12-14 上海新昇半导体科技有限公司 冷却装置、单晶炉和晶棒的冷却方法
CN114574948A (zh) * 2022-01-29 2022-06-03 徐州鑫晶半导体科技有限公司 控制生长完美硅晶体的方法及硅晶体
CN117431620A (zh) * 2023-12-18 2024-01-23 麦斯克电子材料股份有限公司 一种减少大尺寸硅单晶氧化层错的拉晶方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1461360A (zh) * 2000-09-19 2003-12-10 Memc电子材料有限公司 基本上没有氧化诱生堆垛层错的掺氮硅
CN1500159A (zh) * 2001-01-26 2004-05-26 Memc电子材料有限公司 具有基本上没有氧化诱生堆垛层错的空位为主的芯的低缺陷密度硅
CN101490314A (zh) * 2006-05-19 2009-07-22 Memc电子材料有限公司 控制cz生长过程中由硅单晶侧面诱发的附聚点缺陷和氧簇的形成
CN105121713A (zh) * 2013-04-24 2015-12-02 胜高科技股份有限公司 单晶的制造方法和硅晶片的制造方法
CN105189834A (zh) * 2013-09-11 2015-12-23 Lg矽得荣株式会社 冷却速率控制装置及包括其的铸锭生长装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1461360A (zh) * 2000-09-19 2003-12-10 Memc电子材料有限公司 基本上没有氧化诱生堆垛层错的掺氮硅
CN1500159A (zh) * 2001-01-26 2004-05-26 Memc电子材料有限公司 具有基本上没有氧化诱生堆垛层错的空位为主的芯的低缺陷密度硅
CN101490314A (zh) * 2006-05-19 2009-07-22 Memc电子材料有限公司 控制cz生长过程中由硅单晶侧面诱发的附聚点缺陷和氧簇的形成
CN105121713A (zh) * 2013-04-24 2015-12-02 胜高科技股份有限公司 单晶的制造方法和硅晶片的制造方法
CN105189834A (zh) * 2013-09-11 2015-12-23 Lg矽得荣株式会社 冷却速率控制装置及包括其的铸锭生长装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107815729A (zh) * 2016-09-12 2018-03-20 上海新昇半导体科技有限公司 一种单晶炉
CN108998829A (zh) * 2017-06-07 2018-12-14 上海新昇半导体科技有限公司 冷却装置、单晶炉和晶棒的冷却方法
CN114574948A (zh) * 2022-01-29 2022-06-03 徐州鑫晶半导体科技有限公司 控制生长完美硅晶体的方法及硅晶体
CN117431620A (zh) * 2023-12-18 2024-01-23 麦斯克电子材料股份有限公司 一种减少大尺寸硅单晶氧化层错的拉晶方法
CN117431620B (zh) * 2023-12-18 2024-03-01 麦斯克电子材料股份有限公司 一种减少大尺寸硅单晶氧化层错的拉晶方法

Similar Documents

Publication Publication Date Title
CN105887188A (zh) 单晶硅生长方法
US9783912B2 (en) Silicon single crystal growing apparatus and method for growing silicon single crystal
JP5269384B2 (ja) チョクラルスキー法を用いた半導体単結晶製造方法
KR100555050B1 (ko) 고휘발성 이물질로 도핑한 실리콘 단결정의 제조방법
CN110904504B (zh) 一种拉晶炉及单晶硅棒的制备方法
TW201504486A (zh) 矽單結晶及其製造方法
CN105887194A (zh) 一种n型单晶硅的生长方法
US8888911B2 (en) Method of producing single crystal silicon
TW463224B (en) Method for producing silicon single crystal and apparatus for producing the same, and single crystal and wafer produced with the method
CN105401218B (zh) SiC单晶及其制造方法
TW573087B (en) Silicon wafer and method for producing silicon single crystal
JP4701738B2 (ja) 単結晶の引上げ方法
CN114318500A (zh) 一种用于拉制单晶硅棒的拉晶炉、方法及单晶硅棒
JPWO2017069112A1 (ja) シリコン単結晶インゴットの引上げ装置およびシリコン単結晶インゴットの製造方法
CN107604431A (zh) n型单晶硅制造方法和装置
CN104005088B (zh) 过渡族金属离子掺杂的镁铝尖晶石晶体的提拉法生长方法
CN105951173A (zh) N型单晶硅晶锭及其制造方法
JP6135611B2 (ja) 点欠陥濃度計算方法、Grown−in欠陥計算方法、Grown−in欠陥面内分布計算方法及びこれらを用いたシリコン単結晶製造方法
CN205295534U (zh) 一种高速单晶生长装置
CN104480527A (zh) 一种多晶硅铸锭炉全功率控制铸锭工艺
EP1591566B1 (en) Method of producing p-doped silicon single crystal and p-doped n-type silicon single crystal wafe
JP6354615B2 (ja) SiC単結晶の製造方法
JP5223513B2 (ja) 単結晶の製造方法
CN112251805B (zh) 掺氮p型硅母合金及制备方法、掺氮多晶硅锭及制备方法
CN114574948A (zh) 控制生长完美硅晶体的方法及硅晶体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160824

WD01 Invention patent application deemed withdrawn after publication