CN105841536B - 一种复合蓄热体及制备方法 - Google Patents

一种复合蓄热体及制备方法 Download PDF

Info

Publication number
CN105841536B
CN105841536B CN201610179052.9A CN201610179052A CN105841536B CN 105841536 B CN105841536 B CN 105841536B CN 201610179052 A CN201610179052 A CN 201610179052A CN 105841536 B CN105841536 B CN 105841536B
Authority
CN
China
Prior art keywords
silicon carbide
hole
phase
ceramic matrix
change material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610179052.9A
Other languages
English (en)
Other versions
CN105841536A (zh
Inventor
张远林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bohai Cangzhou new district nature energy Co., Ltd. yuan
Original Assignee
Bohai Cangzhou New District Nature Energy Co Ltd Yuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bohai Cangzhou New District Nature Energy Co Ltd Yuan filed Critical Bohai Cangzhou New District Nature Energy Co Ltd Yuan
Priority to CN201610179052.9A priority Critical patent/CN105841536B/zh
Publication of CN105841536A publication Critical patent/CN105841536A/zh
Application granted granted Critical
Publication of CN105841536B publication Critical patent/CN105841536B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0003Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof containing continuous channels, e.g. of the "dead-end" type or obtained by pushing bars in the green ceramic product
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

一种复合蓄热体及制备方法,所述复合蓄热体包括碳化硅质复相陶瓷基体和相变材料,碳化硅质复相陶瓷基体具有规则的几何形状,在碳化硅质复相陶瓷基体上分布孔洞,相变材料填装在一部分孔洞内,填装相变材料的孔洞的两端由封装体热熔封闭,未填装相变材料的孔洞为贯通结构导热孔。本发明方法包括制备碳化硅质复相陶瓷基体、制备封装体和填装相变材料等步骤。本发明复合蓄热体可以使碳化硅质复相陶瓷基体容纳相变材料的量容易控制,在储热过程中,通过碳化硅质复相陶瓷基体显热蓄热和相变材料潜热蓄热的有机结合,达到高提高蓄热效率、优化储热过程的目的。本发明方法可以简化制作工艺,降低制作成本,加快制作周期。

Description

一种复合蓄热体及制备方法
技术领域
本发明涉及一种储能蓄热体,特别是制作成本低、蓄热效率高的复合蓄热体及制备方法。
背景技术
热能储藏分为显热蓄热和潜热蓄热,显热蓄热利用蓄热材料将热能储藏,具有性能稳定,成本较低,传热性能好等特点,但其蓄热密度低,所需蓄热装置体积较庞大。潜热蓄热利用材料在相变时放出和吸入的潜热储能,从而解决能源在供求之间的时间上和空间上不匹配矛盾,潜热蓄热具有蓄热密度大,空间结构紧凑等优点。将显热蓄热和潜热蓄热二者复合,保持二者的优点,是蓄热材料研发的重点课题。现有复合蓄热储能技术中一种常用方法是将碳化硅质的基体放到温度约800℃的氯化钠熔融盐液体中经长时间复合,使氯化钠熔融盐在毛细管力作用下渗入碳化硅质基体孔筋,然后除去多余盐液,烘烤得到氯化钠与碳化硅质基体的复合蓄热体。该氯化钠碳化硅复合蓄热体具有蓄热密度高、可快速放热等特点。但现有氯化钠碳化硅复合蓄热体存有如下问题:1、碳化硅质基体中所能够复合的氯化钠熔盐量有限,潜热蓄热效率有待提高;2、氯化钠碳化硅复合蓄热体的制作工艺复杂、氯化钠熔融盐与碳化硅质基体的复合时间长;2、高温下进行的氯化钠熔融盐与碳化硅质基体的复合过程要耗费大量能量,导致制作成本高。
发明内容
本发明的目的在于克服现有技术的不足,提供一种储热密度较大、性能稳定的复合蓄热体。
本发明的另一目的是提供所述复合蓄热体的制备方法,所述方法工艺简单、成本低、易于工业化实施。
本发明所称问题是通过以下技术方案解决的:
一种复合蓄热体,包括碳化硅质复相陶瓷基体和相变材料,所述碳化硅质复相陶瓷基体具有规则的几何形状,在碳化硅质复相陶瓷基体上分布孔洞,所述相变材料填装在一部分孔洞内,填装相变材料的孔洞的两端由封装体热熔封闭,未填装相变材料的孔洞为贯通结构的导热孔。
上述复合蓄热体,所述填装相变材料的孔洞和导热孔间隔排布,填装相变材料的孔洞内所装入的相变材料的体积为孔洞体积的0.2-0.4倍。
上述复合蓄热体,所述相变材料为粉末状氯化钠。
上述复合蓄热体,所述孔洞直径D为0.2-0.6cm,相邻孔洞间的间距L为0.6-1.2cm。
上述复合蓄热体的制备方法,按照下列步骤进行:
①制备碳化硅质复相陶瓷基体:
a、配制碳化硅质复相陶瓷基体原料:按下述质量份称取原料,碳化硅78-80,高岭土8-9,石灰石4-5,莫来石5-7,堇青石14-16,将上述原料混合均匀,粉碎至200-300目待用;
b、配置塑化剂溶液:按照水与聚乙烯醇溶液体积比4:1的比例配制塑化剂溶液,将浓度为3%的聚乙烯醇溶液与水混合,先放置12-24h,待两者充分复合后再搅拌30min,即制得塑化剂溶液;
c.制备碳化硅质复相陶瓷基体:将粉碎的碳化硅质复相陶瓷基体原料和塑化剂溶液混合搅拌制成坯泥,碳化硅质复相陶瓷基体原料和塑化剂溶液的质量比为2.5-3:1;将坯泥注入模具中,在20-70℃条件下固化3-12个小时,脱模,制得坯体;然后将坯体干燥后入炉,在1150-1250℃温度下煅烧1-6h,保温2h出炉,即制得碳化硅质复相陶瓷基体;
②制备封装体:
a、配制封装体原料:按下述质量份称取原料,堇青石90-95,碳化硅10-12,将上述原料混合均匀,粉碎至200-300目待用;
b、制备封装体坯体:将粉碎的封装体原料和水混合制成封装体坯泥;将封装体坯泥注入模具中,制成封装体坯体;将封装体坯体干燥后入炉,在1150-1200℃的温度下烧结1-2小时,经保温冷却后出炉,即制成封装体,封装体的直径与填装相变材料的孔洞直径匹配;
③填装相变材料:将碳化硅质复相陶瓷基体的孔洞底部间隔用封装体封装,然后在封装了底部的孔洞内添加相变材料,再用封装体封装添加了相变材料的孔洞的另一端,将封装体与碳化硅质复相陶瓷基体氧焊熔封为一体,即制得复合蓄热体。
本发明所提供的复合蓄热体针对现有技术的问题进行了重要改进,所述复合蓄热体包括碳化硅质复相陶瓷基体和相变材料,在碳化硅质复相陶瓷基体上分布蜂窝状的孔洞,其中一部分孔洞内封装相变材料,另一部分孔洞作为导热孔。该结构可以使碳化硅质复相陶瓷基体容纳相变材料的量容易控制,在储热过程中,通过碳化硅质复相陶瓷基体显热蓄热和相变材料潜热蓄热的有机结合,达到高提高蓄热效率、优化储热过程的目的。与现有氯化钠碳化硅蓄热体相比,本发明一方面可以增加相变材料的填充量,提高同体积基体条件下的蓄热能力;另一方面可以简化复合蓄热体的制作工艺,降低制作成本,加快制作周期。本发明适合应用于工业化生产。
附图说明
下面结合附图对本发明作进一步说明。
图1是本发明复合蓄热体第一实施方案的示意图;
图2是图1的A-A剖视图;
图3是本发明复合蓄热体第二实施方案的示意图;
图4是本发明复合蓄热体第三实施方案的示意图。
图中各标号清单为:1、碳化硅质复相陶瓷基体,2、导热孔,3、封装体,4、填装相变材料的孔洞,5、相变材料。
具体实施方式
参看图1、图2,本发明所述复合蓄热体包括碳化硅质复相陶瓷基体1和相变材料5。碳化硅质复相陶瓷基体具有矩形体、圆柱体、三棱柱、六棱柱等规则的几何形状,图1所示的碳化硅质复相陶瓷基体采用矩形体。在碳化硅质复相陶瓷基体上分布孔洞,将相变材料5填装在一部分孔洞内,填装相变材料的孔洞4的两端由封装体3热熔封闭,未填装相变材料的孔洞为贯通结构的导热孔2。填装相变材料的孔洞和导热孔间隔排布,即每个填装相变材料的孔洞的相邻孔洞为导热孔;同理每个导热孔的相邻孔洞为填装相变材料的孔洞。该结构可以在加热过程中,使热量通过导热孔充分流通,使之与其相邻的、填装相变材料的孔洞内的相变材料快速而充分受热。考虑到相变材料在相变过程中体积发生变化,填装相变材料的孔洞4内所装入的相变材料的体积为孔洞体积的0.2-0.4倍。图示实施例中相变材料为粉末状氯化钠。碳化硅质复相陶瓷基体上的孔洞直径D为0.2-0.6cm,相邻孔洞间的间距L为0.6-1.2cm。
本发明所述复合蓄热体的制备方法包括制备碳化硅质复相陶瓷基体、制备封装体、填装相变材料等步骤。其中,制备碳化硅质复相陶瓷基体步骤中先按照如下配比称取碳化硅质复相陶瓷基体原料:碳化硅78-80,高岭土8-9,石灰石4-5,莫来石5-7,堇青石14-16。上述原料混合均匀,粉碎至200-300目待用。然后配置塑化剂溶液:按照水与聚乙烯醇溶液体积比4:1的比例配制塑化剂溶液,将浓度为3%的聚乙烯醇溶液与水混合,放置12-24h,待两者充分复合后再搅拌30min,即制得塑化剂溶液。再将粉碎的碳化硅质复相陶瓷基体原料和塑化剂溶液,粉碎的碳化硅质复相陶瓷基体原料与塑化剂溶液的重量比为2.5-3:1,混合搅拌制成坯泥。将坯泥注入模具中,在20-70℃条件下固化3-12个小时,脱模,制得带有孔洞的坯体。然后将坯体干燥后入炉,在1150-1250℃温度下煅烧1-6h,保温2h出炉,即制得碳化硅质复相陶瓷基体。本发明在碳化硅质复相陶瓷基体原料中以碳化硅为主要原料,加入了配比量的莫来石,以提高碳化硅质复相陶瓷基体的热震稳定性、硬度和抗化学腐蚀性,莫来石的加入还有利于碳化硅质复相陶瓷基体的膨胀均匀性。本发明在碳化硅质复相陶瓷基体原料中加入配比量的堇青石,可降低碳化硅陶瓷的烧成温度,提高强度、耐腐蚀性、抗风化能力以及抗热震性能。采用塑化剂溶液配制坯泥,可以增加陶瓷坯体的柔软性,便于塑型。
本发明方法中制备封装体步骤先按下述质量份称取原料:堇青石90-95,碳化硅10-12,将上述原料混合均匀,粉碎至200-300目待用。将粉碎的封装体原料和水混合制成封装体坯泥,将封装体坯泥注入模具中,制成封装体坯体,将封装体坯体干燥后入炉,在1150-1200℃的温度下烧结1-2小时,经保温冷却后出炉,即制成封装体,封装体为圆柱体形,封装体的直径与碳化硅质复相陶瓷基体上的孔洞直径匹配。本发明所述封装体的原料中主体材料为堇青石,配比一定量的碳化硅。制成的封装体与碳化硅质复相陶瓷基体的膨胀系数非常接近。试验表明,封装体与碳化硅质复相陶瓷基体的封接结合性能良好,在加热过程中,封装体玻璃相往碳化硅质复相陶瓷基体材料中渗透,碳化硅质复相陶瓷基体中的晶相往封装体中生长,使二者间形成过渡层,从而将两者紧密结合,可以确保氯化钠熔盐不会在使用过程中沿二者的边缘渗透出来,保证长时间使用安全。
本发明方法中的填装相变材料步骤中,先将碳化硅质复相陶瓷基体的孔洞底部间隔的用封装体封装,然后在封装了底部的孔洞内添加相变材料,然后用封装体封装添加了相变材料的孔洞的另一端,再采用氧焊熔封,在约1200度的高温下使封装体与碳化硅质复相陶瓷基体氧焊熔封为一体,即制得复合蓄热体。
以下提供几个制备复合蓄热体的具体实施例:
实施例1:
制备碳化硅质复相陶瓷基体:称取碳化硅质复相陶瓷基体原料:碳化硅780g,高岭土80g,石灰石45g,莫来石55g,堇青石150g。上述原料混合均匀,粉碎至200目待用。然后配置塑化剂溶液:按照水与聚乙烯醇溶液体积比4:1的比例配制塑化剂溶液370g,将浓度为3%的聚乙烯醇溶液添加到水中,放置12h,待两者充分复合后再搅拌30min,即制得塑化剂溶液。再将粉碎的碳化硅质复相陶瓷基体原料和塑化剂溶液混合搅拌制成坯泥,将坯泥注入模具中,在20℃条件下固化12个小时,脱模,制得坯体;然后将坯体干燥后入炉,在1150℃温度下煅烧6h,保温2h出炉,即制得孔洞直径为0.2cm,相邻孔洞间距为0.6cm的矩形体碳化硅质复相陶瓷基体。
制备封装体:称取堇青石90g,碳化硅10g,将上述原料混合均匀,粉碎至200目待用;将粉碎的封装体原料和水混合制成封装体坯泥,将封装体坯泥注入模具中,制成封装体坯体,将封装体坯体干燥后入炉,在1150℃温度下烧结2小时,经保温冷却后出炉,制成直径为0.2cm,厚度为0.5cm的封装体。
填装相变材料:将碳化硅质复相陶瓷基体的孔洞底部间隔的用封装体封装,然后在封装了底部的孔洞内添加相变材料,然后用封装体封装添加了相变材料的孔洞的另一端,将封装体与碳化硅质复相陶瓷基体氧焊熔封为一体,即制图1所示的得复合蓄热体。
实施例2:
制备碳化硅质复相陶瓷基体:称取碳化硅质复相陶瓷基体原料:碳化硅790g,高岭土85g,石灰石50g,莫来石50g,堇青石140g。上述原料混合均匀,粉碎至300目待用。然后配置塑化剂溶液:按照水与聚乙烯醇溶液体积比4:1的比例配制塑化剂溶液445g,将聚乙烯醇溶液添加到水中,放置18h,待两者充分复合后再搅拌30min,即制得塑化剂溶液。再将粉碎的碳化硅质复相陶瓷基体原料和塑化剂溶液混合搅拌制成坯泥,将坯泥注入模具中,在70℃条件下固化3个小时,脱模,制得坯体;然后将坯体干燥后入炉,在1250℃温度下煅烧1h,保温2h出炉,即制得孔洞直径为0.5cm,相邻孔洞间距为0.8cm的矩形体碳化硅质复相陶瓷基体。
制备封装体:称取堇青石95g,碳化硅11g,将上述原料混合均匀,粉碎至300目待用;将粉碎的封装体原料和水混合制成封装体坯泥,将封装体坯泥注入模具中,制成封装体坯体,将封装体坯体干燥后入炉,在1170℃温度下烧结1.5小时,经保温冷却后出炉,制成直径为0.5cm,厚度为1cm的封装体。
填装相变材料:将碳化硅质复相陶瓷基体的孔洞底部间隔的用封装体封装,然后在封装了底部的孔洞内添加相变材料,然后用封装体封装添加了相变材料的孔洞的另一端,将封装体与碳化硅质复相陶瓷基体氧焊熔封为一体,即制图3所示的得复合蓄热体。
实施例3:
制备碳化硅质复相陶瓷基体:称取碳化硅质复相陶瓷基体原料:碳化硅800g,高岭土90g,石灰石40g,莫来石70g,堇青石160g。上述原料混合均匀,粉碎至250目待用。然后配置塑化剂溶液:按照水与聚乙烯醇溶液体积比4:1的比例配制塑化剂溶液410g,将聚乙烯醇溶液添加到水中,放置24h,待两者充分复合后再搅拌30min,即制得塑化剂溶液。再将粉碎的碳化硅质复相陶瓷基体原料和塑化剂溶液混合搅拌制成坯泥,将坯泥注入模具中,在40℃条件下固化10个小时,脱模,制得坯体;然后将坯体干燥后入炉,在1200℃温度下煅烧4h,保温2h出炉,即制得孔洞直径为0.6cm,相邻孔洞间距为1.2cm的矩形体碳化硅质复相陶瓷基体。
制备封装体:称取堇青石93g,碳化硅12g,将上述原料混合均匀,粉碎至250目待用;将粉碎的封装体原料和水混合制成封装体坯泥,将封装体坯泥注入模具中,制成封装体坯体,将封装体坯体干燥后入炉,在1200℃温度下烧结1小时,经保温冷却后出炉,制成直径为0.6cm,厚度为1cm的封装体。
填装相变材料:将碳化硅质复相陶瓷基体的孔洞底部间隔的用封装体封装,然后在封装了底部的孔洞内添加相变材料,然后用封装体封装添加了相变材料的孔洞的另一端,将封装体与碳化硅质复相陶瓷基体氧焊熔封为一体,即制图4所示的得复合蓄热体。

Claims (5)

1.一种复合蓄热体,其特征在于:包括碳化硅质复相陶瓷基体(1)和相变材料(5),所述碳化硅质复相陶瓷基体具有规则的几何形状,在碳化硅质复相陶瓷基体上分布孔洞,所述相变材料填装在一部分孔洞内,填装相变材料的孔洞(4)的两端由封装体(3)热熔封闭,未填装相变材料的孔洞为贯通结构的导热孔(2);
所述填装相变材料的孔洞和导热孔间隔排布,填装相变材料的孔洞内所装入的相变材料的体积为孔洞体积的0.2-0.4倍;
所述碳化硅质复相陶瓷基体用下述方法制备:
a、配制碳化硅质复相陶瓷基体原料:按下述质量份称取原料,碳化硅78-80,高岭土8-9,石灰石4-5,莫来石5-7,堇青石14-16,将上述原料混合均匀,粉碎至200-300目待用;
b、配置塑化剂溶液:按照水与聚乙烯醇溶液体积比4:1的比例配制塑化剂溶液,将浓度为3%的聚乙烯醇溶液与水混合,先放置12-24h,待两者充分复合后再搅拌30min,即制得塑化剂溶液;
c.制备碳化硅质复相陶瓷基体:将粉碎的碳化硅质复相陶瓷基体原料和塑化剂溶液混合搅拌制成坯泥,碳化硅质复相陶瓷基体原料和塑化剂溶液的质量比为2.5-3:1;将坯泥注入模具中,在20-70℃条件下固化3-12个小时,脱模,制得坯体;然后将坯体干燥后入炉,在1150-1250℃温度下煅烧1-6h,保温2h出炉,即制得碳化硅质复相陶瓷基体。
2.根据权利要求1所述的复合蓄热体,其特征在于:所述相变材料为粉末状氯化钠。
3.根据权利要求2所述的复合蓄热体,其特征在于:所述孔洞直径D为0.2-0.6cm,相邻孔洞间的间距L为0.6-1.2cm。
4.根据权利要求3所述的复合蓄热体,其特征在于:所述封装体用下述方法制备:
a、配制封装体原料:按下述质量份称取原料,堇青石90-95,碳化硅10-12,将上述原料混合均匀,粉碎至200-300目待用;
b、制备封装体坯体:将粉碎的封装体原料和水混合制成封装体坯泥;将封装体坯泥注入模具中,制成封装体坯体;将封装体坯体干燥后入炉,在1150-1200℃的温度下烧结1-2小时,经保温冷却后出炉,即制成封装体,封装体的直径与填装相变材料的孔洞直径匹配。
5.根据权利要求4所述的复合蓄热体,其特征在于:相变材料按如下步骤填装:将碳化硅质复相陶瓷基体的孔洞底部间隔用封装体封装,然后在封装了底部的孔洞内添加相变材料,再用封装体封装添加了相变材料的孔洞的另一端,将封装体与碳化硅质复相陶瓷基体氧焊熔封为一体,即制得复合蓄热体。
CN201610179052.9A 2016-03-28 2016-03-28 一种复合蓄热体及制备方法 Active CN105841536B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610179052.9A CN105841536B (zh) 2016-03-28 2016-03-28 一种复合蓄热体及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610179052.9A CN105841536B (zh) 2016-03-28 2016-03-28 一种复合蓄热体及制备方法

Publications (2)

Publication Number Publication Date
CN105841536A CN105841536A (zh) 2016-08-10
CN105841536B true CN105841536B (zh) 2018-02-27

Family

ID=56583498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610179052.9A Active CN105841536B (zh) 2016-03-28 2016-03-28 一种复合蓄热体及制备方法

Country Status (1)

Country Link
CN (1) CN105841536B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017200524A1 (de) * 2017-01-13 2018-07-19 Siemens Aktiengesellschaft Kühlvorrichtung mit einem Wärmerohr und einem Latentwärmespeicher, Verfahren zum Herstellen derselben und elektronische Schaltung
CN107940782B (zh) * 2017-11-02 2020-09-01 武汉理工大学 一种低成本的太阳能热发电显热-潜热复合储热陶瓷及其制备方法
CN111217609B (zh) * 2019-11-29 2022-02-01 宁波伏尔肯科技股份有限公司 一种3d打印整体式碳化硅隔热屏的制备方法
CN114656937B (zh) * 2022-04-15 2023-05-09 武汉理工大学 一种抗高温变形能力强的环保型陶瓷-熔盐复合储热材料及其制备方法
CN116751063B (zh) * 2023-06-02 2024-10-01 南京航空航天大学 一种以PVC为原料的环境友好SiC储热材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580171B2 (en) * 2006-03-24 2013-11-12 Sgl Carbon Ag Process for manufacture of a latent heat storage device
CN102442831B (zh) * 2010-10-08 2013-04-17 华南理工大学 一种高抗热震性高温烟气过滤陶瓷的制备方法
CN202581867U (zh) * 2012-04-27 2012-12-05 中海阳新能源电力股份有限公司 熔盐融化潜热与显热结合蓄热体
CN205655728U (zh) * 2016-03-28 2016-10-19 沧州渤海新区元大自然能源有限公司 一种复合蓄热体

Also Published As

Publication number Publication date
CN105841536A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN105841536B (zh) 一种复合蓄热体及制备方法
CN205655728U (zh) 一种复合蓄热体
CN101738120B (zh) 一种显热-潜热复合储热器
CN104674978B (zh) 一种具备双层定型相变材料层的建筑外墙结构体
CN107011868A (zh) 一种石蜡/铁尾矿陶瓷复合相变储能材料及其熔融浸渗制备方法
CN100455546C (zh) 一种超多孔陶瓷基蓄热材料及其制备方法
CN108117860A (zh) 导热增强型熔融盐复合相变材料和蓄热装置及储能方法
CN203710985U (zh) 高压模具
CN113185181A (zh) 3d打印相变骨料、制备及应用
CN102277139B (zh) 显热-潜热复合中温储热材料及制备方法
CN114184073A (zh) 一种新型高效复合蓄热体及其制备方法
CN108034411A (zh) 一种多孔材料负载的复合相变材料及其制备方法
CN109401729A (zh) 一种电池热管理系统用导热定型相变材料及其制备方法
CN207922928U (zh) 基于导热增强型熔融盐复合相变材料的高温蓄热装置
CN107940782A (zh) 一种低成本的太阳能热发电显热‑潜热复合储热陶瓷及其制备方法
CN101994364A (zh) 相变储能脱硫石膏砌块及其制备方法
CN108383491B (zh) 高岭土基储热陶瓷及其制备方法
CN109367156A (zh) 一种建筑节能相变储能蜂窝板及制备方法
Chen et al. Review on Porous Ceramic‐Based Form‐Stable Phase Change Materials: Preparation, Enhance Thermal Conductivity, and Application
CN203393268U (zh) 用于晶体高温高压合成反应器的热场装置
CN104453078B (zh) 三层相变保温砌块
CN103588470A (zh) 一种多晶硅硅锭用石英陶瓷坩埚的制造方法
CN102060553A (zh) 石英陶瓷坩埚的制备方法
CN106906946A (zh) 装配式相变保温‑光伏发电复合节能墙板及制备方法
CN108215350A (zh) 一种相变储能蜂窝板及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160921

Address after: 061113, Hebei, Bohai New District, Cangzhou, No. twelve east city street

Applicant after: Bohai Cangzhou new district nature energy Co., Ltd. yuan

Address before: 1 D villa, No. 1, Huanghua Road, Bohai New District, Hebei, Cangzhou, 061113

Applicant before: Zhang Yuanlin

GR01 Patent grant
GR01 Patent grant