CN105861459A - AtPrx64基因在提高植物铝耐受性上的应用 - Google Patents

AtPrx64基因在提高植物铝耐受性上的应用 Download PDF

Info

Publication number
CN105861459A
CN105861459A CN201610324315.0A CN201610324315A CN105861459A CN 105861459 A CN105861459 A CN 105861459A CN 201610324315 A CN201610324315 A CN 201610324315A CN 105861459 A CN105861459 A CN 105861459A
Authority
CN
China
Prior art keywords
atprx64
tobacco
aluminum
wild
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610324315.0A
Other languages
English (en)
Other versions
CN105861459B (zh
Inventor
李昆志
吴远双
杨志丽
陈丽梅
徐慧妮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201610324315.0A priority Critical patent/CN105861459B/zh
Publication of CN105861459A publication Critical patent/CN105861459A/zh
Application granted granted Critical
Publication of CN105861459B publication Critical patent/CN105861459B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了AtPrx64基因在提高植物铝耐受性上的应用,将AtPrx64基因重组到植物表达载体中,并转化野生型烟草,通过筛选获得转AtPrx64基因烟草;实验结果表明在铝胁迫条件下,转基因烟草的根相对生长量、可溶性蛋白含量随着铝浓度的增加而逐渐降低,转基因烟草比野生型降低得少;转基因烟草的H2O2、MDA含量则随着铝浓度的增加而逐渐升高,升高的幅度比野生型烟草低;无论有没有铝胁迫,在转基因烟草中质膜H+‑ATPase活性及柠檬酸分泌量均比野生型烟草高;对不同浓度铝胁迫下的根中铝含量的测定发现,转基因烟草根中的铝含量显著低于野生型烟草;转AtPrx64烟草能显著提高烟草对铝胁迫的耐受性。

Description

AtPrx64基因在提高植物铝耐受性上的应用
技术领域
本发明属于植物基因工程领域,具体涉及AtPrx64基因在提高植物铝耐受性上的应用。
背景技术
在植物不同组织器官中每时每刻进行的各种代谢反应均会产生活性氧(reactiveoxygen species,ROS)。在正常的生长条件下,植物体内的ROS含量较低,不会对植物造成损伤,但是在环境胁迫如土壤酸化或盐碱化、干旱、低温或光照不足以及病菌侵染、损伤时,植物在形态、生理、生化等方面会发生多种变化,致使胞内代谢紊乱并产生大量的活性氧。这些ROS对植物有两方面的作用,一方面活性氧对植物细胞有很强的毒害作用,能够引发植物细胞组分的氧化,即“氧爆发”,主要有过氧化氢 (H2O2)、羟基自由基(·OH)、超氧阴离子自由基(O2-)和单线态氧、脂类过氧化物等类型。逆境条件下,ROS的产生与清除失衡,自由基在体内过量积累,导致膜脂过氧化和膜透性增大,正常生理功能受到破坏,细胞代谢紊乱,致使植物受到伤害。另一方面ROS作为氧化胁迫过程中的信号分子,在有些代谢过程以及在逆境胁迫感应、病原菌应答以及植物生长发育过程中起到重要作用。如,植物受到病原体侵染后,细胞内活性氧ROS水平会迅速升高从而引起被感染的细胞死亡;同时,活性氧参与细胞壁中糖蛋白交联过程,有利于抵御病原体侵入细胞。然而,大多数胁迫情况下产生的过量ROS对植物都是有害的,为了适应这些非生物胁迫,植物在进化过程中,特别是长期生长的逆境环境中的植物,已经形成了一些保护机制去感应外界不良环境的信号,并通过形态和生理上的变化来适应逆境。这些保护机制主要包括由过氧化物酶(POD)、过氧化氢酶(CAT)以及抗坏血酸过氧化物酶(APX)等构成的酶促脱毒机制以及由生育酚、胡萝卜素和甘露醇等非酶类抗氧化剂构成的非酶促脱毒机制。这两种机制共同清除逆境胁迫下植物体内积累的过量ROS从而缓解逆境胁迫对植物造成的伤害。因此,利用基因工程手段提高植物体内抗氧化酶类在植物中的表达及酶活性,是增强植物抗逆性的有效途径之一。已有大量研究利用基因工程手段获得过表达APX、SOD、CAT植株并显著提高了植株对氧化胁迫的抗性。如在苜蓿中过量表达烟草的Mn-SOD显著增强了转基因苜蓿中的SOD活性,且大田试验发现转基因植株越冬存活率也大大提高。在植物中过量表达水稻中与POD活性有关的RCI3冷诱导基因显著增强了植物对低温及盐胁迫的耐受性。此外,一些冷诱导基因、抗冻蛋白基因、渗透调节相关酶基因、脂肪酸去饱和酶基因的过量表达都可以提高植物的耐低温能力。随着生物技术的迅猛发展,对抗氧化胁迫的分子机理的认识不断加深,人们开始采用基因工程手段培育各种抗性新品种。而过氧化物酶对H2O2的亲和力极强,在清除植物体内活性氧方面起着重要的作用,因此受到人们的广泛关注。
在对拟南芥响应铝胁迫的研究中发现有多种第Ⅲ类过氧化物酶的参与,其中有10种第Ⅲ类过氧化物酶的表达上调,包括AtPrx2、AtPrx27、AtPrx49、AtPrx62、AtPrx64、AtPrx69等。因为第Ⅲ类过氧化物酶是一类功能多样的蛋白,他们在植物中的不同表达方式可能代表着他们对铝胁迫过程中的不同响应过程,所以对它们的功能分别进行研究是非常必要的。在对AtPrx64基因的研究中发现,其主要在分化的维管束、木质部薄壁组织和厚壁组织中表达,并和厚壁组织的木质化相关,主要定位在下胚轴和根中,并与凯氏带的形成相关。但对AtPrx64基因在铝胁迫过程中的作用还未见报道,我们将该基因转入烟草中,对转AtPrx64基因烟草的耐铝能力进行了检测,并对其可能的机制进行了探讨。
发明内容
本发明的目的是提供一种基因的新用途,即AtPrx64基因在提高植物铝耐受性上的应用,AtPrx64基因为拟南芥第三类过氧化物酶基因,GenBank登录号为:145358744;获得铝耐受性增强的转基因植物,可以用于对该基因的进一步研究,也可以用于铝污染土壤的种植。
为了实现本发明的上述目的,本发明的技术方案如下:
(1) 选择了研究较多的一种拟南芥第三类过氧化物酶基因AtPrx64及易于栽培的烟草作为材料,进行了以下试验;
(2) 采用Gateway技术构建AtPrx64基因的植物表达载体
用TRIzol Reagent试剂按照说明书提取拟南芥总RNA;参照Fermentas试剂公司说明书进行反转录获得AtPrx64的cDNA,使用AtPrx64基因引物[上游引物5´-GGATCCATGAATGCACACATGCTCAATCTCC(含BamHI酶切位点),下游为3´-CTCGAGCTAGCGAACCCTTCTGCAGTTAAGT (含XhoI酶切位点)]进行RT-PCR扩增,获得AtPrx64编码区全长DNA片段;通过酶切连接到pMD 18-T载体上,热激转化大肠杆菌DH5α,通过抗性筛选及测序获得含正确序列的TA克隆;再进行酶切连接将片段连接到pENTR-2B载体上,通过抗性筛选及测序获得入门载体pENTR- AtPrx64;根据LR反应试剂盒LR ClonaseTM plusEnzyme Mix(购于美国Invitrogen公司)说明书,通过LR反应将AtPrx64重组到目的载体pK2GW7上,获得植物表达载体pK-35S- AtPrx64;用电转化法将pK-35S- AtPrx64转入农杆菌,用筛选检测正确的农杆菌通过叶盘转化法转化野生型烟草,并进行以下筛选及检测;
(3) 通过抗性筛选获得的转基因植株,再进行基因组、mRNA水平、蛋白表达水平及POD活性的检测,获得多株转AtPrx64基因烟草(AtPrx64-1至AtPrx64-6),选取POD活性最高的AtPrx64-6并扩繁;
(4) 将野生型烟草和AtPrx64-6烟草在Hongland’s营养液中培养两周后,选择长势一致的健壮植株,用含0.5 mM CaCl2的Hongland’s营养液(pH4.3)预处理过夜,然后添加0、50、100、200、400 µM AlCl3处理,收集根尖,液氮速冻,-80 ℃冻存备用,以对各项铝抗性指标进行检测;每个组做6个重复,以未加AlCl3(0 µM)处理的作为对照组。
本发明选择将AtPrx64基因转入烟草中,提高了烟草对铝的耐受性,将为我们对该基因的功能做进一步研究提供材料,也为研究其他相关基因提供了思路。此外,还可将该转基因烟草用作铝污染土壤中的栽培品种。
本发明的有益效果:本发明所述转AtPrx64基因烟草(AtPrx64-6),容易通过无性繁殖的方式保存种质资源,可以通过栽培获得种子进行保存,容易推广种植。此外还可以通过对AtPrx64-6烟草和野生型烟草的结构及生理生化指标的比较对AtPrx64基因的功能及其相关调控机制进行更深入的研究。
附图说明
图1是本发明中对转AtPrx64基因烟草基因组中AtPrx64基因整合情况的检测;
图2是本发明中对转AtPrx64基因烟草AtPrx64 mRNA水平的检测;
图3是本发明中对转AtPrx64基因烟草AtPrx64 基因的蛋白表达水平的检测;
图4是本发明中对转AtPrx64基因烟草中总POD活性的检测;
图5是本发明中不同浓度铝胁迫下转基因烟草AtPrx64-2、AtPrx64-4、AtPrx64-6和野生型烟草(WT)根相对生长量变化的比较;
图6是本发明中不同浓度铝胁迫下转基因烟草AtPrx64-6和野生型烟草(WT)根中H2O2含量变化的比较;
图7是本发明中不同浓度铝胁迫下转基因烟草AtPrx64-6和野生型烟草(WT)根中H2O2的荧光共聚焦图;
图8是本发明中不同浓度铝胁迫下转基因烟草AtPrx64-6和野生型烟草(WT)根中可溶性蛋白含量变化的比较;
图9是本发明中不同浓度铝胁迫下转基因烟草AtPrx64-6和野生型烟草(WT)根中丙二醛(MDA)含量变化的比较;
图10是本发明中不同浓度铝胁迫下转基因烟草AtPrx64-6和野生型烟草(WT)根中H+-ATPase活性的比较;
图11是本发明中不同浓度铝胁迫下转基因烟草AtPrx64-6和野生型烟草(WT)根中柠檬酸分泌量的比较;
图12是本发明中不同浓度铝胁迫下转基因烟草AtPrx64-6和野生型烟草(WT)根中铝含量的比较。
具体实施方式
下面通过实施例和附图对本发明作进一步详细说明,但本发明保护范围不局限于所述内容。实施例中方法如无特殊说明,按常规操作进行,如无特殊说明使用试剂均为常规购试剂或按常规方法配制的试剂,如无特殊说明方法中百分数均为质量百分数。
实施例1:AtPrx64基因cDNA片段的获得
用TRIzol Reagent试剂按照说明书提取拟南芥总RNA。具体操作步骤如下:取植物嫩叶约0.1g放入加有液氮的研钵中,充分研磨成粉末;加入1 mL TRIzoL试剂在研钵中继续研磨成溶液状,室温静置5 min后移入2 mL 离心管;然后加入200 µL 氯仿,振荡15 s混匀,4℃、12000 rpm离心15min;将上清液转移至新2 mL EP管,加入500 µL 异丙醇,混匀,-20 ℃放置10 min;4 ℃、12000 rpm离心10 min;弃上清,沉淀用75%乙醇0.8-1 mL 清洗;4℃、12000 rpm离心1 min,弃75%乙醇;重复洗1次以彻底出去盐杂质;真空干燥沉淀或自然晾干,用20 µL焦碳酸二乙酯(DEPC)处理水溶解RNA,-20℃保存备用。
取2 µL 上述DEPC水溶解的RNA进行电泳检测,检测到RNA提取完好后,再取2 µL总RNA进行M-MLV反转录,方法参照Fermentas试剂公司说明书。反转录过程如下: 2 µL RNA、9µL DEPC处理水、4 µL Oligo(dT),72 ℃金属浴10 min后立即冰浴5 min,再添加2 µL dNTP和1 µL 的RNA酶抑制剂,1.5 µL 的反转录酶、5 µL 反转录buffer,42 ℃保温60 min后迅速置于70 ℃中使反转录酶变性,5 min后取出,即获得拟南芥cDNA。
根据GenBank( 登录号为:145358744)上发表的拟南芥AtPrx64基因序列全长,设计POD基因上游引物为5-GGATCCATGAATGCACACATGCTCAATCTCC(含BamHI酶切位点),下游为3-CTCGAGCTAGCGAACCCTTCTGCAGTTAAGT (含XhoI酶切位点)。以提取的拟南芥cDNA为模板,以设计的AtPrx64引物用Ex Taq酶 mix进行RT-PCR扩增,胶回收获得AtPrx64基因编码区全长,即目的片段。
实施例2:AtPrx64基因植物表达载体pK-35S- AtPrx64的构建及转化烟草
将AtPrx64基因的cDNA片段连接到pMD-18T载体上,热激转化DH5α,通过氨苄青霉素筛选得到有抗性的单菌落,PCR 和双酶切检测正确后测序,测序工作委托华大基因完成。测序正确的单菌落扩大培养后提取质粒,经双酶切后连接到入门克隆载体pENTR-2B上,热激转化DH5α,卡那霉素(Km)筛选得到有抗性的单菌落,双酶切检测、测序后扩大培养,提取质粒获得入门克隆载体pENTR-2B- AtPrx64。在LR Mix Enzyme作用下,目的载体pK2GW7和入门克隆载体pENTR-2B- AtPrx64和进行LR重组反应后转化DH5a,经壮观霉素(Spe)筛选检测后获得植物表达载体pK-35S- AtPrx64。
通过电转化法将pK-35S- AtPrx64转入农杆菌pMP90中,Spe筛选获得阳性克隆菌株,将检测正确的单菌落扩大培养后通过叶盘转化法转化野生型烟草,转染后将烟草叶片放在含有Km和头孢噻肟钠(Cef)的MS4培养基上诱导外植体发芽,两周换一次培养基。待转染的叶片生长出芽后,切下长势好的芽放入含Cef和Km的MS培养基上诱导芽生根。约1个月后提取烟草幼苗叶片基因组DNA、RNA和总蛋白,检测拟南芥AtPrx64在烟草中的整合、转录及表达情况。
实施例3:转基因植株的基因组、mRNA水平、蛋白表达水平及POD活性的检测
(1)AtPrx64基因在烟草基因组中的整合情况检测:用CTAB法从烟草叶片中提取基因组DNA作为模板进行PCR扩增,检测AtPrx64在转基因烟草基因组中的整合情况。取0.1 g烟草的叶片迅速放入液氮中冷冻,在研钵中快速研磨至粉末状,加入预热到65 ℃的2×CTAB缓冲液900 µL(20 mM EDTA,2% CTAB和1.4 M NaCl),研磨混匀后65 ℃水浴15 min,冷却后加入500 µL氯仿-异戊醇(24:1)混合液上下颠倒摇匀后室温离心。取上清于EP管后加入等体积的异丙醇和1/10醋酸钠混匀后置于-20 ℃ 放置20 min,于4 ℃离心机离心20 min。弃上清后,用乙醇清新两次,真空干燥,最后用RNase的TE缓冲液溶解,37 ℃放置20 min后取出用于PCR检测,有条带证明有AtPrx64基因的整合,共获得了6株整合了拟南芥AtPrx64基因的转基因烟草(如图1所示)
(2)用RNA提取试剂(TRIzol® Reagent)提取野生型和转基因烟草根的总RNA,提取步骤参照说明书进行。取3 µg的总RNA进行RT-PCR,取3 µL 总RNA后加入10 µL 体系(1.5 µLoligo和8.5 µL DEPC水)于70℃ 金属浴5 min后立即置于冰上,5 min后再加入12 µL 的反应体系(1 µL M-MLVRT、1 µL RNA酶抑制剂、1.5 µL dNTP、3.5 µL DEPC水、5 µL MLV-bμffer)于42 ℃金属浴,1 h后取出于72 ℃保温10 min即获得烟草的cDNA,放-20℃保存备用。以反转录成的cDNA为模板进行AtPrx64的mRNA表达分析。有条带的证明有AtPrx64的mRNA转录,结果如图2所示,野生型烟草无条带,说明没有AtPrx64的mRNA转录,6株转基因烟草均有AtPrx64的mRNA转录。
(3)转基因烟草中AtPrx64基因的蛋白表达情况检测:取0.5 g烟草根,用液氮速冻后充分研磨,加入900 µL 蛋白抽提液(100 mM Tris-HCl, pH 8.8、1 mM PMSF、10%甘油及5% PVP和10 mM 硫基乙醇),置于冰上5 min后,4℃,12000 rpm离心5 min后取上清即获得总蛋白液,Bradford法测蛋白含量。经SDS-PAGE电泳分离后,通过半干式转膜仪将蛋白转移到PVDF上,5%的脱脂奶粉室温封闭1 h后,用PBS清洗PVDF膜3次,每次5 min;加入10μL的AtPER64 (AtPrx64基因表达的蛋白)特异性抗体(兔抗,由本实验室自制)与PVDF膜一起常温孵育2 h;用PBS清洗PVDF膜3次后,再加入连有辣根过氧化物酶的羊抗兔二抗,常温孵育1h;最后加入ECL发光底物反应,凝胶成像系统观察照相(图3)。
(4)总过氧化物酶(POD)活性测定(愈创木酚法):总POD活性测定参照Chance等的愈创木酚方法[35]。首先取水培2周的烟草,用0.5 mM CaCl2 、pH为4.3 的hongland’s营养液预处理12 h后,再用浓度分别为0、50、100、200、400 μM 的AlCl3处理12 h后,取0.5 g根用液氮速冻后研磨,加入1.5 mL Tris-HCl (pH 7.0)(内含有1 mMDTT (二硫苏糖醇)、20%甘油、1 mMGSH (还原型谷胱甘肽)、1 mMASA (抗坏血酸)、1 mM EDTA、5 mM MgCl2)抽提,将抽提液转移到2 mL 离心管中,于4 ℃、12000 rpm、离心15 min,取上清液待测。反应混合液:在50 m L 50 mM Tris-HCl (pH 7.0)缓冲液中加入28 μL 的愈创木酚,于磁力搅拌器上加热搅拌直至愈创木酷溶解,再加入19 µL 的30% H2O2,混合均匀,4 ℃保存。酶活测定:取反应混合液1.5 mL,加入10 µL 的样品提取液,马上读470 nm下的OD值,每个30 s读一次,读3 min。以每分钟OD值的变化表示酶活的大小。结果如图4所示,3个株系转基因烟草中,AtPrx64-6株系的POD酶活性最高。
实施例4:转基因烟草AtPrx64-6和野生型烟草(WT)处理的具体步骤如下:
1、实验材料为转基因烟草AtPrx64-6和野生型烟草(WT)组培苗
烟草继代2周后,挑选大小及根系生长一致的组培苗,在Hongland’s营养液中培养两周后,选择长势一致的健壮植株,用含0.5 mM CaCl2的Hongland’s营养液(pH4.3)预处理过夜,然后添加0、50、100、200、400 µM AlCl3处理,收集根尖,液氮速冻,-80 ℃冻存备用,以对各项铝抗性指标进行检测。每个组做6个重复,以未加AlCl3(0 µM)处理的作为对照组。
实施例5:采用实施例4中水培两周的烟草,用不同浓度铝处理24h后的植株,用pH4.3的0.5 mM 的CaCl2预处理过夜后,记录铝处理前的根长度,然后用不同浓度的 0、50、100、200和400 µM的AlCl3溶液(含有0.5 mM CaCl2,pH 4.3)分别处理24 h后,记录铝处理后的根长度,每个做6个重复。其中以未经铝处理(0 µM)的烟草作为为对照。相对根生长量(Relative Root Growth: RRG):根相对生长率(RGG)=(铝处理后的根长-铝处理前的根长)/(未经铝处理后的根长-未经铝处理前的根长)*100。在铝胁迫条件下,野生型烟草和转基因烟草的根相对生长量(RRG)均随着铝处理浓度的增加而逐渐降低,转基因烟草比野生型降低得少,其中AtPrx64-6最为明显,结果如图5所示,后续实验均以AtPrx64-6为材料。
实施例6:取实施例4中用铝处理24 h的烟草,收集烟草根尖0.5 g,立即用液氮研磨速冻研磨,研磨成粉末状后在立即加入1.5 mL Tris-HCl (pH 7.4)抽提,待研磨成液状后将抽提液移入2 mL EP管中,4℃,离心机中离心(12000 rpm),20 min后取出,取上清于新的管子中保存于-20℃备用。
H2O2含量的测定:根据Gay和Gebicki的方法,采用二甲酚橙进行测定。样品反应体系:82 µL 溶液A+820 µL 溶液B+150 µL提取的上清液体,其中,试剂A(200 mL)含0.0872 g(NH42SO4、0.1835 g FeSO47H2O、18 M 浓H2SO4 4.58 mL),试剂B(6 g 山梨醇,0.0234 g二甲酚橙)的比例分别为1:10;将上述体系置于30 ℃水浴30 min,用分光光度计测定560 nm处的吸光度值,空白对照体系:82 µL A溶液+820 µL B溶液+150 µL ddH2O。将测得的吸光值带进标准曲线计算:y=0.0837x-0.0005 (y为OD值,x为计算后得到的H2O2浓度(nM))。结果如图6所示,野生型烟草和转基因烟草AtPrx64-6的H2O2含量随着铝浓度的增加而逐渐升高,在转基因烟草AtPrx64-6中,升高的量显著低于野生型烟草。
实施例7:取实施例4中用铝处理24 h的烟草,取2~3 cm根尖,放入含500 µL 探针负载缓冲液(50 mM KCl 和10 mM Tris,pH=7.2)中,再加入2 µL H2O2荧光探针染料(H2DCFDA)置于黑暗中20 min,后用激光共聚焦显微镜观察。结果如图7所示,未用铝处理时,野生型烟草和转基因烟草AtPrx64-6的荧光均很弱,在铝处理下,野生型烟草和转基因烟草AtPrx64-6的荧光亮度明显高于未用铝处理的烟草,并且野生型烟草的荧光亮度更强。
实施例8:取实施例4中处理好的根尖0.2 g,液氮研磨后加入2 mL蛋白提取缓冲液(100 mM Tris-HCl(pH 8.0),10%甘油,1 mM PMSF,10 mMβ-巯基乙醇,5% PVP,2 mM EDTA-Na2),4℃,12000 rpm离心10 min,取上清,采用Bradford法测定蛋白质浓度,通过OD595的吸光值,计算可溶性蛋白浓度。结果如图8所示,野生型烟草和转基因烟草AtPrx64-6的可溶性蛋白含量随着铝处理浓度的增加而逐渐降低,在转基因烟草AtPrx64-6中,降低的量显著低于野生型烟草。
实施例9:MDA的测定,参照硫代巴比妥(TBA)的方法,硫代巴比妥(TBA)和丙二醛(MDA)在高温及酸性环境下会反应生成红棕色物质3,5,5-三甲基恶唑2,4-二酮,在532 nm的光下有最大吸收峰。将提取的50 µL 样品加入到400 µL 0.6% TBA溶液中(TBA先在溶解于少许的1 M NaOH中溶解后用10%TCA定容至100 mL),再加入350 µL ddH2O混匀,80 ℃水浴10 min,用分光光度计(岛津uvmini-1240)测532 nm和450 nm处的吸光值,计算公式:MDA含量(µM)=6.45OD532-0.56OD450,对照为Tris-HCl。结果如图9所示,随着铝处理浓度的增大,野生型烟草和转基因烟草AtPrx64-6的MDA含量也逐渐升高,但是野生型烟草升高的量显著高于转基因烟草AtPrx64-6,以上结果说明转基因烟草AtPrx64-6对铝的耐受性更高。
实施例10:取实施例4中铝处理2 h后的烟草,称取根组织0.5 g,用锡箔纸包裹迅速放入液氮中速冻后研磨,研磨成粉末状加入1.5 mL的反应匀浆液,反应体系中包含1 mMEDTA, 1 mM MgSO4以及10 mM Tris-HCl、0.25 mM山梨醇,溶解后将研磨液转移到2 mL EP管中,4 ℃,11000转离心20 min后取上清,于分光光度计OD595测蛋白浓度,之后取500 µg质膜蛋白在0.5 mL的反应体系中以启动反应,(反应体系包含0.02% Brij、50 mM KCl,4 mMATP-Na2、1 mM (NH4) 2MoO4、50 mM KNO3、50 mM BTP/MES、1 mM NaN2 混合而成)。之后将反应混合物于30℃水浴30 min后,立即加入1 mL反应终止液(含5% SDS (w/v)、2% H2SO4 (v/v)和 0.7% (NH4)2 MoO4 (w/v))后再加入0.5 mL显色液,置于室温条件下。约20 min后, 用分光光度计测定波长为660 nm处的吸光值。根据标准曲线计算质膜H+-ATPase的活性。将1单位的质膜H+-ATPase活性定义为:30 ℃的反应条件下,在1分钟内每mg蛋白催化ATP分解释放无机磷酸的µM数。结果如图10所示,无论有没有铝胁迫,在转基因烟草AtPrx64-6根中质膜H+-ATPase活性均比野生型烟草高,并且随着铝浓度的增加虽然两者的H+-ATPase活性均呈下降趋势,但转基因烟草AtPrx64-6始终高于野生型烟草,说明转基因烟草AtPrx64-6能通过提高氢泵活性来提高植物对铝的耐受性。
实施例11:取实施例4中铝处理12 h后的营养液,收集处理液,过滤后用真空干燥仪抽干后溶于1 mL蒸馏水中,用高效液相色谱仪测柠檬酸的分泌量。结果如图11所示,无论有没有铝胁迫,在转基因烟草AtPrx64-6中根的柠檬酸分泌量均比野生型烟草高,并且随着铝浓度的增加虽然两者的柠檬酸分泌量均呈下降趋势,但转基因烟草AtPrx64-6始终高于野生型烟草,说明转基因烟草AtPrx64-6可能通过分泌更多的柠檬酸来螯合Al3+阻止铝进入植物根系。
实施例12:取实施例4中铝处理12h后的烟草根尖烘干至恒重,用灰化炉550 ℃灰化10 h左右,使用1 mL浓硝酸溶解过夜,定容至50 mL,使用ICP法测定铝的含量(昆明理工大学分析测试中心进行)。结果如图12所示,对不同浓度铝胁迫下的转基因烟草AtPrx64-6和野生型烟草根中铝含量的测定发现,转基因烟草根中的铝含量显著低于野生型烟草。以上结果说明,转AtPrx64烟草能通过将铝排出根外来提高烟草对铝胁迫的耐受性。
序列表
<110> 昆明理工大学
<120>AtPrx64基因在提高植物铝耐受性上的应用
<160> 2
<170> PatentIn version 3.5
<210> 1
<211>31
<212> DNA
<213> 人工序列
<400> 1
ggatccatga atgcacacat gctcaatctc c
<210> 2
<211> 31
<212> DNA
<213> 人工序列
<400> 2
ctcgagctag cgaacccttc tgcagttaag t

Claims (1)

1.AtPrx64基因在提高植物铝耐受性上的应用。
CN201610324315.0A 2016-05-17 2016-05-17 AtPrx64基因在提高植物铝耐受性上的应用 Active CN105861459B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610324315.0A CN105861459B (zh) 2016-05-17 2016-05-17 AtPrx64基因在提高植物铝耐受性上的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610324315.0A CN105861459B (zh) 2016-05-17 2016-05-17 AtPrx64基因在提高植物铝耐受性上的应用

Publications (2)

Publication Number Publication Date
CN105861459A true CN105861459A (zh) 2016-08-17
CN105861459B CN105861459B (zh) 2020-01-10

Family

ID=56634843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610324315.0A Active CN105861459B (zh) 2016-05-17 2016-05-17 AtPrx64基因在提高植物铝耐受性上的应用

Country Status (1)

Country Link
CN (1) CN105861459B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108410880A (zh) * 2018-01-26 2018-08-17 昆明理工大学 一种丹波黑大豆柠檬酸转运蛋白基因及其应用
CN111763663A (zh) * 2020-07-09 2020-10-13 昆明理工大学 一种天麻葡糖基转移酶基因及应用
CN111826383A (zh) * 2020-07-16 2020-10-27 昆明理工大学 丹波黑大豆超氧化物歧化酶基因在提高植物铝耐受性中的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HAGER JOUILI等: "Protein and Peroxidase Modulations in Sunflower Seedlings (Helianthus annuus L.) Treated with a Toxic Amount of Aluminium", 《BIOL TRACE ELEM RES》 *
MANJEET KUMARI等: "Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana", 《MOL GENET GENOMICS》 *
SWARBRECK,D.等: "GenBank:NM_123583.3 Arabidopsis thaliana peroxidase mRNA, complete cds", 《GENBANK》 *
SWARNENDU CHANDRA等: "In Silico Molecular Modeling and Structural Analysis of Peroxidase Enzymes from five different plants species", 《RESEARCH JOURNAL OF PHARMACEUTICAL, BIOLOGICAL AND CHEMICAL SCIENCES》 *
杨志丽: "在烟草中过量表达提高铝耐受性及硝态氮吸收分子机理的研究", 《昆明理工大学论文集》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108410880A (zh) * 2018-01-26 2018-08-17 昆明理工大学 一种丹波黑大豆柠檬酸转运蛋白基因及其应用
CN108410880B (zh) * 2018-01-26 2021-10-22 昆明理工大学 一种丹波黑大豆柠檬酸转运蛋白基因及其应用
CN111763663A (zh) * 2020-07-09 2020-10-13 昆明理工大学 一种天麻葡糖基转移酶基因及应用
CN111763663B (zh) * 2020-07-09 2022-04-15 昆明理工大学 一种天麻葡糖基转移酶基因及应用
CN111826383A (zh) * 2020-07-16 2020-10-27 昆明理工大学 丹波黑大豆超氧化物歧化酶基因在提高植物铝耐受性中的应用
CN111826383B (zh) * 2020-07-16 2022-08-02 昆明理工大学 丹波黑大豆超氧化物歧化酶基因在提高植物铝耐受性中的应用

Also Published As

Publication number Publication date
CN105861459B (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
Xu et al. Zinc improves salt tolerance by increasing reactive oxygen species scavenging and reducing Na+ accumulation in wheat seedlings
Lin et al. Rapid effect of copper on lignin biosynthesis in soybean roots
LANE Oxalate oxidases and differentiating surface structure in wheat: germins
de Oliveira Ceita et al. Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora perniciosa
Lu et al. Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: a perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass
WU et al. Genotypic difference in the responses of seedling growth and Cd toxicity in rice (Oryza sativa L.)
Lin et al. Mutual regulation of ROS accumulation and cell autophagy in wheat roots under hypoxia stress
SENADHEERA et al. Long term salinity stress reveals variety specific differences in root oxidative stress response
CN105861459A (zh) AtPrx64基因在提高植物铝耐受性上的应用
Yao et al. An analysis of physiological index of differences in drought tolerance of tomato rootstock seedlings
CN104694491B (zh) 玫瑰的花青素还原酶RrANR基因及其编码蛋白和应用
Agrawal et al. Effect of sodium chloride on gas exchange, antioxidative defense mechanism and ion accumulation in different cultivars of Indian jujube (Ziziphus mauritiana L.)
Abbes et al. Investigation of some biochemical mechanisms involved in the resistance of faba bean (Vicia faba L.) varieties to Orobanche spp.
CN109517827B (zh) 二穗短柄草抗旱抗盐基因及其编码蛋白质与应用
CN106047919A (zh) AtPrx64基因在铝胁迫下提高植物硝态氮吸收中的应用
CN101230357A (zh) 一种提高植物耐铝毒能力的植物表达载体及其应用
Chernyad'Ev et al. Effects of cytokinin preparations on the pools of pigments and proteins of wheat cultivars differing in their tolerance to water stress
Aktas et al. Physiological and biochemical mechanisms leading to blossom-end rot in greenhouse-grown peppers, irrigated with saline solution
Chen et al. Effect of octylphenol on physiologic features during growth in Arabidopsis thaliana
CN109729778B (zh) 一种利用5-氨基乙酰丙酸提高向日葵对寄生杂草向日葵列当抗性的方法
CN104561045B (zh) 一种提高白桦抗逆性的转录因子及其编码的蛋白
Nie et al. Brassica napus possesses enhanced antioxidant capacity via heterologous expression of anthocyanin pathway gene transcription factors
Silva-Cardenas et al. Hemoglobin and hypoxic acclimation in maize root tips
Jung Expression level of specific isozymes of maize catalase mutants influences other antioxidants on norflurazon-induced oxidative stress
Chen et al. Effects of drought and salt stress on activities of antioxidant protective enzymes and expression of stress genes in alfalfa (Medicago sativa L.) seedlings

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant