CN105859002A - 去除水中消毒副产物的装置 - Google Patents

去除水中消毒副产物的装置 Download PDF

Info

Publication number
CN105859002A
CN105859002A CN201610269175.1A CN201610269175A CN105859002A CN 105859002 A CN105859002 A CN 105859002A CN 201610269175 A CN201610269175 A CN 201610269175A CN 105859002 A CN105859002 A CN 105859002A
Authority
CN
China
Prior art keywords
membrane
water
outlet
water tank
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610269175.1A
Other languages
English (en)
Other versions
CN105859002B (zh
Inventor
韩健健
陈顺权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Qiyue Biotechnology Co ltd
Original Assignee
Guangzhou Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Advanced Technology of CAS filed Critical Guangzhou Institute of Advanced Technology of CAS
Priority to CN201610269175.1A priority Critical patent/CN105859002B/zh
Publication of CN105859002A publication Critical patent/CN105859002A/zh
Application granted granted Critical
Publication of CN105859002B publication Critical patent/CN105859002B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/448Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by pervaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Abstract

本发明涉及一种去除水中消毒副产物的装置,包括强化混凝池、超滤膜组件、纳滤膜组件、渗透汽化膜组件以及收集装置,待处理的水样依次流经所述强化混凝池、超滤膜组件、纳滤膜组件、渗透汽化膜组件处理后,流通至所述收集装置进行收集。本发明去除水中消毒副产物的装置综合了强化混凝池,以及由超滤膜组件、纳滤膜组件和汽化渗透膜组件构建的三级集成膜装置,对水中消毒副产物的进行去除,各装置有机结合,对消毒副产物脱除率达到90%以上,可有效降低水中的消毒副产物,达到安全用水水质要求,对于净化氯化消毒后的泳池水、饮用水等有重要意义。

Description

去除水中消毒副产物的装置
技术领域
本发明涉及水处理装置,特别是涉及一种去除水中消毒副产物的装置。
背景技术
氯化消毒是饮用水加工过程中使用最广泛的消毒方式,已有上百年的历史。然而,氯化消毒方式,会不可避免的产生氯化消毒副产物(DBPs)。早在1974年就有研究发现,DBPs具有强烈的致癌、致畸、致突变等作用,严重危害人类的健康。
为保障人类用水安全,水中DBPs的控制,已得到世界各国的高度重视。目前,美国降低饮水中的THMs最高允许质量浓度标准,分两个阶段进行:第一阶段,THMs从100μg/L降为80μg/L;第二阶段,进一步将THMs降到40μg/L。我国在2001年的生活饮用水标准中对此也做出了严格的规定:三氯甲烷的最高质量浓度为60μg/L,四氯化碳为2μg/L。
目前对饮用水中DBPs控制的研究,主要集中在四个方面:(1)从源头控制,即加强对水源水的保护;(2)采用替代消毒剂和消毒方法;(3)DBPs前驱物质的去除;(4)DBPs的去除。
水源地环境保护,改善水源水质量是降低DBPs的根本途径,但是,我国部分地区的水环境已遭到严重污染,所以对于其他三个方面的研究,也就显得尤为必要。
目前,替代氯化消毒的消毒剂和方法主要有氯胺、臭氧和紫外线等:研究发现,将氯和氨氮的比值降至5,能够使单独氯消毒所生成的DBPs减少89%;采用预氯胺化工艺不仅能达到某些预氧化工艺的功效,同时也延长了氯胺消毒的接触时间,提高了饮用水的微生物安全性,但是,伊利诺斯大学粮食科学系的遗传毒理学家Plewa J Michael研究发现,一种氯胺消毒副产物是迄今发现毒性最大的;作为一种强氧化剂,臭氧的杀菌和氧化能力均高于氯,是目前加药消毒法中最有效的消毒剂,其优点在于不产生THMs等消毒副产物,但是臭氧在水中的不稳定性,使得其很难单独作为消毒剂,用于饮用水的消毒,而且,臭氧消毒有产生溴酸盐等副产物的可能;紫外线杀菌的广谱性,是目前所有消毒技术中最高的,其能有效的杀灭多种氯气和臭氧不能灭杀的寄生虫类,如隐性包囊虫和贾第鞭毛虫等,并且没有DBPs的产生,但是,紫外线在水中的穿透能力和紫外灯管的功率和寿命,制约了紫外消毒方式在饮用水消毒方面的应用。
鉴于氯化消毒仍然是饮用水加工过程中使用最广泛的消毒方式,对DBPs及其前驱物质的去除研究,就显得至关重要。
发明内容
基于此,有必要提供一种去除水中消毒副产物的装置。
一种去除水中消毒副产物的装置,包括强化混凝池、超滤膜组件、纳滤膜组件、渗透汽化膜组件以及收集装置,待处理的水样依次经所述强化混凝池、超滤膜组件、纳滤膜组件、渗透汽化膜组件处理后,流通至所述收集装置进行收集。
在其中一个实施例中,所述超滤膜组件包括超滤膜装置,或,超滤膜装置和第一水箱,
所述第一水箱具有第一水箱入水口和第一水箱出水口,
所述超滤膜装置包括超滤膜,且具有第一超滤膜入水口、第一超滤膜出水口和第二超滤膜出水口,
经所述强化混凝池处理后的出水,经所述第一超滤膜入水口进入所述超滤膜装置,并由所述超滤膜分离为透过所述超滤膜的第一净化水和未透过所述纳滤膜的第一浓缩液,所述第一净化水经所述第二超滤膜出水口流通至所述纳滤膜组件处理;
所述第一浓缩液经所述第一超滤膜出水口排出,或,流通至所述第一水箱入水口并进入所述第一水箱,然后经所述第一水箱出水口流通至所述第一超滤膜入水口,进行循环分离。
在其中一个实施例中,所述超滤膜的制备方法如下:
对超滤膜基材进行荷电改性:所述超滤膜基材为聚砜(PSF)、聚醚砜树脂(PES)或聚偏氟乙烯(PVDF),所述荷电改性的方法为:将所述超滤膜基材溶解于浓硫酸中,加入氯磺酸(缓慢加入),于20-40℃温度下反应20-25h,即可,控制所述氯磺酸与浓硫酸的体积比为1:1-3,所述浓硫酸中超滤膜基材的质量浓度为8-12%;
以纳米Ag+修饰的SiO2颗粒作为填充颗粒与荷电改性后的超滤膜基材共混,制成截留分子量10000-50000Da的超滤膜,所述纳米Ag+修饰的SiO2颗粒在所述荷电改性后的超滤膜基材中的质量浓度为5-10%。
在其中一个实施例中,所述浓硫酸中超滤膜基材的质量浓度为8-10%;
所述超滤膜的截留分子量为10000-20000Da,所述纳米Ag+修饰的SiO2颗粒在所述荷电改性后的超滤膜基材中的质量浓度为7-9%,所述Ag+修饰的SiO2颗粒的直径分布为30-80nm。
在其中一个实施例中,所述纳滤膜组件包括纳滤膜装置,或,纳滤膜装置和第二水箱,
所述第二水箱具有第二水箱入水口和第二水箱出水口,
所述纳滤膜装置包括纳滤膜,且具有第一纳滤膜入水口、第一纳滤膜出水口和第二纳滤膜出水口,
经所述超滤膜组件处理后的出水,经所述第一纳滤膜入水口进入所述纳滤膜装置,并由所述纳滤膜分离为透过所述纳滤膜的第二净化水和未透过所述纳滤膜的第二浓缩液,所述第二净化水经所述第二纳滤膜出水口流通至所述渗透汽化膜组件处理;
所述第二浓缩液经所述第一纳滤膜出水口排出,或,流通至所述第二水箱入水口并进入所述第二水箱,然后经所述第二水箱出水口流通至所述第一纳滤膜入水口,进行循环分离。
在其中一个实施例中,所述纳滤膜的制备方法如下:
对纳滤膜基材进行荷电改性:所述纳滤膜基材为聚砜或聚醚砜树脂,所述荷电改性的方法为:将所述纳滤膜基材溶解于浓硫酸中,加入氯磺酸(缓慢加入),于20-40℃温度下反应20-25h,即可,控制所述氯磺酸与浓硫酸的体积比为1:1-3,所述浓硫酸中纳滤膜基材的质量浓度为8-12%;
以纳米Ag+修饰的SiO2颗粒作为填充颗粒与荷电改性后的纳滤膜基材共混,制成截留分子量500-600Da的纳滤膜,所述纳米Ag+修饰的SiO2颗粒在所述荷电改性后的纳滤膜基材中的质量浓度为5-10%。
在其中一个实施例中,所述纳滤膜的截留分子量为500-550Da,所述纳米Ag+修饰的SiO2颗粒在所述荷电改性后的纳滤膜基材中的质量浓度为8-10%,所述Ag+修饰的SiO2颗粒的直径分布为30-80nm。
在其中一个实施例中,所述渗透汽化膜组件包括渗透汽化膜装置;所述收集装置包括第三水箱和冷凝装置(如冷阱),
所述渗透汽化装置包括渗透汽化膜,且具有第一渗透汽化膜入水口,第一渗透汽化膜出水口和第二渗透汽化膜出水口,
经所述纳滤膜组件处理后的出水,经所述第一渗透汽化膜入水口进入所述渗透汽化装置,并由所述渗透汽化膜渗透分离为渗透蒸气和渗余液,所述渗余液经所述第一渗透汽化膜出水口流通至所述第三水箱收集;
所述渗透蒸气经所述第二渗透汽化膜出水口流通至所述冷凝装置收集。
在其中一个实施例中,所述渗透汽化组件还包括第四水箱,所述第四水箱设置有加热装置,且具有第四水箱入水口和第四水箱出水口,
经所述纳滤膜组件处理后的出水,经所述第四水箱入水口进入所述第四水箱,预热后经所述第四水箱出水口流通至所述第一渗透汽化膜入水口。
在其中一个实施例中,所述渗透汽化膜的制备方法如下:
采用疏水性亲三卤甲烷的高分子材料聚二甲基硅氧烷(PDMS)、聚丙烯酸乙酯(PEA)或聚甲基丙烯酸乙酯(HEMA)为膜材料,以活性炭为填充颗粒进行共混,制备疏水渗透汽化膜,所述活性炭在所述聚二甲基硅氧烷、聚丙烯酸乙酯、或聚甲基丙烯酸乙酯中的质量浓度为5-10%,或,
采用亲水性的高分子材料聚乙烯醇为膜材料,制备亲水渗透汽化膜。
与现有技术相比,本发明具有以下有益效果:
(1)本发明去除水中消毒副产物的装置综合了强化混凝池,以及由超滤膜组件、纳滤膜组件和汽化渗透膜组件构建的三级集成膜装置,对水中消毒副产物的进行去除,各装置有机结合,对消毒副产物脱除率达到90%以上,可有效降低水中的消毒副产物,达到安全用水水质要求,对于净化氯化消毒后的泳池水、饮用水等有重要意义。
(2)通过合理控制各组件分离膜的种类及性质,还可以进一步实现初级超纯水(脱除率99%以上)的制备。
(3)通过填充Ag+-SiO2颗粒,可有效提高超滤和纳滤膜的抗微生物污染性能,延长这两种膜的使用寿命。
(4)本发明去除水中消毒副产物的装置,设备简单,运行费用低,去除效果好,便于工业化大生产,改善了水处理劳动环境,实现清洁文明生产。
附图说明
图1为本发明去除水中消毒副产物的装置的结构示意图,其中,
1-第一水箱;2-超滤膜装置;3-第二水箱;4-纳滤膜装置;5-第四水箱;6-渗透汽化膜装置;7-冷阱;8-第三水箱。
具体实施方式
以下结合具体实施例对本发明的去除水中消毒副产物的装置作进一步详细的说明。
本发明一种去除水中消毒副产物的装置,其结构如图1所示,包括通过管道依次连接的强化混凝池、超滤膜组件、纳滤膜组件、渗透汽化膜组件以及收集装置,其中,
超滤膜组件包括超滤膜装置2和第一水箱1,第一水箱1用于收集强化混凝池的出水,超滤膜装置2包括超滤膜,
超滤膜装置2具有位于所述超滤膜下侧的第一超滤膜入水口和第一超滤膜出水口,以及位于所述超滤膜上侧的第二超滤膜出水口,所述第二超滤膜出水口通过管道连通至所述纳滤膜组件,
第一水箱1具有第一水箱出水口,该第一水箱出水口通过管道连通至所述第一超滤膜入水口,所述第一超滤膜出水口通过管道连通至第一水箱1,由此在超滤膜装置2与第一水箱1之间形成环路;
所述纳滤膜组件包括纳滤膜装置4和第二水箱3,第二水箱3用于收集所述第二超滤膜出水口的出水,纳滤膜装置4包括纳滤膜,
纳滤膜装置4具有位于所述纳滤膜下侧的第一纳滤膜入水口和第一纳滤膜出水口,以及位于所述纳滤膜上侧的第二纳滤膜出水口,所述第二纳滤膜出水口通过管道连通至所述渗透汽化膜组件,
第二水箱3具有第二水箱出水口,该第二水箱出水口通过管道连通至所述第一纳滤膜入水口,所述第一纳滤膜出水口通过管道连通至所述第二水箱3,由此在纳滤膜装置4与第二水箱3之间形成环路;
所述渗透汽化膜组件包括渗透汽化膜装置6、具有加热装置的第四水箱5、第三水箱8和冷阱7,第四水箱5用于收集所述第二纳滤膜出水口的出水,渗透汽化膜装置6包括渗透汽化膜,
渗透汽化膜装置6具有位于所述渗透汽化膜上侧的第一渗透汽化膜入水口和第一渗透汽化膜出水口,以及位于所述渗透汽化膜下侧的第二渗透汽化膜出水口,
第四水箱5具有第四水箱出水口,该第四水箱出水口通过管道连通至所述第一渗透汽化膜入水口,所述第一渗透汽化膜出水口通过管道连通至第三水箱8,
所述第二渗透汽化膜出水口通过管道连通至所述冷阱7。
利用上述装置去除水中消毒副产物:
首先,将待处理水样投入至强化混凝池进行强化混凝,由此使水中的天然有机物互相聚集粘结,形成粒径较大的胶体,便于后续的膜分离去除;
强化混凝池的出水导入至超滤膜组件的第一水箱1,并经第一水箱出水口导通至第一超滤膜入水口,由超滤膜的下侧进入超滤膜装置2,透过超滤膜的水,即第一净化水,由超滤膜的上侧第二超滤膜出水口导通至纳滤膜组件,而未透过超滤膜的水经环路回到第一水箱1,可再次重复本步骤进行循环分离,以此减少废水量,提高净水的产出,
经超滤膜组件处理后,可去除水中天然有机物、腐殖酸等大部分的DBPs前驱物质以及部分DBPs;
超滤膜组件的出水,即第一净化水,由第二超滤膜出水口导通至纳滤膜组件中的第二水箱3,并经第二水箱出水口导通至第一纳滤膜入水口,由纳滤膜的下侧进入纳滤膜装置4,透过纳滤膜的水,即第二净化水,由纳滤膜上侧的第二纳滤膜出水口导通至渗透汽化膜组件,而未透过纳滤膜的水经环路回到第二水箱3,可再次重复本步骤处理,减少废水量,提高净水的产出,
经纳滤膜组件处理后,可去除水中大部分的DBPs,剩余的为一小部分分子量较小的中性有机小分子THMs;
纳滤膜组件的出水,即第二净化水,由第二纳滤膜出水口导通至渗透汽化膜组件中的第四水箱5,并经第四水箱出水口导通至第一渗透汽化膜入水口,由渗透汽化膜的上侧进入渗透汽化膜装置6,
当处理的是泳池水或饮用水等需水量较大的水样时,采用疏水性亲三卤甲烷的渗透汽化膜,过滤时THMs溶解吸附在膜上,并进一步渗透到膜的下游侧,冷阱7中得到的是THMs的浓缩液,进入第三水箱8中的水即为脱除消毒副产物后所得的水,如DBPs脱除率高达90%的泳池水或95%的饮用水;
当需要生产超纯水时,采用亲水性的渗透汽化膜,过滤时水吸附在膜上,并进一步渗透到膜的下游侧,冷阱7中得到的即为初级超纯水(DBPs脱除率99.9%以上),第四水箱5还具有加热装置,温度是影响渗透汽化通量的一个重要因素,当生产超纯水时,可通过该加热装置调节温度,调节超纯水的产量。
具体示例可见如下实施例1-3。
实施例1
待处理水样为某游泳池消毒后的泳池水,其中DBPs的种类以THMs和HAAs(卤乙酸)为主,THMs和HAAs分别在230μg/L-260μg/L、140μg/L-420μg/L之间波动,方法包括如下步骤:
(1)强化混凝:
将含铁量25wt%的聚合硫酸铁加水配成浓度为5mg/L的混凝剂;
将分子量3000kDa的阳离子型聚丙烯酰胺加水配制成浓度为20mg/L的助凝剂;
将所述混凝剂和助凝剂投入所述待处理水样中,投加量依次为50mg/L和0.15mg/L,调pH值为8后搅拌,搅拌速度为400r/min,搅拌时间为15min,然后静置25min;
(2)超滤:
超滤膜装置2包括超滤膜,步骤(1)处理后的水样经第一水箱1从超滤膜装置2的下侧进入膜池,未透过的水送回到第一水箱1中,透过的水从超滤膜装置2上侧出来,由此可去除腐殖酸等大部分的DBPs前驱物质及部分DBPs,得第一水样,其中,
所述超滤膜为荷电填充型超滤膜,制备方法如下:
将聚偏氟乙烯溶解于浓硫酸中,缓慢加入氯磺酸,于30℃温度下进行磺化反应,控制氯磺酸与浓硫酸的体积比为1:2,浓硫酸中聚偏氟乙烯的质量浓度为12%,反应时间20h,制得荷电基材磺化聚偏氟乙烯;
以纳米Ag+修饰的SiO2颗粒(直径分布为30-80nm)作为填充颗粒与荷电基材磺化聚偏氟乙烯共混,采用常规方法制成截留分子量50000Da的超滤膜,所述纳米Ag+修饰的SiO2颗粒在荷电基材磺化聚砜中的质量浓度为5%;
(3)纳滤:
纳滤膜装置4包括纳滤膜,步骤(2)的第一水样经第二水箱3从纳滤膜装置4的下侧进入膜池,未透过的水送回到第二水箱3中,透过的水从纳滤膜装置4上侧出来,由此可去除大部分的DBPs,得第二水样,其中,
所述纳滤膜为荷电填充型纳滤膜,制备方法类似步骤(2)超滤膜的制备,制得纳滤膜的截留分子量为600Da;
(4)渗透汽化:
经过前面的处理,进入渗透汽化膜装置6中的水中的DBPs为剩余的一小部分分子量较小的中性有机小分子THMs,渗透汽化膜装置6包括渗透汽化膜,该渗透汽化膜采用疏水亲THMs的聚二甲基硅氧烷与活性炭作为填充颗粒共混制成,其中活性炭在聚二甲基硅氧烷中的质量浓度为15%,
步骤(3)的第二水样经第四水箱5从渗透汽化膜装置6的上侧进入膜池,过滤时THMs溶解吸附在膜上,并进一步渗透到膜的下游侧,冷阱7中得到的是THMs的浓缩液,进入第三水箱8中的水即为脱除DBPs所得的水,水中的DBPs去除率达到90%以上,即可作为泳池水使用。
实施例2
待处理水样为某市自来水为例,THMs和HAAs分别在10μg/L-35μg/L、1.4μg/L-4.5μg/L之间波动,方法步骤与实施例1类似,区别在于:
(1)强化混凝:
将含铁量15wt%的聚合硫酸铁加水配成浓度为15mg/L的混凝剂;
将分子量3000kDa的阳离子型聚丙烯酰胺加水配制成浓度为23mg/L的助凝剂;
将所述混凝剂和助凝剂投入所述待处理水样中,投加量依次为40mg/L和0.10mg/L,调pH值为7.5后搅拌,搅拌速度为60r/min,搅拌时间为15min,然后静置15min;
(2)超滤:
超滤膜装置2包括超滤膜,所述超滤膜为荷电填充型超滤膜,制备方法如下:
将聚砜树脂溶解于浓硫酸中,缓慢加入氯磺酸,于30℃温度下进行磺化反应,控制氯磺酸与浓硫酸的体积比为1:2,浓硫酸中聚醚砜树脂的质量浓度为8%,反应时间25h,制得荷电基材磺化聚醚砜树脂;
以纳米Ag+修饰的SiO2颗粒(直径分布为30-80nm)作为填充颗粒与荷电基材磺化聚砜共混,采用常规方法制成截留分子量20000Da的超滤膜,所述纳米Ag+修饰的SiO2颗粒在荷电基材磺化聚砜中的质量浓度为8%;
(3)纳滤:
纳滤膜装置4包括纳滤膜,所述纳滤膜为荷电填充型纳滤膜,制备方法类似步骤(2)超滤膜的制备,制得纳滤膜的截留分子量为500Da;
(4)渗透汽化:
渗透汽化膜装置6包括渗透汽化膜,该渗透汽化膜采用疏水亲THMs的聚甲基丙烯酸乙酯与活性炭作为填充颗粒共混制成,其中活性炭在聚甲基丙烯酸乙酯中的质量浓度为8%,过滤时THMs溶解吸附在膜上,并进一步渗透到膜的下游侧,冷阱7中得到的是THMs的浓缩液,进入第三水箱8中的水即为脱除DBPs所得的水,水中的DBPs去除率达到95%以上。
实施例3
待处理水样为某市自来水为例,THMs和HAAs分别在10μg/L-35μg/L、1.4μg/L-4.5μg/L之间波动,方法步骤与实施例1类似,区别在于:
(1)强化混凝:
将含铁量20wt%的聚合硫酸铁加水配成浓度为15mg/L的混凝剂;
将分子量3000kDa的阳离子型聚丙烯酰胺加水配制成浓度为24mg/L的助凝剂;
将所述混凝剂和助凝剂投入所述待处理水样中,投加量依次为45mg/L和0.096mg/L,调pH值为6.41后搅拌,搅拌速度为200r/min,搅拌时间为20min,然后静置20min;
(2)超滤:
超滤膜装置2包括超滤膜,所述超滤膜为荷电填充型超滤膜,制备方法如下:
将聚砜溶解于浓硫酸中,缓慢加入氯磺酸,于30℃温度下进行磺化反应,控制氯磺酸与浓硫酸的体积比为1:2,浓硫酸中聚偏氟乙烯的质量浓度为10%,反应时间22h,制得荷电基材磺化聚砜;
以纳米Ag+修饰的SiO2颗粒(直径分布为30-80nm)作为填充颗粒与荷电基材磺化聚砜共混,采用常规方法制成截留分子量10000Da的超滤膜,所述纳米Ag+修饰的SiO2颗粒在荷电基材磺化聚砜中的质量浓度为8%;
(3)纳滤:
纳滤膜装置4包括纳滤膜,所述纳滤膜为荷电填充型纳滤膜,制备方法如下:
将聚砜溶解于浓硫酸中,缓慢加入氯磺酸,于30℃温度下进行磺化反应,控制氯磺酸与浓硫酸的体积比为1:2,浓硫酸中聚砜的浓度为12%,反应时间23h,制得荷电基材磺化聚砜;
以纳米Ag+修饰的SiO2颗粒(直径分布为30-80nm)作为填充颗粒与荷电基材磺化聚砜共混,采用常规方法制成截留分子量550Da的纳滤膜,所述纳米Ag+修饰的SiO2颗粒在荷电基材磺化聚砜中的质量浓度为10%;
(4)渗透汽化:
渗透汽化膜装置6包括渗透汽化膜,该渗透汽化膜的活化层采用亲水的聚乙烯醇制成,过滤时水吸附在膜上,并进一步渗透到膜的下游侧,冷阱7中得到的是初级超纯水,水中的DBPs去除率达到99.9%以上。
对比例
待处理水样以及方法步骤同实施例2,区别在于:未进行所述渗透汽化步骤,即实施例2第四水箱5中收集得到水,DBPs去除率仅为80%。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种去除水中消毒副产物的装置,其特征在于,包括强化混凝池、超滤膜组件、纳滤膜组件、渗透汽化膜组件以及收集装置,待处理的水样依次流经所述强化混凝池、超滤膜组件、纳滤膜组件、渗透汽化膜组件处理后,流通至所述收集装置进行收集。
2.根据权利要求1所述的去除水中消毒副产物的装置,其特征在于,所述超滤膜组件包括超滤膜装置,或,超滤膜装置和第一水箱,
所述第一水箱具有第一水箱入水口和第一水箱出水口,
所述超滤膜装置包括超滤膜,且具有第一超滤膜入水口、第一超滤膜出水口和第二超滤膜出水口,
经所述强化混凝池处理后的出水,经所述第一超滤膜入水口进入所述超滤膜装置,并由所述超滤膜分离为透过所述超滤膜的第一净化水和未透过所述纳滤膜的第一浓缩液,所述第一净化水经所述第二超滤膜出水口流通至所述纳滤膜组件处理;
所述第一浓缩液经所述第一超滤膜出水口排出,或,流通至所述第一水箱入水口并进入所述第一水箱,然后经所述第一水箱出水口流通至所述第一超滤膜入水口,进行循环分离。
3.根据权利要求2所述的去除水中消毒副产物的装置,其特征在于,所述超滤膜的制备方法如下:
对超滤膜基材进行荷电改性:所述超滤膜基材为聚砜、聚醚砜树脂或聚偏氟乙烯,所述荷电改性的方法为:将所述超滤膜基材溶解于浓硫酸中,加入氯磺酸,于20-40℃温度下反应20-25h,即可,控制所述氯磺酸与浓硫酸的体积比为1:1-3,所述浓硫酸中超滤膜基材的质量浓度为8-12%;
以纳米Ag+修饰的SiO2颗粒作为填充颗粒与荷电改性后的超滤膜基材共混,制成截留分子量10000-50000Da的超滤膜,所述纳米Ag+修饰的SiO2颗粒在所述荷电改性后的超滤膜基材中的质量浓度为5-10%。
4.根据权利要求3所述的去除水中消毒副产物的装置,其特征在于,所述浓硫酸中超滤膜基材的质量浓度为8-10%;
所述超滤膜的截留分子量为10000-20000Da,所述纳米Ag+修饰的SiO2颗粒在所述荷电改性后的超滤膜基材中的质量浓度为7-9%,所述Ag+修饰的SiO2颗粒的直径为30-80nm。
5.根据权利要求1所述的去除水中消毒副产物的装置,其特征在于,所述纳滤膜组件包括纳滤膜装置,或,纳滤膜装置和第二水箱,
所述第二水箱具有第二水箱入水口和第二水箱出水口,
所述纳滤膜装置包括纳滤膜,且具有第一纳滤膜入水口、第一纳滤膜出水口和第二纳滤膜出水口,
经所述超滤膜组件处理后的出水,经所述第一纳滤膜入水口进入所述纳滤膜装置,并由所述纳滤膜分离为透过所述纳滤膜的第二净化水和未透过所述纳滤膜的第二浓缩液,所述第二净化水经所述第二纳滤膜出水口流通至所述渗透汽化膜组件处理;
所述第二浓缩液经所述第一纳滤膜出水口排出,或,流通至所述第二水箱入水口并进入所述第二水箱,然后经所述第二水箱出水口流通至所述第一纳滤膜入水口,进行循环分离。
6.根据权利要求5所述的去除水中消毒副产物的装置,其特征在于,所述纳滤膜的制备方法如下:
对纳滤膜基材进行荷电改性:所述纳滤膜基材为聚砜或聚醚砜树脂,所述荷电改性的方法为:将所述纳滤膜基材溶解于浓硫酸中,加入氯磺酸,于20-40℃温度下反应20-25h,即可,控制所述氯磺酸与浓硫酸的体积比为1:1-3,所述浓硫酸中纳滤膜基材的质量浓度为8-12%;
以纳米Ag+修饰的SiO2颗粒作为填充颗粒与荷电改性后的纳滤膜基材共混,制成截留分子量500-600Da的纳滤膜,所述纳米Ag+修饰的SiO2颗粒在所述荷电改性后的纳滤膜基材中的质量浓度为5-10%。
7.根据权利要求6所述的去除水中消毒副产物的装置,其特征在于,所述纳滤膜的截留分子量为500-550Da,所述纳米Ag+修饰的SiO2颗粒在所述荷电改性后的纳滤膜基材中的质量浓度为8-10%,所述Ag+修饰的SiO2颗粒的直径为30-80nm。
8.根据权利要求1所述的去除水中消毒副产物的装置,其特征在于,所述渗透汽化膜组件包括渗透汽化膜装置;所述收集装置包括第三水箱和冷凝装置,
所述渗透汽化装置包括渗透汽化膜,且具有第一渗透汽化膜入水口,第一渗透汽化膜出水口和第二渗透汽化膜出水口,
经所述纳滤膜组件处理后的出水,经所述第一渗透汽化膜入水口进入所述渗透汽化装置,并由所述渗透汽化膜渗透分离为渗透蒸气和渗余液,所述渗余液经所述第一渗透汽化膜出水口流通至所述第三水箱收集;
所述渗透蒸气经所述第二渗透汽化膜出水口流通至所述冷凝装置收集。
9.根据权利要求8所述的去除水中消毒副产物的装置,其特征在于,所述渗透汽化组件还包括第四水箱,所述第四水箱设置有加热装置,且具有第四水箱入水口和第四水箱出水口,
经所述纳滤膜组件处理后的出水,经所述第四水箱入水口进入所述第四水箱,预热后经所述第四水箱出水口流通至所述第一渗透汽化膜入水口。
10.根据权利要求8或9所述的去除水中消毒副产物的装置,其特征在于,所述渗透汽化膜的制备方法如下:
以活性炭作为填充颗粒与聚二甲基硅氧烷、聚丙烯酸乙酯或聚甲基丙烯酸乙酯共混,制备渗透汽化膜,所述活性炭在所述聚二甲基硅氧烷、聚丙烯酸乙酯或聚甲基丙烯酸乙酯中的质量浓度为5-15%;或,
以聚乙烯醇作为基材制备渗透汽化膜。
CN201610269175.1A 2016-04-26 2016-04-26 去除水中消毒副产物的装置 Expired - Fee Related CN105859002B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610269175.1A CN105859002B (zh) 2016-04-26 2016-04-26 去除水中消毒副产物的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610269175.1A CN105859002B (zh) 2016-04-26 2016-04-26 去除水中消毒副产物的装置

Publications (2)

Publication Number Publication Date
CN105859002A true CN105859002A (zh) 2016-08-17
CN105859002B CN105859002B (zh) 2019-01-18

Family

ID=56629378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610269175.1A Expired - Fee Related CN105859002B (zh) 2016-04-26 2016-04-26 去除水中消毒副产物的装置

Country Status (1)

Country Link
CN (1) CN105859002B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109110971A (zh) * 2018-09-26 2019-01-01 辽宁大学 一种强化混凝去除水中溶解性有机物组分的卤乙腈生成势的方法
CN109224864A (zh) * 2018-09-12 2019-01-18 广东产品质量监督检验研究院 一种深色纺织品和皮革萃取液脱色预处理新工艺

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301671A (zh) * 1999-12-30 2001-07-04 同济大学 微污染水源水净化工艺
CN2900512Y (zh) * 2006-06-02 2007-05-16 浦华控股有限公司 一种饮用水处理装置
CN102107994A (zh) * 2010-12-23 2011-06-29 郑高宽 一种过滤多种水源成直饮水的装置
CN102206219A (zh) * 2011-01-14 2011-10-05 捷马化工股份有限公司 一种利用草甘膦副产氨气、甲醛制备乌洛托品的方法
CN102397758A (zh) * 2010-09-07 2012-04-04 中国石油天然气股份有限公司 抗污染改性聚醚砜纳滤膜的制备方法
CN103055726A (zh) * 2013-01-25 2013-04-24 丽水学院 一种低压高通量纳滤膜的制备方法
US20130306532A1 (en) * 2011-03-30 2013-11-21 Crystal Lagoons (Curacao) B.V. System for treating water used for industrial process
CN103922530A (zh) * 2014-04-25 2014-07-16 哈尔滨工业大学 一种循环式正渗透与渗透汽化一体化的水处理方法
CN104556481A (zh) * 2014-12-24 2015-04-29 北京桑德环境工程有限公司 一种高硬度地下水制备生活饮用水的处理系统及方法
CN204625448U (zh) * 2015-05-18 2015-09-09 厦门中湛再生资源科技有限公司 一种饮用水处理给水装置
CN205710257U (zh) * 2016-04-26 2016-11-23 广州中国科学院先进技术研究所 去除水中消毒副产物的装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301671A (zh) * 1999-12-30 2001-07-04 同济大学 微污染水源水净化工艺
CN2900512Y (zh) * 2006-06-02 2007-05-16 浦华控股有限公司 一种饮用水处理装置
CN102397758A (zh) * 2010-09-07 2012-04-04 中国石油天然气股份有限公司 抗污染改性聚醚砜纳滤膜的制备方法
CN102107994A (zh) * 2010-12-23 2011-06-29 郑高宽 一种过滤多种水源成直饮水的装置
CN102206219A (zh) * 2011-01-14 2011-10-05 捷马化工股份有限公司 一种利用草甘膦副产氨气、甲醛制备乌洛托品的方法
US20130306532A1 (en) * 2011-03-30 2013-11-21 Crystal Lagoons (Curacao) B.V. System for treating water used for industrial process
CN103055726A (zh) * 2013-01-25 2013-04-24 丽水学院 一种低压高通量纳滤膜的制备方法
CN103922530A (zh) * 2014-04-25 2014-07-16 哈尔滨工业大学 一种循环式正渗透与渗透汽化一体化的水处理方法
CN104556481A (zh) * 2014-12-24 2015-04-29 北京桑德环境工程有限公司 一种高硬度地下水制备生活饮用水的处理系统及方法
CN204625448U (zh) * 2015-05-18 2015-09-09 厦门中湛再生资源科技有限公司 一种饮用水处理给水装置
CN205710257U (zh) * 2016-04-26 2016-11-23 广州中国科学院先进技术研究所 去除水中消毒副产物的装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109224864A (zh) * 2018-09-12 2019-01-18 广东产品质量监督检验研究院 一种深色纺织品和皮革萃取液脱色预处理新工艺
CN109224864B (zh) * 2018-09-12 2021-02-19 广东产品质量监督检验研究院 一种深色纺织品和皮革萃取液脱色预处理新工艺
CN109110971A (zh) * 2018-09-26 2019-01-01 辽宁大学 一种强化混凝去除水中溶解性有机物组分的卤乙腈生成势的方法

Also Published As

Publication number Publication date
CN105859002B (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
Han et al. Trihalomethanes (THMs) precursor fractions removal by coagulation and adsorption for bio-treated municipal wastewater: molecular weight, hydrophobicity/hydrophily and fluorescence
Arora et al. Use of membrane technology for potable water production
CN102428033B (zh) 用于消除水中的生物异源物质的纯化装置和方法
Katibi et al. Recent advances in the rejection of endocrine-disrupting compounds from water using membrane and membrane bioreactor technologies: a review
Criscuoli et al. Pressure-driven and thermally-driven membrane operations for the treatment of arsenic-contaminated waters: A comparison
Benitez et al. Removal of phenyl-urea herbicides in ultrapure water by ultrafiltration and nanofiltration processes
CN102718357A (zh) O3-bac水处理工艺及其配套饮用水处理设备
KR100758663B1 (ko) 정밀여과 및 한외여과막과 역삼투막을 이용한 미네랄 함유 음용수 고도정수처리장치
KR20100119896A (ko) 냉각탑을 위한 친환경 혼합형 미생물학적 제어 기술
CN106830471B (zh) 一种光催化、超滤、纳滤组合工艺控制饮用水中有机微污染物的方法
CN103193335B (zh) 一种氧化聚硅铁与超滤膜联合的饮用水处理方法
TW201311571A (zh) 室溫及低壓下海水淡化成飲水的方法
CN205710257U (zh) 去除水中消毒副产物的装置
CN105859002A (zh) 去除水中消毒副产物的装置
CN105692957B (zh) 具有杀菌功能的净水器
CN202643477U (zh) 一种饮用水处理设备
CN105858955A (zh) 去除水中消毒副产物的方法
CN104773886A (zh) 一种二氧化钛光催化氧化与超滤组合工艺去除饮用水中溶解性有机物的方法
CN109775892A (zh) 一种低能耗重力流催化膜一体化净水装置及其运行方法
CN207726924U (zh) 一种化工企业及园区废水处理零排放系统
CN109354338A (zh) 一种深度处理恶草灵生产废水的装置及方法
CN206279049U (zh) 一种具有回收利用功能的多级污水处理装置
CN205528052U (zh) 具有杀菌功能的净水器
CN204897598U (zh) 一种自动化多功能超纯水处理系统
JP2007130567A (ja) 膜利用による水循環使用システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210416

Address after: Room 105-70426, No.6 Baohua Road, Hengqin New District, Zhuhai City, Guangdong Province

Patentee after: Zhuhai Qiyue Biotechnology Co.,Ltd.

Address before: 1121, A, Haibin Road, Nansha economic and Technological Development Zone, Guangdong, Guangzhou 510000, China

Patentee before: GUANGZHOU INSTITUTE OF ADVANCED TECHNOLOGY, CHINESE ACADEMY OF SCIENCES

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190118