CN105865970A - 煤层瓦斯含量的直接拟合测定方法 - Google Patents

煤层瓦斯含量的直接拟合测定方法 Download PDF

Info

Publication number
CN105865970A
CN105865970A CN201610183993.XA CN201610183993A CN105865970A CN 105865970 A CN105865970 A CN 105865970A CN 201610183993 A CN201610183993 A CN 201610183993A CN 105865970 A CN105865970 A CN 105865970A
Authority
CN
China
Prior art keywords
gas
coal
formula
coal seam
ickings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610183993.XA
Other languages
English (en)
Inventor
颜国强
杜文州
黄启铭
张孝强
孙路路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN201610183993.XA priority Critical patent/CN105865970A/zh
Publication of CN105865970A publication Critical patent/CN105865970A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/14Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference

Abstract

本发明公开了一种煤层瓦斯含量的拟合测定方法,首先建立拟合计算模型,根据计算推导得出煤样瓦斯解吸规律的一般表达式;然后从井下煤芯取样,依次测定井下测定地点的大气压力p1和温度T1、井下自然解吸瓦斯量;进行井下自然解吸瓦斯量数据校正,经温度、压力校正到标准状态后即可求出单位质量煤芯的瓦斯损失量。本发明利用直接拟合测定方法得到的瓦斯含量与间接法测定的瓦斯含量相对误差δ小于10%,符合现场实际要求,该方法具有可行性;该方法可进行大量测点的测量,可更好地用于煤层突出危险性工作面及区域预测、预抽瓦斯效果评价以及矿井煤层瓦斯涌出量预测等。

Description

煤层瓦斯含量的直接拟合测定方法
技术领域
本发明涉及煤矿瓦斯含量的测定技术领域,具体涉及一种煤层瓦斯含量的直接拟合测定方法。
背景技术
煤层瓦斯含量决定矿井瓦斯涌出量的大小和矿井瓦斯等级,是煤与瓦斯突出危险性预测和评价的重要指标。目前,国内外采用的煤层瓦斯含量测定方法包括间接法和直接法:间接法以煤吸附瓦斯理论为基础,需测定煤层原始瓦斯压力、孔隙率、瓦斯吸附常数等参数,耗时较长且受地质条件的影响较大;作为在现场实际测定煤层瓦斯含量时的首选方法,直接法具有简单、省时、直观、适用性强、受地质条件影响小等优点,其缺点是需根据煤样瓦斯解吸规律对采集煤样过程中逸散的瓦斯含量进行推算,易产生较大误差,影响煤层瓦斯含量测定结果的准确性。
发明内容
针对上述现有技术中存在的技术问题,本发明提出了一种煤层瓦斯含量的直接拟合测定方法,该方法首先通过建立拟合计算模型;然后从井下煤芯取样,依次测量井下测定地点的大气压力和温度、井下自然解吸瓦斯量;然后将井下自然解吸瓦斯量数据经温度、压力校正到标准状态下的数据,计算出单位质量煤芯的自然解吸瓦斯量;最后依据拟合计算模型,利用1stOpt软件对校正后的井下自然解吸瓦斯数据进行非线性拟合计算,得到煤层瓦斯含量。
本发明通过下述技术方案来实现:
一种煤层瓦斯含量的直接拟合测定方法,依次包括以下步骤:
步骤1:拟合计算模型的建立
作出如下假设:
①煤屑为球形颗粒,瓦斯在煤屑中的扩散过程看作是瓦斯在煤屑球形模型的扩散;②煤屑为均质、各向同性体;③煤屑球形模型的表面浓度为常数;④扩散系数和坐标无关,忽略瓦斯浓度和时间对扩散系数的影响;⑤瓦斯在煤屑中的扩散过程遵从质量守恒定律和连续性原理;
由于瓦斯在煤屑中是沿径向方向扩散,故瓦斯浓度c只是关于半径r和时间t的函数,则可得到球坐标系下的Fick第二扩散定律,令u=cr,即:
式中:r为极坐标半径;D为扩散系数;
则煤屑瓦斯扩散方程变为一维线性流动方程,设表面浓度为常数c1,这时初始条件和边界条件为:
式中:c0为球体内部初始时刻的浓度;
根据初始条件和边界条件,采用分离变量法求解,则:
当r→0时,上式极限为:
用Qt表示扩散时间为t时累计的瓦斯扩散量,Q表示扩散时间t→∞时极限瓦斯扩散量(即煤屑吸附瓦斯含量),根据式(2),可得:
则:
式中:
对式(3)经过拉普拉斯变换,可得:
忽略上式中的误差函数方程可变为:
式(4)即煤样瓦斯解吸规律的一般表达式,是煤样瓦斯解吸量Qt关于时间的一元二次方程,即:式中Q、D、ra均为常数;
步骤2:现场测定,依次包括以下子步骤:
步骤2.1、井下煤芯取样;
步骤2.2、测定井下测定地点的大气压力p1和温度T1
步骤2.3、测定井下自然解吸瓦斯量;
步骤3:校正井下自然解吸瓦斯量数据:经温度、压力校正到标准状态后即可计算出单位质量煤芯的自然解吸瓦斯量;
式中,V10为换算为标准状态下瓦斯体积,ml;p1为井下测试地点大气压力,KPa;p0为标准大气压力,KPa;T1为井下测定温度,℃;Q1为单位质量煤芯的自然解吸瓦斯量,ml/g;G为采集分析煤芯质量,g;
步骤4:拟合计算煤层瓦斯含量,以式(4)为基本拟合方程,利用1stOpt软件对校正后的井下自然解吸瓦斯数据进行非线性拟合计算,得到煤层瓦斯含量。
作为本发明的一个优选方案,步骤2.1中,在未经过瓦斯抽采的石门、岩石巷道或新暴露的采掘工作面向煤层打钻,记录起钻时间、钻进结束时间;快速取出取芯管,将所取煤样进行适当分选,装进煤样筒,记录煤样筒密封时间;
作为本发明的另一个优选方案,步骤2.2中,用空盒气压计和温度计测试并记录井下测试地点大气压力p1和温度T1
优选的步骤2.3中,连接煤样筒与解吸仪进行井下自然解吸瓦斯量测定,用排水集气法将瓦斯收集在量管内,当实测解吸瓦斯体积达到单根测量管最大量程85%时,打开转换开关用第二根测量管测量;在打开煤样筒的气阀的同时记录读数和时间,读完第一个数后立刻启动秒表,每隔30s记录解吸量管内的瓦斯量,解吸30min后终止测试。
相比现有技术,本发明带来了以下有益技术效果:
煤样瓦斯解吸量Qt与时间t具有较好的拟合关系(相关系数R2均在0.9以上),式(4)能够较合理的反应出煤样的瓦斯解吸过程,即:式(4)作为煤样瓦斯解吸规律的一般表达式是合理的;测定工作量小,测定成本低,可在60min内快速测定煤层内的瓦斯含量;可在60min内快速测定煤层内的瓦斯含量,工作量小,利用直接拟合测定方法计算煤层瓦斯含量时无需再按照《AQ1066-2008煤层瓦斯含量井下直接测定方法》中所述测定粉碎后解吸瓦斯量、不可解吸瓦斯量等参数或者间接法推算瓦斯含量时测定多个参数数值。
本发明方法具有方便快捷、节约成本等特点;利用直接拟合测定方法得到的瓦斯含量与间接法测定的瓦斯含量相对误差δ(即:直接拟合测定方法得到的瓦斯含量与间接法测定的瓦斯含量的差值占间接法测定的瓦斯含量的比例,%)小于10%,符合现场实际要求,该方法具有可行性;该方法可进行大量测点的测量,可更好地用于煤层突出危险性工作面及区域预测、预抽瓦斯效果评价以及矿井煤层瓦斯涌出量预测等。
附图说明
图1为本发明拟合测定方法的流程图。
具体实施方式
本发明指的“煤层瓦斯含量”是指单位质量的煤在20℃和一个大气压下条件下所直接测定和计算出的煤层瓦斯解吸量,不包括瓦斯残存量,单位为m3/t,其表达基准为原煤基。采用保持或代表煤层实际情况的煤样,不考虑原始煤层中的水分和非煤物质的存在。
本发明指的“井下自然解吸瓦斯量”是指煤单位质量的煤芯从装入煤样筒开始到解析量测定完成之前所解吸出的瓦斯量,单位为m3/t,其表达基准为原煤基。采用保持或代表煤层实际情况的煤样,不考虑原始煤层中的水分和非煤物质的存在。
本发明,如图1所示,一种煤层瓦斯含量的直接拟合测定方法,依次包括以下步骤:
步骤1:拟合计算模型的建立
各种采掘工艺条件下采落煤的瓦斯涌出、突出发展过程中已破碎煤的瓦斯涌出、测定煤层瓦斯含量时的瓦斯解吸等问题,皆可归结为煤屑瓦斯的扩散问题。结合目前研究成果,作出如下假设:①煤屑为球形颗粒,瓦斯在煤屑中的扩散过程看作是瓦斯在煤屑球形模型的扩散;②煤屑为均质、各向同性体;③煤屑球形模型的表面浓度为常数;④扩散系数和坐标无关,忽略瓦斯浓度和时间对扩散系数的影响;⑤瓦斯在煤屑中的扩散过程遵从质量守恒定律和连续性原理;
由于瓦斯在煤屑中是沿径向方向扩散,故瓦斯浓度c只是关于半径r和时间t的函数,则可得到球坐标系下的Fick第二扩散定律,令u=cr,即:
式中:r为极坐标半径;D为扩散系数;
则煤屑瓦斯扩散方程变为一维线性流动方程,设表面浓度为常数c1,这时初始条件和边界条件为:
式中:c0为球体内部初始时刻的浓度;
根据初始条件和边界条件,采用分离变量法求解,则:
当r→0时,上式极限为:
用Qt表示扩散时间为t时累计的瓦斯扩散量,Q表示扩散时间t→∞时极限瓦斯扩散量(即煤屑吸附瓦斯含量),根据式(2),可得:
则:
式中:
对式(3)经过拉普拉斯变换,可得:
忽略上式中的误差函数方程可变为:
式(4)即煤样瓦斯解吸规律的一般表达式,是煤样瓦斯解吸量Qt关于时间的一元二次方程,即:式中Q、D、ra均为常数;
根据煤样瓦斯解吸过程的实际意义,可知式(4)的定义域为Qt=F(t)取得的最大值应该是Q;根据一元二次方程的特点,当时,Qt=F(t)取得最大值(Qt)max=3Q/π;此处出现了误差,但因(Qt)max与Q有明确的关系((Qt)max=3Q/π),故仍可用式(4)来表述煤样瓦斯解吸规律,并作为拟合计算模型;
步骤2:现场测定
步骤2.1——井下煤芯取样:在未经过瓦斯抽采的石门、岩石巷道或新暴露的采掘工作面向煤层打钻,记录起钻时间、钻进结束时间;快速取出取芯管,将所取煤样进行适当分选,装进煤样筒,记录煤样筒密封时间;
步骤2.2——测定井下测定地点的大气压力和温度:用空盒气压计和温度计测试并记录井下测试地点大气压力p1和温度T1
步骤2.3——测定井下自然解吸瓦斯量:连接煤样筒与解吸仪进行井下自然解吸瓦斯量测定,用排水集气法将瓦斯收集在量管内,当实测解吸瓦斯体积达到单根测量管最大量程85%时,打开转换开关用第二根测量管测量;在打开煤样筒的气阀的同时记录读数和时间,读完第一个数后立刻启动秒表,每隔30s记录解吸量管内的瓦斯量,解吸30min后终止测试。
步骤3:校正井下自然解吸瓦斯量数据
经温度、压力校正到标准状态后即可计算出单位质量煤芯的自然解吸瓦斯量;
式中,V10为换算为标准状态下瓦斯体积,ml;p1为井下测试地点大气压力,KPa;p0为标准大气压力,KPa;T1为井下测定温度,℃;Q1为单位质量煤芯的自然解吸瓦斯量,ml/g;G为采集分析煤芯质量,g;
步骤4:拟合计算煤层瓦斯含量
为基本拟合方程,利用1stOpt软件对校正后的井下自然解吸瓦斯数据进行非线性拟合计算,得到煤层瓦斯含量Q,算法设置:选用优化算法“1:麦夸特法:Levenberg-Marquardt(LM)”,收敛判断指标1.00E-10,最大迭代数1000,实时输出控制数20,选用“标准(LM)+通用全局优化法”模式,重复数400,控制迭代数20,收敛判断迭代数15。
实施例1:
按照《GB 474-2008煤样的制备方法》、《GB/T 212-2008煤的工业分析方法》、《GB/T 19560-2008煤的高压等温吸附试验方法》等方法对陕西宋家沟煤矿(SX)、内蒙古巴彦高勒煤矿(NMG)、新疆金塔大黄山煤矿(XJ)、肥城曹庄煤矿(CZ)、菏泽新巨龙煤矿(XJL)、菏泽郓城煤矿(YC)、山西玉泉煤业(YQ)、淮南潘一东矿(PYD)、贵州桐梓煤矿(TZ)的煤样进行处理及 分析,得到煤样基本参数(表1)。
表1 煤样基本参数
为验证煤样瓦斯解吸规律一般表达式的合理性和煤层瓦斯含量的直接拟合测定方法的可行性,对9种不同变质程度煤样的前30min瓦斯解吸数据进行非线性拟合,得到的瓦斯含量与间接法测定的瓦斯含量进行比较(表2,表中(Qt)max表示Qt=F(t)取得的最大值,Q拟合表示直接拟合测定方法得到的瓦斯含量,Q间接表示间接法测定的瓦斯含量)。
表2 瓦斯含量测定结果对照表
从表1、2可知:
1)煤样瓦斯解吸量Qt与时间t具有较好的拟合关系(相关系数R2均在0.9以上),式(4)能够较合理的反应出煤样的瓦斯解吸过程,即:式(4)作为煤样瓦斯解吸规律的一般表达式是合理的;
2)利用直接拟合测定方法得到的瓦斯含量Q拟合与间接法测定的瓦斯含量Q间接相对误差δ(即:直接拟合测定方法得到的瓦斯含量Q拟合与间接法测定的瓦斯含量Q间接的差值占间接法测定的瓦斯含量Q间接的比例,%)小于10%,符合现场实际要求,该方法具有可行性;
3)利用直接拟合测定方法计算煤层瓦斯含量时无需再按照《AQ1066-2008煤层瓦斯含量井下直接测定方法》中所述测定粉碎后解吸瓦斯量、不可解吸瓦斯量等参数,该方法具有方便快捷、节约成本等特点。
代码举例:
附1:1stOpt软件程序代码样本

Claims (4)

1.一种煤层瓦斯含量的直接拟合测定方法,其特征在于,依次包括以下步骤:
步骤1:拟合计算模型的建立,
作出如下假设:
①煤屑为球形颗粒,瓦斯在煤屑中的扩散过程看作是瓦斯在煤屑球形模型的扩散;②煤屑为均质、各向同性体;③煤屑球形模型的表面浓度为常数;④扩散系数和坐标无关,忽略瓦斯浓度和时间对扩散系数的影响;⑤瓦斯在煤屑中的扩散过程遵从质量守恒定律和连续性原理;
由于瓦斯在煤屑中是沿径向方向扩散,故瓦斯浓度c只是关于半径r和时间t的函数,则可得到球坐标系下的Fick第二扩散定律,令u=cr,即:
∂ u ∂ t = D ∂ 2 u ∂ r 2
式中:r为极坐标半径;D为扩散系数;
则煤屑瓦斯扩散方程变为一维线性流动方程,设表面浓度为常数c1,这时初始条件和边界条件为:
&part; u &part; t = D &part; 2 u &part; r 2 u = 0 ( r = 0 , t > 0 ) u = r a c 1 ( r = r a , t > 0 ) u = rc 0 ( 0 < r < r a , t = 0 ) - - - ( 1 )
式中:c0为球体内部初始时刻的浓度;
根据初始条件和边界条件,采用分离变量法求解,则:
c - c 0 c 1 - c 0 = 1 + 2 r a &pi; r &Sigma; n = 1 &infin; ( - 1 ) n n s i n n &pi; r r a e - Dn 2 &pi; 2 t / r a 2
当r→0时,上式极限为:
c - c 0 c 1 - c 0 = 1 + 2 &Sigma; n = 1 &infin; ( - 1 ) n e - Dn 2 &pi; 2 t / r a 2 - - - ( 2 )
用Qt表示扩散时间为t时累计的瓦斯扩散量,Q表示扩散时间t→∞时极限瓦斯扩散量(即煤屑吸附瓦斯含量),根据式(2),可得:
Q t = 4 &pi;r a 2 &Integral; 0 t - D ( &part; c &part; r ) r = r a d t = 8 &pi; r a 3 ( c 1 - c 0 ) &Sigma; n = 1 &infin; 1 n 2 ( e - Dn 2 &pi; 2 t / r a 2 - 1 )
则:
Q t = Q &infin; ( 1 - 6 &pi; 2 &Sigma; n = 1 &infin; 1 n 2 e - n 2 B t ) - - - ( 3 )
式中:
对式(3)经过拉普拉斯变换,可得:
Q t Q &infin; = 6 D t r a &lsqb; 1 &pi; - D t 2 r a + 2 &Sigma; n = 1 &infin; i e r f c ( nr a D t ) &rsqb;
忽略上式中的误差函数方程可变为:
Q t = Q &infin; ( 6 r a D t &pi; - 3 D r a 2 t ) - - - ( 4 )
式(4)即煤样瓦斯解吸规律的一般表达式,是煤样瓦斯解吸量Qt关于时间的一元二次方程,即:式中Q、D、ra均为常数;
步骤2:现场测定,依次包括以下子步骤:
步骤2.1、井下煤芯取样;
步骤2.2、测定井下测定地点的大气压力p1和温度T1
步骤2.3、测定井下自然解吸瓦斯量;
步骤3:校正井下自然解吸瓦斯量数据,
经温度、压力校正到标准状态后即可计算出单位质量煤芯的自然解吸瓦斯量;
V 10 = 293.1 p 1 V 1 p 0 ( 273.1 + T 1 ) - - - ( 5 )
Q 1 = V 10 G - - - ( 6 )
式中,V10为换算为标准状态下瓦斯体积,ml;p1为井下测试地点大气压力,KPa;p0为标准大气压力,KPa;T1为井下测定温度,℃;Q1为单位质量煤芯的自然解吸瓦斯量,ml/g;G为采集分析煤芯质量,g;
步骤4:拟合计算煤层瓦斯含量,
以式(4)为基本拟合方程,利用1stOpt软件对校正后的井下自然解吸瓦斯数据进行非线性拟合计算,得到煤层瓦斯含量。
2.根据权利要求1所述的煤层瓦斯含量的直接拟合测定方法,其特征在于:步骤2.1中,在未经过瓦斯抽采的石门、岩石巷道或新暴露的采掘工作面向煤层打钻,记录起钻时间、钻进结束时间,快速取出取芯管,将所取煤样进行适当分选,装进煤样筒,记录煤样筒密封时间。
3.根据权利要求1所述的煤层瓦斯含量的直接拟合测定方法,其特征在于:步骤2.2中,用空盒气压计和温度计测试并记录井下测试地点大气压力p1和温度T1
4.根据权利要求1所述的煤层瓦斯含量的直接拟合测定方法,其特征在于,步骤2.3井下自然解吸瓦斯量的测定包括:连接煤样筒与解吸仪进行井下自然解吸瓦斯量测定,用排水集气法将瓦斯收集在量管内,当实测解吸瓦斯体积达到单根测量管最大量程85%时,打开转换开关用第二根测量管测量;在打开煤样筒的气阀的同时记录读数和时间,读完第一个数后立刻启动秒表,每隔30s记录解吸量管内的瓦斯量,解吸30min后终止测试。
CN201610183993.XA 2016-03-28 2016-03-28 煤层瓦斯含量的直接拟合测定方法 Pending CN105865970A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610183993.XA CN105865970A (zh) 2016-03-28 2016-03-28 煤层瓦斯含量的直接拟合测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610183993.XA CN105865970A (zh) 2016-03-28 2016-03-28 煤层瓦斯含量的直接拟合测定方法

Publications (1)

Publication Number Publication Date
CN105865970A true CN105865970A (zh) 2016-08-17

Family

ID=56626236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610183993.XA Pending CN105865970A (zh) 2016-03-28 2016-03-28 煤层瓦斯含量的直接拟合测定方法

Country Status (1)

Country Link
CN (1) CN105865970A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769640A (zh) * 2016-12-06 2017-05-31 中国矿业大学 一种煤与瓦斯突出预测敏感指标临界值测定方法
CN108760596A (zh) * 2018-02-07 2018-11-06 中国石油天然气股份有限公司 对预定地区的媒岩进行吸附量的测量方法以及测量装置
CN110927359A (zh) * 2019-11-27 2020-03-27 重庆大学 一种低渗透多孔介质取心过程中损失气含量实验测试装置及方法
CN113032942A (zh) * 2019-12-24 2021-06-25 河南理工大学 一种基于瓦斯反常扩散模型的损失瓦斯量计算方法
CN113049440A (zh) * 2021-03-24 2021-06-29 中国矿业大学 一种煤层瓦斯含量的井下直接测定方法
CN115372228A (zh) * 2022-08-29 2022-11-22 中国矿业大学(北京) 一种考虑封闭孔的煤层瓦斯含量计算方法
CN115541449A (zh) * 2022-11-30 2022-12-30 煤炭科学技术研究院有限公司 井下煤层瓦斯含量测量方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101135621A (zh) * 2006-08-30 2008-03-05 煤炭科学研究总院重庆分院 煤层可解吸瓦斯含量的直接快速测定方法
CN102128765A (zh) * 2010-12-09 2011-07-20 中国矿业大学 一种煤矿井下直接快速测定煤层瓦斯含量方法
CN103939077A (zh) * 2014-05-04 2014-07-23 山东科技大学 一种高应力低孔隙率煤层射孔压裂增透方法
CN204008632U (zh) * 2014-07-28 2014-12-10 华北科技学院 一种煤层瓦斯含量解吸拟合记录系统
CN104765973A (zh) * 2015-04-22 2015-07-08 西安石油大学 一种煤层气采动条件下数值模拟方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101135621A (zh) * 2006-08-30 2008-03-05 煤炭科学研究总院重庆分院 煤层可解吸瓦斯含量的直接快速测定方法
CN102128765A (zh) * 2010-12-09 2011-07-20 中国矿业大学 一种煤矿井下直接快速测定煤层瓦斯含量方法
CN103939077A (zh) * 2014-05-04 2014-07-23 山东科技大学 一种高应力低孔隙率煤层射孔压裂增透方法
CN204008632U (zh) * 2014-07-28 2014-12-10 华北科技学院 一种煤层瓦斯含量解吸拟合记录系统
CN104765973A (zh) * 2015-04-22 2015-07-08 西安石油大学 一种煤层气采动条件下数值模拟方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨其銮 等: "煤屑瓦斯扩散理论及其应用", 《煤炭学报》 *
谢德福 等: "活性炭对惰性气体动态吸附影响因素的讨论", 《辐射防护》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769640A (zh) * 2016-12-06 2017-05-31 中国矿业大学 一种煤与瓦斯突出预测敏感指标临界值测定方法
CN108760596A (zh) * 2018-02-07 2018-11-06 中国石油天然气股份有限公司 对预定地区的媒岩进行吸附量的测量方法以及测量装置
CN110927359A (zh) * 2019-11-27 2020-03-27 重庆大学 一种低渗透多孔介质取心过程中损失气含量实验测试装置及方法
CN110927359B (zh) * 2019-11-27 2022-05-06 重庆大学 一种低渗透多孔介质取心过程中损失气含量实验测试装置及方法
CN113032942A (zh) * 2019-12-24 2021-06-25 河南理工大学 一种基于瓦斯反常扩散模型的损失瓦斯量计算方法
CN113032942B (zh) * 2019-12-24 2023-06-13 河南理工大学 一种基于瓦斯反常扩散模型的损失瓦斯量计算方法
CN113049440A (zh) * 2021-03-24 2021-06-29 中国矿业大学 一种煤层瓦斯含量的井下直接测定方法
CN113049440B (zh) * 2021-03-24 2022-03-25 中国矿业大学 一种煤层瓦斯含量的井下直接测定方法
CN115372228A (zh) * 2022-08-29 2022-11-22 中国矿业大学(北京) 一种考虑封闭孔的煤层瓦斯含量计算方法
CN115541449A (zh) * 2022-11-30 2022-12-30 煤炭科学技术研究院有限公司 井下煤层瓦斯含量测量方法、装置及电子设备
CN115541449B (zh) * 2022-11-30 2023-03-10 煤炭科学技术研究院有限公司 井下煤层瓦斯含量测量方法、装置及电子设备

Similar Documents

Publication Publication Date Title
CN105865970A (zh) 煤层瓦斯含量的直接拟合测定方法
WO2020258589A1 (zh) 煤层瓦斯参数随钻快速测试的反演计算方法
CN102128765B (zh) 一种煤矿井下直接快速测定煤层瓦斯含量方法
Li et al. Evaluation and modeling of gas permeability changes in anthracite coals
CN102353625B (zh) 渗流力学实验中水测覆压孔隙度的测定方法
CN108982817B (zh) 一种基于甲烷碳同位素的页岩含气量评估方法
CN106885755B (zh) 一种煤矿井下快速测定煤层瓦斯参数的方法与装置
CN103033442A (zh) 一种瓦斯吸附解吸试验装置
CN103334739B (zh) 一种测定煤层瓦斯压力的方法及装置
CN105628549B (zh) 一种煤层可解吸瓦斯含量的直接快速全自动测定方法
CN106680451A (zh) 一种煤与瓦斯突出参数井下快速测定方法及装置
CN104569350B (zh) 密闭取芯不规则全直径岩样原始含水饱和度的测试方法
CN106093345A (zh) 一种模拟co2驱替置换页岩气动态过程的方法
CN103983534B (zh) 一种瓦斯损失量推算方法
Li et al. A method of determining the permeability coefficient of coal seam based on the permeability of loaded coal
CN105589999B (zh) 应用于地下工程围岩注浆方案的确定方法
Tian et al. A study of the principles and methods of quick validation of the outburst-prevention effect in the process of coal uncovering
CN104405374A (zh) 一种致密气藏储层应力敏感性的测量方法
CN107817191A (zh) 一种煤层瓦斯抽采效果检验的方法
CN106970110B (zh) 一种改进的煤矿井下可燃物燃烧特性曲线测定方法
Liu et al. Experimental study and modelling of coal stress induced by gas adsorption
CN107144625A (zh) 天然气水合物钻芯轻烃气体含量解析测试系统及方法
CN208043584U (zh) 一种煤岩瓦斯吸附解吸模拟试验装置
Sun et al. Study on gas desorption law and gas loss estimation in a positive pressure reverse circulation sampling process
CN110685678A (zh) 一种快速评价页岩气井产能的方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160817

RJ01 Rejection of invention patent application after publication