CN105829366A - 二乙烯基苯/马来酸酐聚合物材料 - Google Patents
二乙烯基苯/马来酸酐聚合物材料 Download PDFInfo
- Publication number
- CN105829366A CN105829366A CN201480069510.2A CN201480069510A CN105829366A CN 105829366 A CN105829366 A CN 105829366A CN 201480069510 A CN201480069510 A CN 201480069510A CN 105829366 A CN105829366 A CN 105829366A
- Authority
- CN
- China
- Prior art keywords
- weight
- monomer
- polymeric material
- monomer mixture
- divinylbenzene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
- C08J9/286—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
- B01J20/267—Cross-linked polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28061—Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28064—Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/2808—Pore diameter being less than 2 nm, i.e. micropores or nanopores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/28083—Pore diameter being in the range 2-50 nm, i.e. mesopores
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/06—Hydrocarbons
- C08F212/08—Styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/34—Monomers containing two or more unsaturated aliphatic radicals
- C08F212/36—Divinylbenzene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/04—Anhydrides, e.g. cyclic anhydrides
- C08F222/06—Maleic anhydride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/20—Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/044—Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/02—Homopolymers or copolymers of hydrocarbons
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Polymerisation Methods In General (AREA)
Abstract
本发明提供了二乙烯基苯/马来酸酐聚合物材料,所述二乙烯基苯/马来酸酐聚合物材料是多孔的,并且其具有等于至少300m2/g的BET比表面积。所述聚合物材料通常具有微孔、中孔或它们的组合。所述二乙烯基苯/马来酸酐聚合物材料为前体聚合物,其可水解成具有羧酸基团的聚合物材料。
Description
相关申请的交叉引用
本申请要求2013年12月19日提交的美国临时专利申请No.61/918079的权益,该申请的公开内容以引用方式全文并入本文。
技术领域
本发明公开了二乙烯基苯/马来酸酐聚合物材料,以及制备该二乙烯基苯/马来酸酐聚合物材料的方法。
背景技术
由二乙烯基苯和马来酸酐制备的聚合物材料已为人所知多年。早自20世纪70年代以来,这些聚合物材料一直被用作离子交换树脂。这些聚合物材料中的许多种通过被称作“巨网法(macroreticulation)”的工艺制备,这是指一种采用悬浮聚合法制备聚合物珠的工艺。这类工艺涉及形成悬浮在水相中的有机相小滴。悬浮的有机相包括单体和任选的致孔剂。但最终共聚物中的马来酸酐含量很低,因为这种单体易发生水解而离开有机相。本领域一直以来都在尝试减轻这种水解反应,采取的措施包括用甘油或其他极性溶剂置换水相。现已制备出大孔共聚物。
发明内容
本发明提供了二乙烯基苯/马来酸酐聚合物材料,以及制备这些聚合物材料的方法。这些聚合物因存在微孔和/或中孔而具有高BET比表面积。这些聚合物可被水解形成具有羧酸基团的聚合物材料。这些水解聚合物材料可用于(例如)吸附低分子量(例如不大于150克/摩尔)的碱性含氮化合物。
本发明第一方面提供了一种聚合物材料,该聚合物材料包括可聚合组合物的聚合产物,该可聚合组合物包含a)单体混合物和b)有机溶剂,其中有机溶剂包括酮、酯、乙腈或它们的混合物。所述单体混合物包含:1)基于单体混合物中单体的总重量计8重量%至40重量%的马来酸酐、2)基于单体混合物中单体的总重量计48重量%至75重量%的二乙烯基苯,以及3)基于单体混合物中单体的总重量计0重量%至20重量%的苯乙烯类单体,其中苯乙烯类单体为苯乙烯、烷基取代的苯乙烯或它们的组合。可聚合组合物在聚合之前为单相。聚合物材料具有等于至少300m2/g的BET比表面积。
第二方面提供了制备聚合物材料的方法。该方法包括制备可聚合组合物,以及通过使该可聚合组合物聚合来形成聚合物材料。该可聚合组合物包含a)单体混合物和b)有机溶剂,其中有机溶剂包括酮、酯、乙腈或它们的混合物。所述单体混合物包含:1)基于单体混合物中单体的总重量计8重量%至40重量%的马来酸酐,2)基于单体混合物中单体的总重量计48重量%至75重量%的二乙烯基苯,以及3)基于单体混合物中单体的总重量计0重量%至20重量%的苯乙烯类单体,其中苯乙烯类单体为苯乙烯、烷基取代的苯乙烯或它们的组合。可聚合组合物在聚合之前为单相。聚合物材料具有等于至少300m2/g的BET比表面积。
附图说明
图1是实施例3的多孔前体聚合物与实施例8的相应水解聚合物材料在77°K下的氩吸附等温线曲线图。
图2是实施例3的多孔前体聚合物与实施例8的相应水解聚合物材料的累积表面积与孔宽度的关系曲线图。
具体实施方式
提供的二乙烯基苯/马来酸酐聚合物材料是多孔的,并且其具有等于至少300m2/g的BET比表面积。该聚合物材料通常具有微孔、中孔或它们的组合。该二乙烯基苯/马来酸酐聚合物材料为多孔的前体聚合物,其可水解成具有羧酸基团的聚合物材料。这些水解聚合物材料特别适合用作低分子量(例如不大于150克/摩尔)碱性含氮化合物的吸附剂。
术语“一个(种)”和“该/所述”与“至少一个(种)”可互换使用,意指一个(种)或多个(种)所描述的要素。
术语“和/或”意指两者之一或两者。例如,“A和/或B”意指只有A、只有B或既有A又有B。
术语“聚合物”和“聚合物材料”可互换使用,是指使一种或多种单体反应而生成的材料。该术语包括均聚物、共聚物、三元共聚物等。同样地,术语“聚合”是指制备聚合物材料的工艺,所述聚合物材料可以是均聚物、共聚物、三元共聚物等。
术语“单体混合物”是指可聚合组合物中包含单体的那部分。更具体地讲,单体混合物至少包含二乙烯基苯和马来酸酐。术语“可聚合组合物”包含反应混合物中含有的用来生成聚合物材料的所有原料。可聚合组合物包含(例如)单体混合物、有机溶剂、引发剂和其他任选组分。反应混合物中的一些组分(例如有机溶剂)可能不发生化学反应,但可影响该化学反应以及所得的聚合物材料。
术语“二乙烯基苯/马来酸酐聚合物材料”是指由二乙烯基苯、马来酸酐和任选的苯乙烯类单体制备而成的聚合物材料。苯乙烯类单体通常作为杂质存在于二乙烯基苯中。
术语“苯乙烯类单体”是指苯乙烯、烷基取代的苯乙烯(例如乙基苯乙烯)或它们的混合物。这些单体通常作为杂质存在于二乙烯基苯中。
术语“表面积”是指材料表面(包括可触及的孔的内表面在内)的总面积。表面积通常由测量在整个相对压力范围内在低温条件(即,77°K)下吸附于材料表面的惰性气体(例如氮气或氩气)的量所获得的吸附等温线来计算。术语“BET比表面积”是每克材料的表面积,通常采用BET法(Brunauer-Emmett-Teller方法)在0.05至0.3的相对压力范围内由惰性气体的吸附等温线数据计算得出。
术语“室温”是指在20℃至30℃范围内或20℃至25℃范围内的温度。
多孔材料可用其中孔的尺寸来表征。术语“微孔”是指直径小于2纳米的孔。术语“中孔”是指直径在2至50纳米范围内的孔。术语“大孔”是指直径大于50纳米的孔。材料的孔隙率可由低温条件下多孔材料吸附惰性气体(例如氮气或氩气)的吸附等温线来表征。吸附等温线通常通过在约10-6至约0.98范围内的多种相对压力下测量多孔材料吸附的惰性气体量而获得。然后采用各种方法分析等温线,例如采用BET法计算比表面积,又如采用密度泛函理论(DFT)表征孔隙率和孔径分布。
二乙烯基苯/马来酸酐聚合物材料可作为前体聚合物,用来形成水解聚合物材料。用于合成所述前体聚合物的条件经过特别选择,以便使生成的水解聚合物材料兼有高BET比表面积(例如,等于至少100m2/g或等于至少150m2/g)和数量足够多的羧酸基团,从而有效吸附低分子量(例如不大于150克/摩尔)的碱性含氮化合物。更具体地讲,二乙烯基苯交联剂的量、马来酸酐的量、任选的苯乙烯类单体的量以及选择用于制备非水解前体聚合物的有机溶剂都经过了仔细选择和平衡,目的是使水解聚合物材料具有理想的特性组合。
非水解前体聚合物材料(即,二乙烯基苯/马来酸酐聚合物材料)是由马来酸酐、二乙烯基苯和任选的苯乙烯类单体的单体混合物合成的。更具体地讲,所述单体混合物包含1)8重量%至40重量%的马来酸酐,2)48重量%至75重量%的二乙烯基苯以及3)0重量%至20重量%的苯乙烯类单体,其中苯乙烯类单体是苯乙烯、烷基取代的苯乙烯或它们的组合。这些量均基于所述单体混合物中单体的总重量计。
所述单体混合物中用于制备前体聚合物的马来酸酐的量决定了水解聚合物材料中羧酸官能团的数量。非水解前体聚合物材料中包含的每个马来酸酐单元可形成水解聚合物材料中的两个羧酸基团(-COOH基团)。如果马来酸酐的量基于单体混合物中单体的总重量计不足8重量%,则水解聚合物材料可能无法获得足够多的官能团(羧酸基团)来吸附低分子量的碱性分子。另一方面,如果马来酸酐的量基于所述单体混合物中单体的总重量计超过40重量%,则水解聚合物材料可能无法获得足够大的BET比表面积。如果BET比表面积过小,则水解聚合物材料的孔隙率可能不足以使可触及的羧酸基团吸附足够多的低分子量碱性分子。
在一些实施方案中,马来酸酐的量为至少8重量%、至少10重量%、至少12重量%、至少15重量%或至少20重量%。马来酸酐的量可为至多40重量%、至多38重量%、至多35重量%、至多30重量%或至多25重量%。例如,马来酸酐的量可在8重量%至40重量%范围内、8重量%至38重量%范围内、10重量%至40重量%范围内、10重量%至35重量%范围内、10重量%至30重量%范围内、10重量%至25重量%范围内、15重量%至40重量%范围内、15重量%至35重量%范围内、15重量%至30重量%范围内、15重量%至25重量%范围内、20重量%至40重量%范围内、20重量%至35重量%范围内,或20重量%至30重量%范围内。这些量均基于所述单体混合物中单体的总重量计。
二乙烯基苯交联剂的量对前体聚合物材料的BET比表面积和水解聚合物材料的BET比表面积均可有很强的影响。二乙烯基苯促成了高交联密度,并有助于形成具有微孔和/或中孔的刚性聚合物材料。BET比表面积趋向于随着单体混合物中二乙烯基苯的量增加而增大。如果单体混合物中二乙烯基苯的量不足48重量%,则水解聚合物材料的BET比表面积可能不够高。另一方面,如果二乙烯基苯的量超过75重量%,则可能由于可聚合组合物中的马来酸酐不足,造成水解聚合物材料中的羧酸官能度低至不可取的水平。
在一些实施方案中,二乙烯基苯的量为至少48重量%、至少50重量%、至少55重量%或至少60重量%。二乙烯基苯的量可为至多75重量%、至多70重量%或至多65重量%。例如,二乙烯基苯的量可在48重量%至75重量%范围内、50重量%至75重量%范围内、50重量%至70重量%范围内、50重量%至65重量%范围内、55重量%至75重量%范围内、55重量%至70重量%范围内、55重量%至65重量%范围内、60重量%至75重量%范围内,或60重量%至70重量%范围内。这些量均基于所述单体混合物中单体的总重量计。在一些具体实施方案中,二乙烯基苯的量基于单体混合物中单体的总重量计在50重量%至65重量%的范围内。
纯的二乙烯基苯可能难以获得。例如,市面上出售的二乙烯基苯的纯度通常低至55重量%。获得纯度高于约80重量%的二乙烯基苯可能难度很大并且/或者花费不菲。二乙烯基苯附带的杂质通常为苯乙烯类单体,例如苯乙烯、烷基取代的苯乙烯(例如乙基苯乙烯)或它们的混合物。因此,苯乙烯类单体常随同二乙烯基苯和马来酸酐一起存在于单体混合物中。单体混合物通常包含基于其中单体的总重量计0重量%至20重量%的苯乙烯类单体。如果苯乙烯类单体的含量超过20重量%,则交联密度可能过低并且/或者交联之间的距离可能过小,以至无法形成具有所需高BET比表面积(例如至少300m2/g)的前体聚合物材料;并且/或者交联密度可能过低,以至无法形成具有所需高BET比表面积(例如至少100m2/g或至少150m2/g)的水解聚合物材料。随着交联密度降低,所得聚合物材料的刚性往往降低,孔数量往往减少。
通常,纯度为55重量%的二乙烯基苯不适合用于单体混合物中,因为其苯乙烯类单体杂质的含量过高。也就是说,要得到二乙烯基苯的量至少为48重量%的单体混合物,二乙烯基苯的纯度通常至少为约80重量%。使用纯度低于约80重量%的二乙烯基苯可导致形成的前体聚合物材料和/或水解聚合物材料的BET比表面积低至不可取的水平。
在一些实施方案中,苯乙烯类单体的量为至少1重量%、至少2重量%或至少5重量%。苯乙烯类单体的量可为至多20重量%、至多15重量%、至多12重量%或至多10重量%。例如,单体混合物中苯乙烯类单体的量可在0重量%至20重量%范围内、1重量%至20重量%范围内、2重量%至20重量%范围内、5重量%至20重量%范围内、5重量%至15重量%范围内,或10重量%至15重量%范围内。这些量均基于所述单体混合物中单体的总重量计。
总体来说,所述单体混合物包含:1)基于单体混合物中单体的总重量计8重量%至40重量%的马来酸酐、2)基于单体混合物中单体的总重量计48重量%至75重量%的二乙烯基苯,以及3)基于单体混合物中单体的总重量计0重量%至20重量%的苯乙烯类单体。在其他实施方案中,单体混合物包含10重量%至40重量%的马来酸酐、50重量%至75重量%的二乙烯基苯和1重量%至20重量%的苯乙烯类单体。在其他实施方案中,单体混合物包含15重量%至35重量%的马来酸酐、55重量%至75重量%的二乙烯基苯和1重量%至20重量%的苯乙烯类单体。在其他实施方案中,单体混合物包含20重量%至30重量%的马来酸酐、55重量%至75重量%的二乙烯基苯和1重量%至20重量%的苯乙烯类单体。在另外的实施方案中,单体混合物包含20重量%至35重量%的马来酸酐、55重量%至70重量%的二乙烯基苯和1重量%至20重量%的苯乙烯类单体。
单体混合物通常至少包含95重量%的单体,所述单体选自马来酸酐、二乙烯基苯和苯乙烯类单体。例如,单体混合物中至少97重量%、至少98重量%、至少99重量%、至少99.5重量%或至少99.9重量%的单体选自马来酸酐、二乙烯基苯和苯乙烯类单体。在多个实施方案中,有目的地加入单体混合物中的单体只有马来酸酐和二乙烯基苯,在该马来酸酐和二乙烯基苯中存在作为杂质的其他任何单体(包括苯乙烯类单体)。
用于形成非水解前体聚合物材料的可聚合组合物除包含单体混合物之外,还包含有机溶剂。可聚合组合物在聚合之前为单相。换句话说,可聚合组合物在聚合之前不是悬浮液。有机溶剂经过选择,以溶解单体混合物中包含的单体,并在前体聚合物材料开始形成时将其溶解。有机溶剂包括酮、酯、乙腈或它们的混合物。
在前体聚合物材料形成时,有机溶剂可起致孔剂的作用。对有机溶剂的选择可强烈影响BET比表面积以及非水解前体聚合物材料中形成的孔的尺寸。BET比表面积以及BET比表面积中可归因于微孔和/或中孔的比率往往与可聚合组合物中形成第二相之前的转化率百分比相关。第二相延缓形成常常有利于制备具有高BET比表面积的前体聚合物材料。第二相形成的时机高度依赖于对有机溶剂的选择。第二相包括逐渐形成的非水解前体材料(逐渐形成的非水解前体的分子量增大到该非水解前体不再能溶于第一相的程度时,第二相形成)。
特别合适的有机溶剂包括酮、酯、乙腈和它们的混合物。可将其他有机溶剂随同这些有机溶剂中的一种或多种一起添加,前提条件是所得前体聚合物材料具有等于至少300m2/g的BET比表面积。合适的酮的示例包括但不限于烷基酮,例如甲基乙基酮和甲基异丁基酮。合适的酯的示例包括但不限于乙酸酯,例如乙酸乙酯、乙酸丙酯、乙酸丁酯、乙酸戊酯和乙酸叔丁酯。
有机溶剂可以任意所需的量使用。可聚合组合物的固体百分比常在1重量%至75重量%的范围内。如果固体百分比太低,聚合时间可能变得不期望地长。固体百分比通常至少为1重量%、至少为2重量%、至少为5重量%、至少为10重量%或至少为15重量%。然而,如果固体百分比太大,则粘度可能过高,以至无法有效混合。另外,增大固体百分比往往导致形成BET比表面积较低的聚合物材料。固体百分比可至多为75重量%、至多为70重量%、至多为60重量%、至多为50重量%、至多为40重量%、至多为30重量%或至多为25重量%。例如,固体百分比可在5重量%至75重量%范围内、5重量%至50重量%范围内、5重量%至40重量%范围内、5重量%至30重量%范围内,或5重量%至25重量%范围内。
可聚合组合物除包含单体混合物和有机溶剂外,通常还包含用于自由基聚合反应的引发剂。可使用任一种合适的自由基引发剂。合适的自由基引发剂通常选择为可与可聚合组合物中包含的单体混溶。在一些实施方案中,自由基引发剂为可在高于室温的温度下活化的热引发剂。在其他实施方案中,自由基引发剂为氧化还原引发剂。由于聚合反应是一种自由基反应,所以将可聚合组合物中的氧量降至最低是有利的。
引发剂的类型和量均可影响聚合速率。一般来讲,增加引发剂的量往往会降低BET比表面积,但如果引发剂的量太少,则可能难以使单体以高转化率转化成聚合物材料。自由基引发剂的量通常在下列范围内:0.05重量%至10重量%、0.05重量%至8重量%、0.05重量%至5重量%、0.1重量%至10重量%、0.1重量%至8重量%、0.1重量%至5重量%、0.5重量%至10重量%、0.5重量%至8重量%、0.5重量%至5重量%、1重量%至10重量%、1重量%至8重量%,或1重量%至5重量%。所述重量百分比基于可聚合组合物中单体的总重量计。
合适的热引发剂包括有机过氧化物和偶氮化合物。示例性的偶氮化合物包括但不限于可以商品名VAZO从美国特拉华州威尔明顿杜邦公司(E.I.duPontdeNemoursCo.,Wilmington,DE)商购获得的那些,例如VAZO64(2,2'-偶氮双(异丁腈),其常被称为AIBN)和VAZO52(2,2'-偶氮双(2,4-二甲基戊腈))。其他偶氮化合物可从美国弗吉尼亚州里士满的和光化工美国公司(WakoChemicalsUSA,Inc.,Richmond,VA)商购获得,例如V-601(二甲基2,2'-偶氮双(2-甲基丙酸酯))、V-65(2,2'-偶氮双(2,4-二甲基戊腈))和V-59(2,2'-偶氮双(2-甲基丁腈))。有机过氧化物包括但不限于双(1-氧代芳基)过氧化物例如过氧化苯甲酰(BPO)、双(1-氧代烷基)过氧化物例如过氧化月桂酰、二烷基过氧化物例如过氧化二异丙苯或二叔丁基过氧化物,以及它们的混合物。活化热引发剂所需的温度通常在25℃至160℃范围内、30℃至150℃范围内、40℃至150℃范围内、50℃至150℃范围内、50℃至120℃范围内,或50℃至110℃范围内。
合适的氧化还原引发剂包括芳基亚磺酸盐、三芳基硫鎓盐,或N,N-二烷基苯胺(例如N,N-二甲基苯胺)与呈氧化态的金属、过氧化物或过硫酸盐的组合。具体的芳基亚磺酸盐包括四烷基铵芳基亚磺酸盐诸如四丁基铵4-乙氧基羰基苯亚磺酸盐、四丁基铵4-三氟甲基苯亚磺酸盐和四丁基铵3-三氟甲基苯亚磺酸盐。具体的三芳基硫鎓盐包括带有三苯基锍阳离子和带有选自PF6 -、AsF6 -和SbF6 -的阴离子的那些。合适的金属离子包括例如第III族金属、过渡金属和镧系金属的离子。具体的金属离子包括但不限于Fe(III)、Co(III)、Ag(I)、Ag(II)、Cu(II)、Ce(III)、Al(III)、Mo(VI)和Zn(II)。合适的过氧化物包括过氧化苯甲酰、过氧化月桂酰等。合适的过硫酸盐包括例如过硫酸铵、四烷基过硫酸铵(例如,四丁基过硫酸铵)等。
可聚合组合物通常不含或基本上不含表面活性剂。本文有关表面活性剂使用的术语“基本上不含”,意思是没有故意向该可聚合组合物中加入表面活性剂,可能存在的任一种表面活性剂均是可聚合组合物某一种组分内的杂质(例如,有机溶剂或某一种单体内的杂质)。可聚合组合物包含的表面活性剂基于该可聚合组合物的总重量计通常不足0.5重量%、不足0.3重量%、不足0.2重量%、不足0.1重量%、不足0.05重量%或不足0.01重量%。不存在表面活性剂是有利的,因为这些材料往往会限制触及多孔材料内的微孔和中孔,在一些情况下甚至会填充多孔材料内的微孔和中孔。表面活性剂可降低水解聚合物材料吸附低分子量碱性分子的容量。
在存在自由基引发剂的情况下加热可聚合组合物时,单体混合物中的单体发生聚合。通过平衡单体混合物中各单体的量,以及通过选择能够在聚合物材料早期形成阶段期间使所有单体和逐渐形成的聚合物材料溶解的有机溶剂,可制备BET比表面积等于至少300m2/g的非水解前体聚合物。非水解前体聚合物的BET比表面积可为至少350m2/g、至少400m2/g、至少450m2/g或至少500m2/g。该BET比表面积可(例如)为至多1000m2/g或更高、至多900m2/g、至多800m2/g、至多750m2/g,或至多700m2/g。
高BET比表面积至少部分可归因于非水解前体聚合物材料中存在的微孔和/或中孔。从前体聚合物材料的氩吸附等温线看出,相对压力低于0.1处有相当大的吸附,这说明存在微孔。在最高至约0.95的较高相对压力下,吸附适度增大。这种吸附增大表明存在广泛分布的中孔。在一些实施方案中,至少20%的BET比表面积可归因于存在微孔和/或中孔。BET比表面积中可归因于存在微孔和/或中孔的百分比可为至少25%、至少30%、至少40%、至少50%或至少60%。在一些实施方案中,BET比表面积中可归因于存在微孔和/或中孔的百分比可为至多90%或更高、至多80%或更高,或者为至多75%或更高。
非水解前体聚合物是一种颗粒状材料,可用水解剂处理这种颗粒状材料,形成水解聚合物材料。水解剂与马来酸酐单元反应,形成两个羧酸基团(-COOH基团)。可使用任一种合适的能与马来酸酐单元的酸酐基团(-(CO)-O-(CO)-)反应的水解剂。在多个实施方案中,水解剂是碱,例如溶于水的碱性材料。一种示例性的碱性材料是碱金属氢氧化物,例如氢氧化钠(如氢氧化钠的水溶液)。作为替代,高温下(例如,室温以上至沸点)的水解剂可以是单独的水,略高温度下(例如,室温以上至约80℃)的水解剂可以是稀酸。在多个实施方案中,优选的水解剂是碱,例如碱金属氢氧化物。将非水解前体聚合物材料与溶于醇(例如甲醇)的碱金属氢氧化物的溶液混合。在接近80℃的温度下加热混合物几个小时(如4至12小时)。然后可用盐酸处理水解聚合物材料,将任何羧酸盐转变成羧酸基团。
水解聚合物材料的BET比表面积小于非水解前体聚合物材料的BET比表面积。酸酐基团的开口可充分提高主链中的构象自由度,导致孔隙率降低。此外,水解材料中羧酸之间的氢键可能限制或阻止与孔接触。水解聚合物材料的BET比表面积通常约为非水解前体聚合物材料的BET比表面积的30%至80%、30%至60%、40%至80%或40%至60%。由于BET比表面积以这种程度减小,所以通常期望制备具有可能最高的BET比表面积并具有足够多的马来酸酐单元的前体聚合物材料,便于在水解时产生足够多的羧酸基团。
水解聚合物材料具有羧酸基团,这些羧酸基团可吸附低分子量(例如不大于150克/摩尔)的碱性含氮化合物。可将碱性含氮化合物归类为路易斯碱、布朗斯特-劳里碱或这两者。术语“吸附”可指化学吸附、物理吸附或两者兼有。合适的碱性含氮化合物包括但不限于氨、肼化合物、胺化合物(例如烷基胺、二烷基胺、三烷基胺、烷醇胺、亚烷基二胺、芳胺)和含氮杂环(饱和的及不饱和的)化合物。具体的碱性含氮化合物包括(例如)氨、肼、甲基肼、甲胺、二甲胺、三甲胺、乙胺、二乙胺、三乙胺、丙胺、二丙胺、三丙胺、异丙胺、二异丙胺、三异丙胺、乙醇胺、环己胺、吗啉、吡啶、苄胺、苯肼、乙二胺和1,3-丙二胺。
本发明提供了各种聚合物材料,以及制备这些聚合物材料的方法。
实施方案1是一种聚合物材料,该聚合物材料包括可聚合组合物的聚合产物,该可聚合组合物包含a)单体混合物和b)有机溶剂,其中有机溶剂包括酮、酯、乙腈或它们的混合物。所述单体混合物包含:1)基于单体混合物中单体的总重量计8重量%至40重量%的马来酸酐、2)基于单体混合物中单体的总重量计48重量%至75重量%的二乙烯基苯,以及3)基于单体混合物中单体的总重量计0重量%至20重量%的苯乙烯类单体,其中苯乙烯类单体为苯乙烯、烷基取代的苯乙烯或它们的组合。可聚合组合物在聚合之前为单相。聚合物材料具有等于至少300m2/g的BET比表面积。
实施方案2是实施方案1所述的聚合物材料,其中所述BET比表面积等于至少500m2/g。
实施方案3是实施方案1或2所述的聚合物材料,其中所述单体混合物包含10重量%至40重量%的马来酸酐、50重量%至75重量%的二乙烯基苯和1重量%至20重量%的苯乙烯类单体。
实施方案4是实施方案1或2所述的聚合物材料,其中所述单体混合物包含15重量%至40重量%的马来酸酐、50重量%至65重量%的二乙烯基苯和1重量%至20重量%的苯乙烯类单体。
实施方案5是实施方案1或2所述的聚合物材料,其中所述单体混合物包含20重量%至30重量%的马来酸酐、55重量%至75重量%的二乙烯基苯和1重量%至20重量%的苯乙烯类单体。
实施方案6是实施方案1至5中任一项所述的聚合物材料,其中至少25%、至少50%或至少75%的所述BET比表面积可归因于微孔、中孔或它们的组合。
实施方案7是实施方案1至6中任一项所述的聚合物材料,其中所述有机溶剂包括酮,所述酮包括甲基乙基酮、甲基异丁基酮或它们的混合物。
实施方案8是实施方案1至6中任一项所述的聚合物材料,其中所述有机溶剂包括酯,所述酯包括乙酸酯,所述乙酸酯包括乙酸乙酯、乙酸丙酯、乙酸丁酯、乙酸戊酯、乙酸叔丁酯或它们的组合。
实施方案9是实施方案1至6中任一项所述的聚合物材料,其中所述有机溶剂包括乙腈。
实施方案10是实施方案1至9中任一项所述的聚合物材料,其中所述可聚合组合物具有等于至少5重量%的固体百分比。
实施方案11是实施方案1至10中任一项所述的聚合物材料,其中所述单体混合物中至少99重量%的单体为二乙烯基苯、马来酸酐或苯乙烯类单体。
实施方案12是实施方案1至11中任一项所述的聚合物材料,其中至少50%的所述BET比表面积可归因于微孔、中孔或它们的混合。
实施方案13是实施方案1至12中任一项所述的聚合物材料,其中至少75%的所述BET比表面积可归因于微孔、中孔或它们的混合。
实施方案14是一种制备聚合物材料的方法,该方法包括:a)制备可聚合组合物,以及b)通过使该可聚合组合物反应来形成聚合物材料,其中所述聚合物材料具有等于至少300m2/g的BET比表面积。该可聚合组合物包含i)单体混合物和ii)有机溶剂,其中有机溶剂包括酮、酯、乙腈或它们的混合物,其中所述可聚合组合物在聚合之前为单相。所述单体混合物包含:1)基于单体混合物中单体的总重量计8重量%至40重量%的马来酸酐、2)基于单体混合物中单体的总重量计48重量%至75重量%的二乙烯基苯,以及3)基于单体混合物中单体的总重量计0重量%至20重量%的苯乙烯类单体,其中苯乙烯类单体为苯乙烯、烷基取代的苯乙烯或它们的组合。
实施方案15是实施方案14所述的方法,其中所述BET比表面积等于至少500m2/g。
实施方案16是实施方案14或15所述的方法,其中所述单体混合物包含10重量%至40重量%的马来酸酐、50重量%至75重量%的二乙烯基苯和1重量%至20重量%的苯乙烯类单体。
实施方案17是实施方案14或15所述的方法,其中所述单体混合物包含15重量%至40重量%的马来酸酐、50重量%至65重量%的二乙烯基苯和1重量%至20重量%的苯乙烯类单体。
实施方案18是实施方案14或15所述的方法,其中所述单体混合物包含20重量%至30重量%的马来酸酐、55重量%至75重量%的二乙烯基苯和1重量%至20重量%的苯乙烯类单体。
实施方案19是实施方案14至18中任一项所述的方法,其中至少25%的所述BET比表面积可归因于微孔、中孔或它们的混合。
实施方案20是实施方案14至19中任一项所述的方法,其中至少50%的所述BET比表面积可归因于微孔、中孔或它们的混合。
实施方案21是实施方案14至20中任一项所述的方法,其中至少75%的所述BET比表面积可归因于微孔、中孔或它们的混合。
实施方案22是实施方案14至21中任一项所述的方法,其中所述有机溶剂包括酮,所述酮包括甲基乙基酮、甲基异丁基酮或它们的混合物。
实施方案23是实施方案14至21中任一项所述的方法,其中所述有机溶剂包括酯,所述酯包括乙酸酯,所述乙酸酯包括乙酸乙酯、乙酸丙酯、乙酸丁酯、乙酸戊酯、乙酸叔丁酯或它们的组合。
实施方案24是实施方案14至21中任一项所述的方法,其中所述有机溶剂包括乙腈。
实施方案25是实施方案14至24中任一项所述的方法,其中所述可聚合组合物具有等于至少5重量%的固体百分比。
实施方案26是实施方案14至25中任一项所述的方法,其中所述单体混合物中至少99重量%的单体为二乙烯基苯、马来酸酐或苯乙烯类单体。
实施例
表1:材料列表
气体吸附分析:
使用美国乔治亚州诺克罗斯麦克默瑞提克仪器公司(MicromeriticsInstrumentCorporation(Norcross,GA))的快速比表面积与孔隙度分析仪(ASAP2020),选用超高纯度吸附质,进行孔隙率实验和气体吸附实验。下面描述了用于表征示例材料内孔隙率的典型方法。取50至300毫克材料置于麦克默瑞提克(Micromeritics)出品的半英寸直径样品管中,通常将该样品管放在ASPA2020的分析端口上,在超高真空(3至7μmHg)下150℃加热2小时,除去残余的溶剂和其他吸附质。(将实施例8和比较例2放在ASPA2020的分析端口上,在超高真空(3至7μmHg)下80℃加热2小时,除去残余的溶剂和其他吸附质。)在相对压力(p/p°)小于0.1时选用低压投配(lowpressuredosing)模式(5cm3/g),并在相对压力(p/p°)处于0.1至0.98范围内时利用线性间隔开的压力点的压力图表,获得77°K下的氩吸附等温线。该方法使用下列平衡间隔:相对压力(p/p°)小于10-5时为90秒,相对压力(p/p°)在10-5至0.1范围内时为40秒,相对压力(p/p°)大于0.1时为20秒。氩吸附分析后,用氦进行自由空间测定,两者均在环境温度(如室温)和77°K下进行。采用多点Brunauer-Emmett-Teller(BET)分析,由氩吸附数据计算BET比表面积(SABET)。通过密度泛函理论(DFT)分析,由氩吸附数据计算表观微孔分布,该分析采用非线性密度泛函理论(NLDFT)模型并使用77°K下碳狭缝孔上的氩。由相对压力(p/p°)等于约0.98时吸附的氩的总量计算总孔内容积。使用麦克默瑞提克(Micromeritics)出品的MicroActive1.01版软件执行BET、DFT和总孔内容积分析。
实施例1:
取0.8523克(5.24毫摩尔)二乙烯基苯(DVB)(纯度80重量%,工业级)、94.6毫克(965微摩尔)马来酸酐(MA)和47.8毫克(197微摩尔)过氧化苯甲酰(BPO),溶于40mL小瓶内的20.0mL乙酸乙酯(EtOAc)中。可聚合组合物在EtOAc中的固体百分比为5.0重量%,并包含单体混合物(72.0重量%DVB、10.0重量%MA和18.0重量%苯乙烯类单体)和5重量%BPO(基于单体的总重量计)。向该可聚合组合物中鼓入氮气,持续10分钟。然后给小瓶盖上盖子,置于95℃砂浴中。在此高温下将该可聚合组合物加热17小时。真空过滤分离形成的白色沉淀,然后用EtOAc洗涤。将固体置于40mL小瓶内,向瓶中添加30mLEtOAc。将小瓶放到手腕式振荡器上,室温下振动2小时。再次真空过滤分离固体,用EtOAc洗涤。将固体置于40mL小瓶内,向瓶中添加30mLEtOAc。使该固体在EtOAc中静置过夜。再次真空过滤分离固体,用EtOAc洗涤。然后在高真空下于110℃干燥固体过夜。由氩吸附测得该材料的BET比表面积(SABET)为782.9m2/g,总孔内容积为0.711cm3/g(p/p°等于0.976)。
实施例2:
取0.7567克(4.65毫摩尔)DVB(纯度80重量%,工业级)、0.1895克(1.93毫摩尔)MA和47.3毫克(195微摩尔)BPO,溶于40mL小瓶内的20.0mLEtOAc中。可聚合组合物在EtOAc中的固体百分比为5.0重量%,并包含单体混合物(64.0重量%DVB、20.0重量%MA和16.0重量%苯乙烯类单体)和5重量%BPO(基于单体的总重量计)。向该可聚合组合物中鼓入氮气,持续10分钟。然后给小瓶盖上盖子,置于95℃砂浴中。在此高温下将该可聚合组合物加热17小时。真空过滤分离形成的白色沉淀,然后用EtOAc洗涤。将固体置于40mL小瓶内,向瓶中添加30mLEtOAc。将小瓶放到手腕式振荡器上,室温下振动2小时。再次真空过滤分离固体,用EtOAc洗涤。将固体置于40mL小瓶内,向瓶中添加30mLEtOAc。使该固体在EtOAc中静置过夜。再次真空过滤分离固体,用EtOAc洗涤。然后在高真空下于110℃干燥固体过夜。由氩吸附测得该材料的SABET为695.4m2/g,总孔内容积为0.629cm3/g(p/p°等于0.978)。
实施例3:
取2.68克(21.4毫摩尔)DVB(纯度80重量%,工业级)、1.01克(10.3毫摩尔)MA和75.1毫克(310微摩尔)BPO溶于4盎司广口瓶内的71.25克EtOAc中。可聚合组合物在EtOAc中的固体百分比为4.9重量%,并包含单体混合物(58.1重量%DVB、27.4重量%MA和14.5重量%苯乙烯类单体)和2重量%BPO(基于单体的总重量计)。向该可聚合组合物中鼓入氮气,持续10分钟。然后给广口瓶盖上盖子,置于95℃砂浴中。在此高温下将该可聚合组合物加热17小时。真空过滤分离形成的白色沉淀,然后用EtOAc洗涤。将固体置于4盎司广口瓶内,向瓶中添加100mLEtOAc。室温下将该固体在EtOAc中静置1小时。再次真空过滤分离固体,用EtOAc洗涤。将固体置于4盎司广口瓶内,添加100mLEtOAc。将该固体在EtOAc中静置过夜。再次真空过滤分离固体,用EtOAc洗涤。然后在高真空下于110℃干燥固体过夜。由氩吸附测得该材料的SABET为696.6m2/g,总孔内容积为0.649cm3/g(p/p°等于0.975)。
实施例4:
取2.40克(14.7毫摩尔)DVB(纯度80重量%,工业级)、1.36克(13.9毫摩尔)MA和75.3毫克(311微摩尔)BPO溶于4盎司广口瓶内的71.26克EtOAc中。可聚合组合物在EtOAc中的固体百分比为5.0重量%,并包含单体混合物(51.0重量%DVB、36.2重量%MA和12.8重量%苯乙烯类单体)和2重量%BPO(基于单体的总重量计)。向该可聚合组合物中鼓入氮气,持续10分钟。然后给广口瓶盖上盖子,置于95℃砂浴中。在此高温下将该可聚合组合物加热17小时。真空过滤分离形成的白色沉淀,然后用EtOAc洗涤。将固体置于4盎司广口瓶内,向瓶中添加100mLEtOAc。室温下将该固体在EtOAc中静置1小时。再次真空过滤分离固体,用EtOAc洗涤。将固体置于4盎司广口瓶内,向瓶中添加100mLEtOAc。将该固体在EtOAc中静置过夜。再次真空过滤分离固体,用EtOAc洗涤。然后在高真空下于110℃干燥固体过夜。由氩吸附测得该材料的SABET为612.9m2/g,总孔内容积为0.581cm3/g(p/p°等于0.973)。
实施例5:
取2.68克(16.5毫摩尔)DVB(80重量%,工业级)、1.01克(10.3毫摩尔)MA和74.8毫克(309微摩尔)BPO溶于4盎司广口瓶内的71.3克甲基乙基酮(MEK)中。可聚合组合物在MEK中的固体百分比为4.9重量%,并包含单体混合物(58.1重量%DVB、27.4重量%MA和14.5重量%苯乙烯类单体)和2重量%BPO(基于单体的总重量计)。向该可聚合组合物中鼓入氮气,持续10分钟。然后给广口瓶盖上盖子,置于95℃砂浴中。在此高温下将该可聚合组合物加热17小时。真空过滤分离形成的白色沉淀,然后用MEK洗涤。将固体置于4盎司广口瓶内,向瓶中添加100mLMEK。室温下将该固体在MEK中静置1小时。再次真空过滤分离固体,用MEK洗涤。将固体置于4盎司广口瓶内,向瓶中添加100mLMEK。将该固体在MEK中静置过夜。再次真空过滤分离固体,用MEK洗涤。然后在高真空下95℃干燥固体8小时。由氩吸附测得该材料的SABET为632.5m2/g,总孔内容积为0.576cm3/g(p/p°等于0.977)。
实施例6:
取0.64克(3.9毫摩尔)DVB(80重量%,工业级)、0.36克(3.7毫摩尔)MA和20.8毫克(85.9微摩尔)BPO溶于20mL小瓶内的9.00克乙腈(ACN)中。可聚合组合物在ACN中的固体百分比为10.0重量%,并包含单体混合物(51.2重量%DVB、36.0重量%MA和12.8重量%苯乙烯类单体)和2重量%BPO(基于单体的总重量计)。向该可聚合组合物中鼓入氮气,持续10分钟。然后给广口瓶盖上盖子,置于95℃砂浴中。在此高温下将该可聚合组合物加热17小时。真空过滤分离形成的白色沉淀,然后用ACN洗涤。将固体置于20mL小瓶内,向瓶中添加15mLACN。室温下将该固体在ACN中静置1小时。再次真空过滤分离固体,用ACN洗涤。将固体置于20mL小瓶内,向瓶中添加15mLACN。将该固体在ACN中静置过夜。再次真空过滤分离固体,用ACN洗涤。然后在高真空下95℃干燥固体8小时。由氩吸附测得该材料的SABET为397.5m2/g,总孔内容积为0.232cm3/g(p/p°等于0.980)。
实施例7:
取4.39克(21.6毫摩尔)二乙烯基苯(DVB)(80重量%,工业级)、1.65克(16.8毫摩尔)马来酸酐(MA)和121.4毫克(501微摩尔)过氧化苯甲酰(BPO)溶于4盎司广口瓶内的8.1克MEK中。可聚合组合物在MEK中的固体百分比为75.0重量%,并包含单体混合物(58.1重量%DVB、27.4重量%MA和14.5重量%苯乙烯类单体)和2重量%BPO(基于单体的总重量计)。向该聚合混合物中鼓入氮气,持续10分钟。然后给广口瓶盖上盖子,置于95℃砂浴中。在此高温下加热该聚合混合物17小时。真空过滤分离形成的白色沉淀,然后用MEK洗涤。将固体置于4盎司广口瓶内,向瓶中添加100mLMEK。室温下将该固体在MEK中静置1小时。再次真空过滤分离固体,用MEK洗涤。将固体置于4盎司广口瓶内,向瓶中添加100mLMEK。将该固体在MEK中静置过夜。再次真空过滤分离固体,用MEK洗涤。然后在高真空下95℃干燥固体8小时。由氩吸附测得该材料的SABET为475.3m2/g,总孔内容积为0.413cm3/g(p/p°等于0.976)。
实施例8:
用水解剂(NaOH)处理实施例3所得的聚合物材料。更具体地讲,取3.5克(87.5毫摩尔)氢氧化钠(NaOH)溶于4盎司广口瓶内的60mL甲醇(MeOH)中。向该溶液中添加0.50克实施例3所得的前体聚合物材料,该前体聚合物材料由包含58.1重量%DVB、27.4重量%MA和14.5重量%苯乙烯类单体的单体混合物制备而成。然后给广口瓶盖上盖子,置于80℃砂浴中。在此高温下加热所得的悬浮液18小时。真空过滤分离固体,用去离子水洗涤。将固体置于20mL小瓶内,用0.1M氯化氢(HCl)水溶液将小瓶装至半满。将固体在HCl水溶液中静置30分钟。再次真空过滤分离固体,用去离子水洗涤。然后在高真空下80℃干燥固体过夜。由氩吸附测得该材料的SABET为359.6m2/g,总孔内容积为0.359cm3/g(p/p°等于0.978)。
图1示出了实施例3和实施例8的氩吸附等温线。两条等温线的形状相似,均在相对压力小于0.1处显示出显著的吸附。这种现象表明材料具有大量微孔。在约0.2至约0.8的相对压力范围内,两种材料吸附的气体的量持续递增,表明材料具有很多中孔。
图2进一步支持对孔径分布的这种判读。该图是实施例3与实施例8的孔宽度(埃)与累积表面积的关系曲线图。图中的数据基于密度泛函理论(DFT)分析对吸附等温线的分析结果,该分析采用非线性密度泛函理论(NLDFT)模型并使用77°K下碳狭缝孔上的氩,NLDFT模型对于直径最大为6nm(纳米)的孔往往最可靠。DFT模型在下列专著中有所描述:P.A.WebbandC.Orr,SurfaceAreaandPoreStructurebyGasAdsorption:AnalyticalMethodsinFineParticleTechnology,MicromeriticsInstrumentCorporation,Norcross,GA,pages53-153(1997)(P.A.Webb和C.Orr,《通过气体吸附测定表面积和孔 结构:细粒技术的分析法》,美国乔治亚州诺克罗斯市麦克默瑞提克仪器公司,1997年,第53-153页)。该分析表明,大量BET比表面积源自微孔。另外,这两种材料将近50%的BET比表面积可归因于直径小于6纳米的孔。
比较例1:
取2.14克(13.1毫摩尔)DVB(80重量%,工业级)、1.61克(16.4毫摩尔)MA和75.3毫克(311微摩尔)BPO溶于4盎司广口瓶内的71.25克EtOAc中。可聚合组合物在EtOAc中的固体百分比为5.0重量%,并包含单体混合物(45.7重量%DVB、42.9重量%MA和11.4重量%苯乙烯类单体)和2重量%BPO(基于单体的总重量计)。向该可聚合组合物中鼓入氮气,持续10分钟。然后给广口瓶盖上盖子,置于95℃砂浴中。在此高温下将该可聚合组合物加热17小时。真空过滤分离形成的白色沉淀,然后用EtOAc洗涤。将固体置于4盎司广口瓶内,向瓶中添加100mLEtOAc。室温下将该固体在EtOAc中静置1小时。再次真空过滤分离固体,用EtOAc洗涤。将固体置于4盎司广口瓶内,添加100mLEtOAc。将该固体在EtOAc中静置过夜。再次真空过滤分离固体,用EtOAc洗涤。然后在高真空下于110℃干燥固体过夜。由氩吸附测得该材料的SABET为518.6m2/g,总孔内容积为0.495cm3/g(p/p°等于0.977)。
比较例2:
取3.5克(87.5毫摩尔)NaOH溶于4盎司广口瓶内的60mLMeOH中。向该溶液中添加0.50克比较例1所得的聚合物材料。然后给广口瓶盖上盖子,置于80℃砂浴中。在此高温下加热所得的悬浮液18小时。真空过滤分离固体,用去离子水洗涤。将固体置于20mL小瓶内,用0.1MHCl水溶液将小瓶装至半满。将固体在HCl水溶液中静置30分钟。再次真空过滤分离固体,用去离子水洗涤。然后在高真空下80℃干燥固体过夜。由氩吸附测得该材料不具有可量化的BET比表面积和孔隙率。
Claims (12)
1.一种聚合物材料,其包括可聚合组合物的聚合产物的反应产物,所述可聚合组合物包含
i)单体混合物,所述单体混合物包含
1)基于所述单体混合物中单体的总重量计8重量%至40重量%的马来酸酐;和
2)基于所述单体混合物中单体的总重量计48重量%至75重量%的二乙烯基苯;和
3)基于所述单体混合物中单体的总重量计0重量%至20重量%的苯乙烯类单体,其中所述苯乙烯类单体为苯乙烯、烷基取代的苯乙烯或它们的组合;以及
ii)有机溶剂,所述有机溶剂包括酮、酯、乙腈或它们的混合物,
其中所述可聚合组合物在聚合之前为单相;并且
其中所述聚合物材料具有等于至少300m2/g的BET比表面积。
2.根据权利要求1所述的聚合物材料,其中所述BET比表面积等于至少500m2/g。
3.根据权利要求1或2所述的聚合物材料,其中所述单体混合物包含10重量%至40重量%的马来酸酐、50重量%至75重量%的二乙烯基苯和1重量%至20重量%的苯乙烯类单体。
4.根据权利要求1或2所述的聚合物材料,其中所述单体混合物包含15重量%至40重量%的马来酸酐、50重量%至65重量%的二乙烯基苯和1重量%至20重量%的苯乙烯类单体。
5.根据权利要求1或2所述的聚合物材料,其中所述单体混合物包含20重量%至30重量%的马来酸酐、55重量%至75重量%的二乙烯基苯和1重量%至20重量%的苯乙烯类单体。
6.根据权利要求1至5中任一项所述的聚合物材料,其中至少50%的所述BET比表面积可归因于微孔、中孔或它们的组合。
7.根据权利要求1至6中任一项所述的聚合物材料,其中所述有机溶剂包括酮,所述酮包括甲基乙基酮、甲基异丁基酮或它们的混合物。
8.根据权利要求1至6中任一项所述的聚合物材料,其中所述有机溶剂包括酯,所述酯包括乙酸酯,所述乙酸酯包括乙酸乙酯、乙酸丙酯、乙酸丁酯、乙酸戊酯、乙酸叔丁酯或它们的组合。
9.根据权利要求1至6中任一项所述的聚合物材料,其中所述有机溶剂包括乙腈。
10.根据权利要求1至9中任一项所述的聚合物材料,其中所述可聚合组合物具有等于至少5重量%的固体百分比。
11.根据权利要求1至10中任一项所述的聚合物材料,其中所述单体混合物中至少99重量%的所述单体为二乙烯基苯、马来酸酐或苯乙烯类单体。
12.一种制备聚合物材料的方法,所述方法包括:
a)制备可聚合组合物,所述可聚合组合物包含
i)单体混合物,所述单体混合物包含
1)基于所述单体混合物中单体的总重量计8重量%至40重量%的马来酸酐;和
2)基于所述单体混合物中单体的总重量计48重量%至75重量%的二乙烯基苯;和
3)基于所述单体混合物中单体的总重量计0重量%至20重量%的苯乙烯类单体,其中所述苯乙烯类单体为苯乙烯、烷基取代的苯乙烯或它们的组合;以及
ii)有机溶剂,所述有机溶剂包括酮、酯、乙腈或它们的混合物,
其中所述可聚合组合物在聚合之前为单相;以及
b)通过使所述可聚合组合物反应来形成聚合物材料,
其中所述聚合物材料具有等于至少300m2/g的BET比表面积。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361918079P | 2013-12-19 | 2013-12-19 | |
US61/918,079 | 2013-12-19 | ||
PCT/US2014/070478 WO2015095115A1 (en) | 2013-12-19 | 2014-12-16 | Divinylbenzene/maleic anhydride polymeric material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105829366A true CN105829366A (zh) | 2016-08-03 |
CN105829366B CN105829366B (zh) | 2018-06-05 |
Family
ID=52273596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480069510.2A Active CN105829366B (zh) | 2013-12-19 | 2014-12-16 | 二乙烯基苯/马来酸酐聚合物材料 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20160311996A1 (zh) |
EP (1) | EP3083725B1 (zh) |
JP (1) | JP6453342B2 (zh) |
KR (1) | KR102307437B1 (zh) |
CN (1) | CN105829366B (zh) |
WO (1) | WO2015095115A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109952148A (zh) * | 2016-11-14 | 2019-06-28 | 3M创新有限公司 | 包括含金属的聚合物材料的复合颗粒 |
CN110719805A (zh) * | 2017-06-16 | 2020-01-21 | 3M创新有限公司 | 包含用于醛的聚合物吸附剂的空气过滤器 |
CN110740808A (zh) * | 2017-06-16 | 2020-01-31 | 3M创新有限公司 | 醛的聚合物吸附剂 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016186858A1 (en) * | 2015-05-20 | 2016-11-24 | 3M Innovative Properties Company | Metal-containing polymeric materials |
US10058844B2 (en) | 2015-06-19 | 2018-08-28 | 3M Innovative Properties Company | Divinylbenzene/maleic anhydride polymeric sorbents for carbon dioxide |
WO2016205083A1 (en) * | 2015-06-19 | 2016-12-22 | 3M Innovative Properties Company | Hydrolyzed divinylbenzene/maleic anhydride polymeric sorbents for carbon dioxide |
US11179698B2 (en) | 2015-12-18 | 2021-11-23 | 3M Innovative Properties Company | Polymeric sorbents for carbon dioxide |
WO2017106438A1 (en) * | 2015-12-18 | 2017-06-22 | 3M Innovative Properties Company | Polymeric sorbents for reactive gases |
US10780416B2 (en) | 2015-12-18 | 2020-09-22 | 3M Innovative Properties Company | Polymeric sorbents for aldehydes |
JP7010452B2 (ja) * | 2016-03-14 | 2022-02-10 | スリーエム イノベイティブ プロパティズ カンパニー | 反応性ガス用のポリマー収着剤を含むエアフィルタ |
WO2017160650A2 (en) * | 2016-03-14 | 2017-09-21 | 3M Innovative Properties Company | Air filters comprising polymeric sorbents for aldehydes |
US10960341B2 (en) | 2016-03-14 | 2021-03-30 | 3M Innovative Properties Company | Air filters comprising polymeric sorbents for aldehydes |
CN108778488B (zh) * | 2016-03-14 | 2022-02-18 | 3M创新有限公司 | 包括用于反应性气体的聚合物吸附剂的复合颗粒 |
CN109922870B (zh) * | 2016-11-14 | 2021-11-02 | 3M创新有限公司 | 包含含有金属的聚合物吸附剂的空气过滤器 |
KR102640289B1 (ko) * | 2017-01-20 | 2024-02-23 | 엘지전자 주식회사 | 유기 고분자 흡착제, 유기 고분자 흡착제 조성물 및 유기 고분자 흡착제 제조 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1595895A1 (en) * | 2004-05-14 | 2005-11-16 | Nitto Denko Corporation | Production method of porous resin |
CN101558087A (zh) * | 2006-11-02 | 2009-10-14 | 矢崎总业株式会社 | 聚苯乙烯-马来酸酐/氢氧化镁复合颗粒及其制备方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH022861A (ja) * | 1987-11-04 | 1990-01-08 | Mitsubishi Rayon Co Ltd | 多孔質膜及びその製造方法 |
JPH02194039A (ja) * | 1989-01-24 | 1990-07-31 | Asahi Chem Ind Co Ltd | アニオン選択吸着性多孔膜とその製造方法 |
JPH03292884A (ja) * | 1990-04-12 | 1991-12-24 | Mitsubishi Rayon Co Ltd | 細胞培養方法 |
FR2837493B1 (fr) * | 2002-03-20 | 2004-05-21 | Commissariat Energie Atomique | Aerogel a base d'un polymere ou copolymere hydrocarbone et leur procede de preparation |
JP4227512B2 (ja) * | 2003-02-14 | 2009-02-18 | 大日精化工業株式会社 | 熱脱着可能な多価カチオン性イオン吸着材の製造方法 |
JP2008138161A (ja) * | 2006-11-02 | 2008-06-19 | Yazaki Corp | ポリスチレン−無水マレイン酸/水酸化マグネシウム複合粒子、及び、その製造方法 |
WO2008108738A1 (en) * | 2007-03-08 | 2008-09-12 | Agency For Science, Technology And Research | Mesoporous polymer colloids |
JP2009113034A (ja) * | 2007-10-16 | 2009-05-28 | Kochi Prefecture | イオン収着材、その製造方法およびその使用方法 |
EP2564923A1 (en) * | 2010-04-28 | 2013-03-06 | Hitachi High-Technologies Corporation | Adsorbent and method for producing same |
-
2014
- 2014-12-16 KR KR1020167019125A patent/KR102307437B1/ko active IP Right Grant
- 2014-12-16 EP EP14821451.3A patent/EP3083725B1/en active Active
- 2014-12-16 WO PCT/US2014/070478 patent/WO2015095115A1/en active Application Filing
- 2014-12-16 CN CN201480069510.2A patent/CN105829366B/zh active Active
- 2014-12-16 US US15/102,810 patent/US20160311996A1/en not_active Abandoned
- 2014-12-16 JP JP2016541034A patent/JP6453342B2/ja not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1595895A1 (en) * | 2004-05-14 | 2005-11-16 | Nitto Denko Corporation | Production method of porous resin |
CN101558087A (zh) * | 2006-11-02 | 2009-10-14 | 矢崎总业株式会社 | 聚苯乙烯-马来酸酐/氢氧化镁复合颗粒及其制备方法 |
Non-Patent Citations (3)
Title |
---|
KUMIKO HARADA等: "Porous maleic anhydride-divinylbenzene copolymer beads as a subtractor for primary and secondary amines in reaction gas chromatography", 《BUNSEKI KAGAKU》 * |
RANDY S. FRANK等: "Poly(divinylbenzene-alt-maleic anhydride) Microgels: Intermediates to Microspheres and Macrogels in Cross-Linking Copolymerization", 《MACROMOLECULES》 * |
RANDY S. FRANK等: "Synthesis of Divinylbenzene–Maleic Anhydride Microspheres Using Precipitation Polymerization", 《JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109952148A (zh) * | 2016-11-14 | 2019-06-28 | 3M创新有限公司 | 包括含金属的聚合物材料的复合颗粒 |
TWI760387B (zh) * | 2016-11-14 | 2022-04-11 | 美商3M新設資產公司 | 複合顆粒,捕捉鹼性、含氮化合物之方法,由其製備之含金屬錯合物複合顆粒,及偵測水蒸汽存在之方法 |
CN109952148B (zh) * | 2016-11-14 | 2023-01-20 | 3M创新有限公司 | 包括含金属的聚合物材料的复合颗粒 |
CN110719805A (zh) * | 2017-06-16 | 2020-01-21 | 3M创新有限公司 | 包含用于醛的聚合物吸附剂的空气过滤器 |
CN110740808A (zh) * | 2017-06-16 | 2020-01-31 | 3M创新有限公司 | 醛的聚合物吸附剂 |
TWI774788B (zh) * | 2017-06-16 | 2022-08-21 | 美商3M新設資產公司 | 包含支撐聚合性吸著劑粒子之過濾器支架的空氣過濾器、其製造方法及從空氣中捕捉醛之方法 |
CN110719805B (zh) * | 2017-06-16 | 2022-12-27 | 3M创新有限公司 | 包含用于醛的聚合物吸附剂的空气过滤器 |
CN110740808B (zh) * | 2017-06-16 | 2023-04-07 | 3M创新有限公司 | 醛的聚合物吸附剂 |
Also Published As
Publication number | Publication date |
---|---|
CN105829366B (zh) | 2018-06-05 |
EP3083725A1 (en) | 2016-10-26 |
JP2017500408A (ja) | 2017-01-05 |
US20160311996A1 (en) | 2016-10-27 |
JP6453342B2 (ja) | 2019-01-16 |
WO2015095115A1 (en) | 2015-06-25 |
KR20160101976A (ko) | 2016-08-26 |
KR102307437B1 (ko) | 2021-09-30 |
EP3083725B1 (en) | 2017-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105829366A (zh) | 二乙烯基苯/马来酸酐聚合物材料 | |
CN105829365A (zh) | 水解的二乙烯基苯/马来酸酐聚合物材料 | |
US11179698B2 (en) | Polymeric sorbents for carbon dioxide | |
CN107708856B (zh) | 用于二氧化碳的水解二乙烯基苯/马来酸酐聚合物吸附剂 | |
CN107810054B (zh) | 用于二氧化碳的二乙烯基苯/马来酸酐聚合物吸附剂 | |
Fu et al. | Efficient removal of bisphenol pollutants on imine-based covalent organic frameworks: adsorption behavior and mechanism | |
Feng et al. | Pore structure controllable synthesis of mesoporous poly (ionic liquid) s by copolymerization of alkylvinylimidazolium salts and divinylbenzene | |
CN103221127B (zh) | 多孔聚合物材料 | |
US9475032B2 (en) | Molded article for hydrocarbon adsorption | |
Huang et al. | Adsorption of CO2 on chitosan modified CMK-3 at ambient temperature | |
Yang et al. | Use of apple seeds as new source for synthesis of polyacrylonitrile-based adsorbent to remove Pb (II) | |
CN109152977B (zh) | 用于二氧化碳的多孔聚合物吸附剂 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |