CN105858890A - 基于微生物燃料电池的动态膜厌氧-好氧污水处理方法 - Google Patents

基于微生物燃料电池的动态膜厌氧-好氧污水处理方法 Download PDF

Info

Publication number
CN105858890A
CN105858890A CN201610365440.6A CN201610365440A CN105858890A CN 105858890 A CN105858890 A CN 105858890A CN 201610365440 A CN201610365440 A CN 201610365440A CN 105858890 A CN105858890 A CN 105858890A
Authority
CN
China
Prior art keywords
aerobic
anode
anaerobic
fuel cell
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610365440.6A
Other languages
English (en)
Inventor
王海涛
李薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201610365440.6A priority Critical patent/CN105858890A/zh
Publication of CN105858890A publication Critical patent/CN105858890A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes

Abstract

基于微生物燃料电池的动态膜厌氧-好氧污水处理方法,涉及污水处理。处理装置设有阳极室、阴极室和曝气装置,阳极室设有温度计、搅拌装置和阳极,阴极室设有曝气头和阴极。原水进入厌氧‑阳极池和好氧‑阴极池,厌氧‑阳极池底部排泥;好氧‑阴极池内部装有穿孔曝气管,底部排泥;厌氧‑阳极池和好氧‑阴极池中放置动态膜组件,通过恒流泵将厌氧‑阳极池中的污水通过动态膜组件的出水口抽至好氧‑阴极池中;将好氧‑阴极池中的污水用恒流泵将动态膜组件的出水口抽回至厌氧‑阳极池,以形成厌氧‑阳极池和好氧‑阴极池中污水在时间和空间上同时连续循环处理,完成对污水的处理过程;通过恒流泵控制进水流速和循环流速,出水达标后排放。

Description

基于微生物燃料电池的动态膜厌氧-好氧污水处理方法
技术领域
本发明涉及污水处理,具体是涉及一种基于基于微生物燃料电池的动态膜厌氧-好氧污水处理方法。
背景技术
随着工业技术的迅猛发展,印染、化工、食品、造纸等行业的排放的工业废水成为污水处理领域亟需解决的难题之一。近年来废水生物处理技术已由传统单一的厌氧法、好氧法转向厌氧-好氧联合处理方法,但是存在剩余污泥量大、能耗高、占地面积大等问题。膜-生物反应器技术(MBR)是将膜分离技术与废水生物处理技术组合而成的新系统,该系统以膜分离技术替代二级生物处理工艺中的二沉池,具有工艺流程简单、占地少、管理方便、处理效率高、出水可直接回用等特点。然而,膜污染是制约膜-生物反应器在污水处理中广泛应用的主要瓶颈,研究表明,传统的膜-生物反应器中存在活性污泥等微生物的附着是造成膜污染、影响膜通量的重要因素之一。因此,改进膜-生物反应器中微生物的存在形式,减轻其对膜污染的影响势在必行。公开号为CN01016185A、CN1974439A、CN01100333A的发明专利分别采用采取填料表明附着工程菌或酶形式,或采用颗粒污泥的形式使得膜-生物反应器中的微生物不再以悬浮状态存在,从而减轻对膜通量的影响。然而,利用填料表面附着微生物的方式改进存在着不利于特种微生物的生长、微生物浓度低、去污能力差等缺点;利用颗粒污泥进行改进存在颗粒污泥容易破碎、导致堵塞膜孔、颗粒污泥自身形成的群落结构难以人工控制微生物群落稳定等缺点。
尽管上述专利对生物处理工艺进行了改进,但是MBR工艺在大型污水处理中应用的实例不多。造成这种现状的原因主要是:膜组件的成本过高,运行过程动力消耗过高,造成运行费用很高,在膜的运行过程中悬浮污染物在压力的作用下被截留或吸附在膜表面,造成膜的污染,出水通量的衰减问题难以解决。通常的膜过滤过程中,溶液中的胶体和悬浮颗粒在过滤压力的作用下被截留或吸附在膜表面,造成了膜通量的下降,这一现象称为膜污染。但从另外一个角度看,膜表面的污染层增强了膜的截留能力,使微滤膜可以截留病毒甚至小分子有机物,就好像在原有的膜之上又增加了一层膜。由于这层膜是在过滤过程中形成的,其组成及厚度都可能随时间及生物反应器运行等条件的变化而变化,故一些研究者称之为动态膜或次生膜。相应地,将这种称为动态膜生物反应器。动态膜的出现很好地解决了上述MBR的两大难题,因为由于多孔底膜和预涂剂的选材广泛和价廉易得,使得动态膜的造价较之传统的MBR有很大幅度的下降。另外,由于多孔底膜即膜基质的通量本身就很大,在膜污染严重的情况下还可以将膜基质表面的动态膜去除以后再重新预涂或自生,从而有效地控制膜污染。而且动态膜还具有设备简单、操作容易、处理效果较好等其他优点,因此,动态膜技术已广泛地引起了人们的研究和关注。然而,废水中存在的一些难降解的有机物难以被微生物完全降解,近年来,学者通过光催化、电化学、电芬顿等方式对废水污染物进一步去除,虽取得了较为明显的效果,但成本高、剩余污泥多等缺点限制了这些技术的工程应用。近来年发展起来的微生物燃料电池技术(Microbial fuel cells,MFC)是充分把废水中能量与电化学相结合的一个新技术,微生物燃料电池技术是一种将有机物的化学能转化为电能的装置,它能从广泛的有机废水中获取电能,同时完成废水处理,迅速成为新概念废水处理热点,其中MFC技术在实验室规模内已经得到了广泛的验证,其中MFC的阳极不仅可利用简单的纯化合物产电,而且可从复杂的有机废水中直接获取电能,同时完成废水处理。目前以复杂有机物作为微生物燃料电池电子供体产电的研究已屡见不鲜,利用微生物燃料电池生物阴极进行好氧生物处理也得到了广泛报导。
发明内容
本发明的目的是针对现有对污水处理中所存在的效率不高、设备占地面积大、投资成本高等问题,提供一种基于微生物燃料电池的动态膜厌氧-好氧污水处理装置。
本发明的另一目的在于提供基于微生物燃料电池的动态膜厌氧-好氧污水处理方法。
所述基于微生物燃料电池的动态膜厌氧-好氧污水处理装置设有阳极室、阴极室和曝气装置,所述阳极室和阴极室通过阳离子交换膜分隔开,阳极室设有阳极加液口、温度计、搅拌装置和阳极,阴极室设有阴极加液口、曝气装置的曝气头和阴极,阳极和阴极通过外电路连接,外电路设有负载电阻和电路开关;阳极室加入厌氧动态膜组件,阴极室加入好氧膜组件,通过恒流泵构成循环体系。
所述阳极和阴极的材料可选自石墨棒、碳纸、碳布、石墨毡、不锈钢网等中的一种,优选石墨毡;所述石墨毡是指经过预处理的石墨毡,所述预处理方法为将石墨毡置于质量分数为10%的双氧水溶液中,在温度为90℃条件下水浴煮2h,接着用去离子水在同一温度下水浴煮2h,再用烘箱烘干。
所述厌氧动态膜组件的材料可选自涤纶短纤、涤纶长纤、维纶、丙纶等常见工业滤布作为动态膜基材,优选具有良好过滤性能的丙纶单复丝4518工业滤布作为动态膜基材。
所述好氧膜组件的材料可选自涤纶短纤、涤纶长纤、维纶、丙纶等常见工业滤布作为动态膜基材,优选具有良好过滤性能的丙纶单复丝4518工业滤布作为动态膜基材。
所述负载电阻的电阻值优选50~1000Ω。
所述基于微生物燃料电池的动态膜厌氧-好氧污水处理方法,包括以下步骤:
1)原水经调节池首先进入微生物燃料电池的动态膜厌氧-好氧循环一体化反应体系的厌氧-阳极池和好氧-阴极池,厌氧-阳极池内置加热与搅拌装置,厌氧-阳极池底部排泥;好氧-阴极池在温度为10~35℃条件下运行,内部装有穿孔曝气管,由外部的空气压缩机鼓风曝气,以转子流量计控制曝气量,好氧-阴极池中溶解氧DO≥2mg/L,底部排泥;
2)厌氧-阳极池和好氧-阴极池中放置由工业滤布制成的动态膜组件,通过恒流泵将厌氧-阳极池中的污水通过动态膜组件的出水口抽至好氧-阴极池中;同时,将好氧-阴极池中的污水用恒流泵将动态膜组件的出水口抽回至厌氧-阳极池,以形成厌氧-阳极池和好氧-阴极池中污水在时间和空间上同时连续循环处理,完成对污水的处理过程;
3)根据废水水质类型、处理水量和有机负荷,通过恒流泵控制进水流速和循环流速,使得废水在厌氧-阳极池和好氧-阴极池中通过微生物燃料电池技术的动态膜进行循环处理而完成厌氧和好氧微生物的降解,出水达标后排放。
在步骤1)中,所述加热的温度可为15~35℃,搅拌的速度可为60~200r/min;所述穿孔曝气管可采用砂芯曝气头,由空气压缩机鼓风曝气;所述曝气量可为0.5~5L/min;所述溶解氧DO可为2~6mg/L。
在步骤2)中,所述工业滤布可选自涤纶短纤、涤纶长纤、维纶、丙纶等中的至少一种。
在步骤3)中,所述循环流速可为5~500mL/min。
微生物燃料电池技术的动态膜厌氧-好氧循环一体化的作用及功能如下:
1)动态膜解决了MBR膜的高成本和膜污染难题:传统的膜组件的成本高,运行过程动力消耗大,造成运行费用高。在膜的运行过程中悬浮污染物在压力的作用下被截留或吸附在膜表面,造成膜的污染。而动态膜由多孔底膜和预涂剂的选材广泛和价廉易得,使得其成本和造价较之传统的MBR有很大幅度的下降。多孔底膜即膜基质的通量本身较大,在膜污染严重的情况下还可以将膜基质表面的动态膜去除以后再重新预涂或自生,从而有效地控制膜污染。
2)用动态膜取代传统的膜组件,它将膜分离技术和生物反应过程有机结合,以膜技术的高效分离作用取代传统活性污泥法中的二沉池,实现传统工艺所无法比拟的泥水分离和污泥浓缩效果,消除了污泥膨胀的影响。它还大幅度提高了曝气池中活性污泥的浓度,省却了污泥回流系统,大大延长了泥龄,减少了剩余污泥量,并通过膜对废水中SS、有机物、病原菌和病毒的高效截留作用,大大提高了处理出水水质。
3)通过动态膜中液体的循环将厌氧池中产生的挥发性酸等中间产物在对厌氧微生物产生抑制之前及时地被转移到好氧池中而被氧化分解,同时,未及时被水解酸化的大分子污染物又能在经过好氧池后及时循环回厌氧池进一步地降解。发挥厌氧和好氧微生物体各自优势。
4)通过与微生物燃料电池技术相结合有效地实现废水资源化,阴极采用曝气的方式,一方面用于提供微生物降解污染物所需的氧气,另一方面剩余的O2可作为电子受体来实现微生物燃料电池的产电。应用于实际废水好氧处理过程,可提高氧气的利用率,从而节约能源。
5)通过循环工艺,有效解决了废水中难降解的有机物难以厌氧矿化完全的缺点,经厌氧-阳极室染料脱色后水的废水流经好氧-阴极室进一步降解;同时,好氧-阴极室的小分子有机物又循环至厌氧-阳极室进一步被产电微生物利用,提高电池的产电性。
附图说明
图1为基于微生物燃料电池的动态膜厌氧-好氧污水处理装置实施例的组成示意图。
具体实施方式
下面实施例结合附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
参见图1,所述基于微生物燃料电池的动态膜厌氧-好氧污水处理装置实施例设有阳极室3、阴极室14和曝气装置12,所述阳极室3和阴极室14通过阳离子交换膜9分隔开,阳极室3设有阳极加液口、温度计1、搅拌装置4和阳极6,阴极室14设有阴极加液口、曝气装置12的曝气头13和阴极10,阳极6和阴极10通过外电路连接,外电路设有负载电阻7和电路开关8;阳极室3加入厌氧动态膜组件2,阴极室14加入好氧膜组件11,通过恒流泵5构成循环体系。在图1中,标记15为硅胶管。
所述阳极和阴极的材料可选自石墨棒、碳纸、碳布、石墨毡、不锈钢网等中的一种,优选石墨毡。
所述石墨毡是指经过预处理的石墨毡,所述预处理方法为将石墨毡置于质量分数为10%的双氧水溶液中,在温度为90℃条件下水浴煮2h,接着用去离子水在同一温度下水浴煮2h,再用烘箱烘干。
所述厌氧动态膜组件和好氧膜组件的材料均可选自涤纶短纤、涤纶长纤、维纶、丙纶等常见工业滤布作为动态膜基材,优选具有良好过滤性能的丙纶单复丝4518工业滤布作为动态膜基材。
所述负载电阻的电阻值优选50~1000Ω。
所述基于微生物燃料电池的动态膜厌氧-好氧污水处理方法,包括以下步骤:
1)原水经调节池首先进入微生物燃料电池的动态膜厌氧-好氧循环一体化反应体系的厌氧-阳极池和好氧-阴极池。厌氧-阳极池内置搅拌装置,控制温度为15~35℃,搅拌速度为60~200r/min,厌氧-阳极池底部排泥;好氧-阴极池在温度为10~35℃条件下运行,内部装有穿孔曝气管,由外部的空气压缩机鼓风曝气,以转子流量计控制曝气量为0.5~5L/min,好氧-阴极池中溶解氧为DO≥2.0mg/L,底部排泥。
2)厌氧-阳极池和好氧-阴极池中放置由工业滤布(涤纶短纤、涤纶长纤、维纶、丙纶等)制成的动态膜组件,通过恒流泵将厌氧-阳极池中的污水通过动态膜组件的出水口抽至好氧-阴极池中。同时,也将好氧-阴极池中的污水用恒流泵将动态膜组件的出水口抽回至厌氧-阳极池,以形成厌氧-阳极池和好氧-阴极池中污水在时间和空间上同时连续循环的处理,完成对污水的处理过程。
3)根据废水水质类型、处理水量和有机负荷,通过恒流泵控制进水流速和循环流速,使得废水在厌氧-阳极池和好氧-阴极池中通过微生物燃料电池技术的动态膜进行循环处理而完成厌氧和好氧微生物的降解,出水达标后排放。
本实施例的阴极和阳极的材料为按以下步骤预处理石墨毡电极:
将石墨毡置于质量分数为10%的双氧水溶液中,在90℃下水浴煮2h,接着用去离子水在同一温度下水浴煮分别煮1h,再用烘箱烘干后剪成长5cm×宽4cm大小,用钛丝穿好得到预处理石墨毡电极。
组装电池:将处理好的阳极装到阳极壳体上,具体方法如下:
将预处理石墨毡阳极的钛丝从阳极壳体小孔由内往外穿出,电极平面与阳极壳体板平面平行,用AB胶将钛丝与阳极壳体小孔粘好,放置大约5min使其固化,将经过预处理的石墨毡阴极按同样的方法装入阴极室,再将阴离子交换膜压在阴极室壳体上,接着用阳极壳体将阴极壳体、离子交换膜固定住,最后拧上螺纹螺母。
本实施例的基于微生物燃料电池的动态膜厌氧-好氧污水处理装置用于处理活性艳蓝KN-R废水,该装置启动的具体操作过程如下:向阳极室接种10mL经过驯化的产电混合菌液,加入20mmol/L乙酸钠作为电子供体,用pH为7.0的磷酸盐缓冲溶液与培养液加满反应器,阴极室加入pH为7.0的磷酸盐缓冲溶液,并通过曝气装置曝气,用气体流量计控制阴极曝气量,外接1000欧姆电阻,外接万用表,运行启动,当电压降低至20mV以下,重新换液培养,运行至少一个月,当电压稳定后,阴极加入已经驯化好的菌液。其中pH 7.0的磷酸盐缓冲溶液与培养液的混合液的成分包括22.2g/L Na2HPO4、5.92g/L NaH2PO4、1.0g/L NaHCO3、0.10g/L KCl、5.88g/L NaCl、0.25g/L NH4Cl、以及矿物质,其中每升矿物质含量为0.01mg CaCl2、1.55mg FeSO4·7H2O、0.01mg CoCl2·6H2O、4.95mg MnSO4·H2O、0.71mg ZnSO4·7H2O、0.48mg CuSO4·5H2O。
驯化好后的装置阴阳两极室分别加入驯化的好氧厌氧活性污泥,其培养液配方如下:
3g/L NaCl、0.069g/L NH4Cl、0.027g/L KH2PO4、1.5g/L NaHCO3,其中C:N:P分别按照100:5:1与200:5:1加入,活性艳蓝KN-R按比例加入到厌氧阳极室。
以下给出具体实施例:
实施例I(1~3)
废水类型:生活污水。根据进水有机负荷,确定水力停留时间和循环流速,使得生活污水分别在厌氧池和好氧池中通过动态膜进行循环处理而完成厌氧和好氧微生物的降解,测定不同降解时间内各池中水体的COD、SS、DO、pH值、温度等指标。
实施例II(1~3)
废水类型:印染废水。根据进水有机负荷,确定水力停留时间和循环流速,使得生活污水分别在厌氧池和好氧池中通过动态膜进行循环处理而完成厌氧和好氧微生物的降解,测定不同降解时间内各池中水体的COD、SS、DO、pH值、温度等指标。
实施例I、实施例II的生活污水和印染废水处理效果见表1。
表1
为了实现废水的达标排放,同时回收电能、实现资源的有效利用,本发明利用微生物燃料电池技术与动态膜技术相结合,来实现废水中污染物的同步降解以及能源的同时回量,为拓展传统水处理方式和微生物燃料电池提供了新的思路。与传统的有机废水的多级多段污水生物处理技术相比,本发明具有占地面积小、投资成本低、回收能源、设备简单、易操作、处理效果好等优点,适用于多种污水的生物处理。

Claims (10)

1.基于微生物燃料电池的动态膜厌氧-好氧污水处理装置,其特征在于设有阳极室、阴极室和曝气装置,所述阳极室和阴极室通过阳离子交换膜分隔开,阳极室设有阳极加液口、温度计、搅拌装置和阳极,阴极室设有阴极加液口、曝气装置的曝气头和阴极,阳极和阴极通过外电路连接,外电路设有负载电阻和电路开关;阳极室加入厌氧动态膜组件,阴极室加入好氧膜组件,通过恒流泵构成循环体系。
2.如权利要求1所述基于微生物燃料电池的动态膜厌氧-好氧污水处理装置,其特征在于所述阳极和阴极的材料选自石墨棒、碳纸、碳布、石墨毡、不锈钢网中的一种。
3.如权利要求2所述基于微生物燃料电池的动态膜厌氧-好氧污水处理装置,其特征在于所述阳极和阴极的材料为石墨毡;所述石墨毡是指经过预处理的石墨毡,所述预处理的方法为将石墨毡置于质量分数为10%的双氧水溶液中,在温度为90℃条件下水浴煮2h,接着用去离子水在同一温度下水浴煮2h,再用烘箱烘干。
4.如权利要求1所述基于微生物燃料电池的动态膜厌氧-好氧污水处理装置,其特征在于所述厌氧动态膜组件的材料选自涤纶短纤、涤纶长纤、维纶、丙纶常见工业滤布作为动态膜基材;所述好氧膜组件的材料选自涤纶短纤、涤纶长纤、维纶、丙纶常见工业滤布作为动态膜基材。
5.基于微生物燃料电池的动态膜厌氧-好氧污水处理方法,其特征在于包括以下步骤:
1)原水经调节池首先进入微生物燃料电池的动态膜厌氧-好氧循环一体化反应体系的厌氧-阳极池和好氧-阴极池,厌氧-阳极池内置加热与搅拌装置,厌氧-阳极池底部排泥;好氧-阴极池在温度为10~35℃条件下运行,内部装有穿孔曝气管,由外部的空气压缩机鼓风曝气,以转子流量计控制曝气量,好氧-阴极池中溶解氧DO≥2mg/L,底部排泥;
2)厌氧-阳极池和好氧-阴极池中放置由工业滤布制成的动态膜组件,通过恒流泵将厌氧-阳极池中的污水通过动态膜组件的出水口抽至好氧-阴极池中;同时,将好氧-阴极池中的污水用恒流泵将动态膜组件的出水口抽回至厌氧-阳极池,以形成厌氧-阳极池和好氧-阴极池中污水在时间和空间上同时连续循环处理,完成对污水的处理过程;
3)根据废水水质类型、处理水量和有机负荷,通过恒流泵控制进水流速和循环流速,使得废水在厌氧-阳极池和好氧-阴极池中通过微生物燃料电池技术的动态膜进行循环处理而完成厌氧和好氧微生物的降解,出水达标后排放。
6.如权利要求5所述基于微生物燃料电池的动态膜厌氧-好氧污水处理方法,其特征在于在步骤1)中,所述加热的温度为15~35℃,搅拌的速度为60~200r/min。
7.如权利要求5所述基于微生物燃料电池的动态膜厌氧-好氧污水处理方法,其特征在于在步骤1)中,所述穿孔曝气管采用砂芯曝气头,由空气压缩机鼓风曝气;所述曝气量可为0.5~5L/min。
8.如权利要求5所述基于微生物燃料电池的动态膜厌氧-好氧污水处理方法,其特征在于在步骤1)中,所述溶解氧DO为2~6mg/L。
9.如权利要求5所述基于微生物燃料电池的动态膜厌氧-好氧污水处理方法,其特征在于在步骤2)中,所述工业滤布选自涤纶短纤、涤纶长纤、维纶、丙纶中的至少一种。
10.如权利要求5所述基于微生物燃料电池的动态膜厌氧-好氧污水处理方法,其特征在于在步骤3)中,所述循环流速为5~500mL/min。
CN201610365440.6A 2016-05-27 2016-05-27 基于微生物燃料电池的动态膜厌氧-好氧污水处理方法 Pending CN105858890A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610365440.6A CN105858890A (zh) 2016-05-27 2016-05-27 基于微生物燃料电池的动态膜厌氧-好氧污水处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610365440.6A CN105858890A (zh) 2016-05-27 2016-05-27 基于微生物燃料电池的动态膜厌氧-好氧污水处理方法

Publications (1)

Publication Number Publication Date
CN105858890A true CN105858890A (zh) 2016-08-17

Family

ID=56642452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610365440.6A Pending CN105858890A (zh) 2016-05-27 2016-05-27 基于微生物燃料电池的动态膜厌氧-好氧污水处理方法

Country Status (1)

Country Link
CN (1) CN105858890A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107010714A (zh) * 2017-05-22 2017-08-04 东北大学 生物电催化与光催化接触氧化耦合的废水处理系统及方法
CN108383321A (zh) * 2018-01-16 2018-08-10 北京建筑大学 一种利用仿生学方法处理黑臭水体的装置
CN108545824A (zh) * 2018-05-20 2018-09-18 东北石油大学 利用有机质降解自供能处理油气田采出水的装置及方法
CN111370725A (zh) * 2020-03-05 2020-07-03 东南大学 一种基于生物动态膜的mfc系统及强化产电方法
CN114162960A (zh) * 2021-12-10 2022-03-11 南开大学 一种电活性动态膜的快速构建方法及其装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633412A (zh) * 2012-05-04 2012-08-15 厦门大学 一种动态膜厌氧-好氧循环一体化污水处理方法
CN102701543A (zh) * 2012-06-28 2012-10-03 天津工业大学 以微生物燃料电池与膜技术结合的水处理装置
CN103043872A (zh) * 2013-01-23 2013-04-17 哈尔滨工业大学 一种微生物燃料电池和动态膜相结合的污水处理装置
KR20150094264A (ko) * 2014-02-11 2015-08-19 한국수자원공사 미생물연료전지를 이용하여 하폐수의 유기물 및 질소를 동시에 제거하는 하폐수처리 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633412A (zh) * 2012-05-04 2012-08-15 厦门大学 一种动态膜厌氧-好氧循环一体化污水处理方法
CN102701543A (zh) * 2012-06-28 2012-10-03 天津工业大学 以微生物燃料电池与膜技术结合的水处理装置
CN103043872A (zh) * 2013-01-23 2013-04-17 哈尔滨工业大学 一种微生物燃料电池和动态膜相结合的污水处理装置
KR20150094264A (ko) * 2014-02-11 2015-08-19 한국수자원공사 미생물연료전지를 이용하여 하폐수의 유기물 및 질소를 동시에 제거하는 하폐수처리 방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107010714A (zh) * 2017-05-22 2017-08-04 东北大学 生物电催化与光催化接触氧化耦合的废水处理系统及方法
CN108383321A (zh) * 2018-01-16 2018-08-10 北京建筑大学 一种利用仿生学方法处理黑臭水体的装置
CN108383321B (zh) * 2018-01-16 2020-12-29 北京建筑大学 一种利用仿生学方法处理黑臭水体的装置
CN108545824A (zh) * 2018-05-20 2018-09-18 东北石油大学 利用有机质降解自供能处理油气田采出水的装置及方法
CN108545824B (zh) * 2018-05-20 2019-01-25 东北石油大学 利用有机质降解自供能处理油气田采出水的装置及方法
CN111370725A (zh) * 2020-03-05 2020-07-03 东南大学 一种基于生物动态膜的mfc系统及强化产电方法
CN111370725B (zh) * 2020-03-05 2023-08-25 东南大学 一种基于生物动态膜的mfc系统及强化产电方法
CN114162960A (zh) * 2021-12-10 2022-03-11 南开大学 一种电活性动态膜的快速构建方法及其装置

Similar Documents

Publication Publication Date Title
CN105858890A (zh) 基于微生物燃料电池的动态膜厌氧-好氧污水处理方法
CN108046423B (zh) 一种用于城镇废水厌氧氨氧化生物脱氮的反应器装置与方法
CN105565494B (zh) 膜曝气生物膜与生物电化学耦合系统及其应用
CN101607776B (zh) 一种啤酒废水处理装置及处理方法
CN105293716B (zh) 一种微生物燃料电池及其用于处理废水的方法
CN106374127B (zh) 一种跌水曝气式微生物燃料电池
CN105859024A (zh) Ag3PO4光催化耦合人工湿地微生物电池系统及其应用
CN102633412B (zh) 一种动态膜厌氧-好氧循环一体化污水处理方法
CN108033546A (zh) 一种微生物燃料电池耦合膜生物反应器的污水处理及水质预警方法
CN110078225A (zh) 一种微生物电解池及有机物氧化降解同步co2甲烷化方法
CN104926046A (zh) 一种处理腈纶废水的微电解处理工艺
CN103496789A (zh) 一种生物电化学辅助膜生物反应器污水处理装置和方法
CN108147505A (zh) 一种太阳能驱动废水处理耦合产氢的装置及方法
CN110127840A (zh) 基于好氧颗粒污泥床反应器阴极微生物燃料电池的污水处理器
CN102701543A (zh) 以微生物燃料电池与膜技术结合的水处理装置
CN106745676A (zh) 一种生态多阴极尿液处理装置和方法
CN108751381A (zh) 零价铁还原耦合微生物燃料电池降解偶氮染料废水的方法
CN104030437B (zh) 用于印染废水处理的生物组合反应器、装置及方法
CN103865957A (zh) 一种联合产氢产乙酸菌和产电菌强化生物制氢效能的方法
CN106946351A (zh) 一种自发电微电流有机物降解装置及其应用
CN101200331B (zh) 膜生物反应器-臭氧联合工艺生产再生水的方法
CN208532539U (zh) 一种提高难降解有机废水处理效果的装置
CN206255960U (zh) 一种城市生活污水处理系统
CN104986920A (zh) 一种处理腈纶废水的微电解处理系统
CN102249486B (zh) 处理印染废水的电化学-生物法联用装置及废水处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160817

RJ01 Rejection of invention patent application after publication