CN105825530B - 基于感兴趣区域的海岸带高光谱图像分布式有损编码和解码方法 - Google Patents

基于感兴趣区域的海岸带高光谱图像分布式有损编码和解码方法 Download PDF

Info

Publication number
CN105825530B
CN105825530B CN201610159167.1A CN201610159167A CN105825530B CN 105825530 B CN105825530 B CN 105825530B CN 201610159167 A CN201610159167 A CN 201610159167A CN 105825530 B CN105825530 B CN 105825530B
Authority
CN
China
Prior art keywords
spectral coverage
frame
interest
key frame
bit stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610159167.1A
Other languages
English (en)
Other versions
CN105825530A (zh
Inventor
宋传鸣
王相海
张智迪
李畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Normal University
Original Assignee
Liaoning Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Normal University filed Critical Liaoning Normal University
Priority to CN201610159167.1A priority Critical patent/CN105825530B/zh
Publication of CN105825530A publication Critical patent/CN105825530A/zh
Application granted granted Critical
Publication of CN105825530B publication Critical patent/CN105825530B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/004Predictors, e.g. intraframe, interframe coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明公开一种基于感兴趣区域的海岸带高光谱图像分布式有损编码和解码方法,属于图像处理领域,该方法依据高光谱图像的谱间相关性将谱段帧分成若干谱段组,每个谱段组包含1个关键帧和若干个WZ帧;对每个谱段组的关键帧进行感兴趣区域提取后,对关键帧的感兴趣区域进行JPEG‑LS无损编解码,对其背景区域进行基于SPIHT的编解码,而对每个谱段组的WZ帧则采用基于压缩感知的编解码。本发明有效地实现了编码复杂度低、较强的抗误码性以及码流具有质量可分级等的特性。

Description

基于感兴趣区域的海岸带高光谱图像分布式有损编码和解码 方法
技术领域
本发明涉及图像处理领域,尤其是一种编码效率高、抗误码性能好、质量可分级、编码复杂度低的基于感兴趣区域的海岸带高光谱图像分布式有损编码和解码方法。
背景技术
近年来,随着环渤海等多个沿海重要经济区发展规划上升为国家战略,基于高光谱遥感的海岸带环境监测与管理的需求也在不断增加。然而,越来越高的光谱分辨率和空间分辨率导致其信息量也飞速增加。同时,用于星上传输的信道的恶劣环境给高光谱遥感图像的压缩和传输带来了巨大的困难。在这种情况下,如何有效地压缩和传输海岸带的高光谱遥感图像信息就成为了当前高光谱海岸带图像应用的前沿问题之一。
英国萨里空间中心和萨里卫星技术有限公司的研究人员对遥感图像编码算法进行总结后指出,实际应用中目前最为流行的星载数据压缩编码算法主要包括JPEG算法(如ALOS、北京一号小卫星、Cartosat-1/2、Pleiades-HR、Proba-2、RapidEye和THEOS等)、JPEG2000算法(如IMS-1、RASAT和X-SAT等)和CCSDS-LDC无损压缩算法(如PICARD等)。然而,上述方法都只是仅仅通过去除一个谱段的空间相关性实现压缩,其性能远不能满足高光谱遥感技术的应用需求,至今为止尚未真正形成一种适应星载遥感图像处理的低复杂度要求、强鲁棒性信息传输和高编码效率的高光谱图像压缩实用算法和标准。
一方面,2003年后出现的分布式信源编码架构因其编码端具有较低的编码复杂度、高效的压缩性能和较高的抗误码性等优点成为针对星上图像编码的重要工具。但是,基于分布式信源编码的高光谱遥感图像编码方案还不是很多,特别是面向传感器网络、遥感系统、克服有限带宽和能量限制的分布式编码方法还处于不断发展阶段,尚未有被广泛认可的、成熟稳定的算法出现。
另一方面,大部分观察者在观看图像时,都只会对图像中感兴趣区域的信息进行重点分析,而不是对全局信息进行分析。于是,研究人员逐渐达成了一个共识:由于图像的图像感兴趣区域(Region of Interest, ROI)包含了整幅图像的主要信息和关键信息,ROI可以近似代替原始图像。这样,在处理图像时选择重点对ROI进行处理和分析,可以大幅度地降低计算量,从而能够更好地应对高光谱图像数据量大幅增长的问题。
发明内容
本发明是为了解决现有技术所存在的上述技术问题,提供一种编码效率高、抗误码性能好、质量可分级、编码复杂度低的基于感兴趣区域的海岸带高光谱图像分布式有损编码和解码方法。
本发明的技术解决方案是:一种基于感兴趣区域的海岸带高光谱图像分布式有损编码方法,其特征在于按照如下步骤进行:
步骤1.输入待编码的海岸带高光谱图像I,将谱段帧的高度N和宽度M输出至压缩码流,每个值固定占2个字节;
步骤2. 按公式计算I的每一个谱段k与其相邻的两个较低谱段的谱间相关系数,若相关系数均小于0.9,则将谱段k设置为关键帧X,否则,将其设置为WZ帧Y
式(1)中,分别为第k谱段和第谱段图像的i行、j列像素的灰度值;则分别为第k谱段所有像素点灰度值的平均值,这里,此外,第1个谱段固定作为关键帧;将所选关键帧的数目G置于1个字节中,将关键帧的谱段号置于其后面的G个字节中,然后将这个字节输出至压缩码流;
步骤3.将每个关键帧作为一个谱段组,然后将每个WZ帧划分到与之最近的、且谱段号小于该WZ帧谱段号的关键帧所在的谱段组,从而形成G个谱段组;令
步骤4.若,则转入步骤5;否则,转入步骤10;
步骤5.对第g个谱段组的关键帧进行3级最大提升格形态小波变换,在最低分辨率下的高频子带中利用Canny算子进行边缘检测,并确定包含所有边缘点的最小包围盒,将与该包围盒对应的空间域像素集合作为感兴趣区域,而其余区域作为背景,然后将包围盒左上角和右下角的坐标写入压缩码流,每个坐标分量固定占用字节;
步骤6.对第g个谱段组关键帧的进行JPEG-LS无损编码,对第g个谱段组关键帧的采用可分级的编码方法SPIHT,二者的编码码流输出至压缩码流;
步骤7.对于第g个谱段组,将关键帧作为参考帧,为该组中的每一个WZ帧构造基于感兴趣区域的1阶线性预测器,利用最小二乘法计算使预测均方差取得最小值的预测参数,并将其作为边信息经算术编码后输出到压缩码流,用以指导和矫正WZ帧的传输和解码:
式(2)中,为与相对应的WZ帧感兴趣区域,所述为预测误差;
步骤8. 对预测误差进行典型的压缩感知采样,观测矩阵采用高斯随机矩阵,并将采样值经算术编码后输出至压缩码流;
步骤9.令,转入步骤4;
步骤10.将压缩码流通过下行信道传输至解码端,算法结束。
一种与上述基于感兴趣区域的海岸带高光谱图像分布式有损编码方法对应的解码方法,其特征在于按照如下步骤进行:
步骤1.读入压缩码流的前4个字节,解码出谱段帧的高度N和宽度M
步骤2.读入压缩码流的第5个字节,解码出关键帧的数目G
步骤3.从压缩码流中继续读入G个字节,解码出关键帧的谱段号码;
步骤4.令
步骤5.若,则转入步骤6;否则,算法结束;
步骤6.从压缩码流中继续读入个字节,解码出第个谱段组的感兴趣区域坐标;
步骤7.采用JPEG-LS无损解码重构出第g个谱段组的关键帧的感兴趣区域,采用SPIHT解码重构出该关键帧的非感兴趣区域
步骤8.用算术解码从压缩码流中提取出该谱段组的每个WZ帧的预测参数,并利用关键帧的和1阶线性预测获得第g个谱段组中每个WZ帧的预测;
步骤9.用算术解码从压缩码流中提取出每个WZ帧的预测误差的压缩采样值,然后利用协同稀疏的压缩感知重构算法计算得到解码后的预测误差,并通过公式得到每个WZ帧的感兴趣区域的解码结果
步骤10.将该谱段组的关键帧非感兴趣区域作为每个WZ帧的非感兴趣区域,并将每个WZ帧的相加,获得每个WZ帧的解码结果;
步骤11.令,转入步骤5。
本发明与现有技术相比,具有以下优点:第一,采用分布式编码作为总体的编码框架,并结合压缩感知技术,其编码复杂度低,对噪声的鲁棒性高,适合星载高光谱图像的编码;第二,对感兴趣区域采用JPEG-LS无损编码方法可确保感兴趣区域的保真度以及解码图像的人眼主观质量,对背景区域采用SPIHT编码方法使所获得的码流具有质量可分级特性;第三,利用高光谱图像的谱间相关性对WZ帧进行线性预测,由于预测误差的稀疏性较高,采用压缩感知编码在降低复杂度的同时,有利于提高图像感兴趣区域的重构质量。
附图说明
图1是本发明实施例的流程图。
图2 是Eb/No=1.5dB时,不同编码方法在不同码率下的解码图像对比图。
图3是Eb/No=1.5dB、码率为0.4时,解码图像的放大结果对比图。
具体实施例
如图1所示:本发明实施例所提供的基于感兴趣区域的海岸带高光谱图像分布式有损编码方法包括如下步骤:
步骤1.输入待编码的海岸带高光谱图像I,将谱段帧的高度N和宽度M输出至压缩码流,每个值固定占2个字节;
步骤2.按公式计算I的每一个谱段k与其相邻的两个较低谱段的谱间相关系数,若相关系数均小于0.9,则将谱段k设置为关键帧X,否则,将其设置为WZ帧X
式(1)中,分别为第k谱段和第谱段图像的i行、j列像素的灰度值;则分别为第k谱段所有像素点灰度值的平均值,这里,此外,第1个谱段固定作为关键帧;将所选关键帧的数目G置于1个字节中,将关键帧的谱段号置于其后面的G个字节中,然后将这个字节输出至压缩码流;
步骤3.将每个关键帧作为一个谱段组,然后将每个WZ帧划分到与之最近的、且谱段号小于该WZ帧谱段号的关键帧所在的谱段组,从而形成G个谱段组;令
步骤4.若,则转入步骤5;否则,转入步骤10;
步骤5.对第g个谱段组的关键帧进行3级最大提升格形态小波变换,在最低分辨率下的高频子带中利用Canny算子进行边缘检测,并确定包含所有边缘点的最小包围盒,将与该包围盒对应的空间域像素集合作为感兴趣区域,而其余区域作为背景,然后将包围盒左上角和右下角的坐标写入压缩码流,每个坐标分量固定占用字节;
步骤6.对第g个谱段组关键帧的进行JPEG-LS无损编码,对第g个谱段组关键帧的采用可分级的编码方法SPIHT,二者的编码码流输出至压缩码流;
步骤7.对于第g个谱段组,将关键帧作为参考帧,为该组中的每一个WZ帧构造基于感兴趣区域的1阶线性预测器,利用最小二乘法计算使预测均方差取得最小值的预测参数,并将其作为边信息经算术编码后输出到压缩码流,用以指导和矫正WZ帧的传输和解码:
其中,所述为与相对应的WZ帧感兴趣区域,所述为预测误差;
步骤8. 对预测误差进行典型的压缩感知采样,观测矩阵采用高斯随机矩阵,并将采样值经算术编码后输出至压缩码流;
步骤9.令,转入步骤4;
步骤10.将压缩码流通过下行信道传输至解码端,算法结束。
如图1所示:本发明实施例所提供的基于感兴趣区域的海岸带高光谱图像分布式有损解码方法包括如下步骤:
步骤1.读入压缩码流的前4个字节,解码出谱段帧的高度N和宽度M
步骤2.读入压缩码流的第5个字节,解码出关键帧的数目G
步骤3.从压缩码流中继续读入G个字节,解码出关键帧的谱段号码;
步骤4.令
步骤5.若,则转入步骤6;否则,算法结束;
步骤6.从压缩码流中继续读入个字节,解码出第g个谱段组的感兴趣区域坐标;
步骤7.采用JPEG-LS无损解码重构出第g个谱段组的关键帧的感兴趣区域,采用SPIHT解码重构出该关键帧的非感兴趣区域
步骤8.用算术解码从压缩码流中提取出该谱段组的每个WZ帧的预测参数,并利用关键帧的和1阶线性预测获得第g个谱段组中每个WZ帧的预测;
步骤9.用算术解码从压缩码流中提取出每个WZ帧的预测误差的压缩采样值,然后利用协同稀疏的压缩感知重构(Compressive Sensing Recovery via CollaborativeSparsity)算法计算得到解码后的预测误差,并通过公式得到每个WZ帧的感兴趣区域的解码结果
步骤10.将该谱段组的关键帧非感兴趣区域作为每个WZ帧的非感兴趣区域,并将每个WZ帧的相加,获得每个WZ帧的解码结果;
步骤11.令,转入步骤5。
Eb/No=1.5dB时,不同编码方法在不同码率下的解码图像对比如图2所示。
Eb/No=1.5dB、码率为0.4时,解码图像的放大结果对比如图3所示。
Eb/No=1.5dB时不同编码方法在不同码率下的解码图像的PSNR比较如表1。
表1
不同编码方法在不同码率下的运行时间比较如表2。
表2

Claims (2)

1.一种基于感兴趣区域的海岸带高光谱图像分布式有损编码方法,其特征在于按照如下步骤进行:
步骤1.输入待编码的海岸带高光谱图像,将谱段帧的高度和宽度输出至压缩码流,每个值固定占2个字节;
步骤2. 按公式计算的每一个谱段与其相邻的两个较低谱段的谱间相关系数,若相关系数均小于0.9,则将谱段设置为关键帧,否则,将其设置为WZ帧
式(1)中,分别为第谱段和第谱段图像的行、列像素的灰度值;则分别为第谱段所有像素点灰度值的平均值,这里,此外,第1个谱段固定作为关键帧;将所选关键帧的数目置于1个字节中,将关键帧的谱段号置于其后面的个字节中,然后将这个字节输出至压缩码流;
步骤3.将每个关键帧作为一个谱段组,然后将每个WZ帧划分到与之最近的、且谱段号小于该WZ帧谱段号的关键帧所在的谱段组,从而形成个谱段组;令
步骤4.若,则转入步骤5;否则,转入步骤10;
步骤5.对第个谱段组的关键帧进行3级最大提升格形态小波变换,在最低分辨率下的高频子带中利用Canny算子进行边缘检测,并确定包含所有边缘点的最小包围盒,将与该包围盒对应的空间域像素集合作为感兴趣区域,而其余区域作为背景,然后将包围盒左上角和右下角的坐标写入压缩码流,每个坐标分量固定占用字节;
步骤6.对第个谱段组关键帧的进行JPEG-LS无损编码,对第个谱段组关键帧的采用可分级的编码方法SPIHT,二者的编码码流输出至压缩码流;
步骤7.对于第个谱段组,将关键帧作为参考帧,为该组中的每一个WZ帧构造基于感兴趣区域的1阶线性预测器,利用最小二乘法计算使预测均方差取得最小值的预测参数,并将其作为边信息经算术编码后输出到压缩码流,用以指导和矫正WZ帧的传输和解码:
式(2)中,为与相对应的WZ帧感兴趣区域,所述为预测误差;
步骤8. 对预测误差进行典型的压缩感知采样,观测矩阵采用高斯随机矩阵,并将采样值经算术编码后输出至压缩码流;
步骤9.令,转入步骤4;
步骤10.将压缩码流通过下行信道传输至解码端,算法结束。
2.一种与权利要求1所述基于感兴趣区域的海岸带高光谱图像分布式有损编码方法对应的解码方法,其特征在于按照如下步骤进行:
步骤1.读入压缩码流的前4个字节,解码出谱段帧的高度和宽度
步骤2.读入压缩码流的第5个字节,解码出关键帧的数目
步骤3.从压缩码流中继续读入个字节,解码出关键帧的谱段号码;
步骤4.令
步骤5.若,则转入步骤6;否则,算法结束;
步骤6.从压缩码流中继续读入个字节,解码出第个谱段组的感兴趣区域坐标;
步骤7.采用JPEG-LS无损解码重构出第个谱段组的关键帧的感兴趣区域,采用SPIHT解码重构出该关键帧的非感兴趣区域
步骤8.用算术解码从压缩码流中提取出该谱段组的每个WZ帧的预测参数,并利用关键帧的和1阶线性预测获得第个谱段组中每个WZ帧的预测;
步骤9.用算术解码从压缩码流中提取出每个WZ帧的预测误差的压缩采样值,然后利用协同稀疏的压缩感知重构算法计算得到解码后的预测误差 ,并通过公式得到每个WZ帧的感兴趣区域的解码结果
步骤10.将该谱段组的关键帧非感兴趣区域作为每个WZ帧的非感兴趣区域,并将每个WZ帧的相加,获得每个WZ帧的解码结果;
步骤11.令,转入步骤5。
CN201610159167.1A 2016-03-21 2016-03-21 基于感兴趣区域的海岸带高光谱图像分布式有损编码和解码方法 Expired - Fee Related CN105825530B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610159167.1A CN105825530B (zh) 2016-03-21 2016-03-21 基于感兴趣区域的海岸带高光谱图像分布式有损编码和解码方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610159167.1A CN105825530B (zh) 2016-03-21 2016-03-21 基于感兴趣区域的海岸带高光谱图像分布式有损编码和解码方法

Publications (2)

Publication Number Publication Date
CN105825530A CN105825530A (zh) 2016-08-03
CN105825530B true CN105825530B (zh) 2019-02-15

Family

ID=56524787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610159167.1A Expired - Fee Related CN105825530B (zh) 2016-03-21 2016-03-21 基于感兴趣区域的海岸带高光谱图像分布式有损编码和解码方法

Country Status (1)

Country Link
CN (1) CN105825530B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107124612B (zh) * 2017-04-26 2019-06-14 东北大学 基于分布式压缩感知的高光谱图像压缩方法
CN109151482B (zh) * 2018-10-29 2021-03-23 西安电子科技大学 星载光谱图像谱段无损有损混合压缩方法
CN111145276B (zh) * 2019-12-18 2023-03-24 河南大学 基于深度学习和分布式信源编码的高光谱图像压缩方法
CN113470127B (zh) * 2021-09-06 2021-11-26 成都国星宇航科技有限公司 基于星载云检测的光学图像有效压缩方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103067710A (zh) * 2012-12-28 2013-04-24 辽宁师范大学 基于三维小波变换的分布式超光谱图像编码及解码方法
CN103297754A (zh) * 2013-05-02 2013-09-11 上海交通大学 一种监控视频自适应感兴趣区域编码系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103067710A (zh) * 2012-12-28 2013-04-24 辽宁师范大学 基于三维小波变换的分布式超光谱图像编码及解码方法
CN103297754A (zh) * 2013-05-02 2013-09-11 上海交通大学 一种监控视频自适应感兴趣区域编码系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"四叉树分块的高光谱图像分布式无损编码";王相海 等;《中国图象图形学报》;20150831;第20卷(第8期);第1102-1109页
"波段排序的高光谱影像3维混合树编码方法";王相海 等;《中国图象图形学报》;20140831;第19卷(第8期);第1228-1236页

Also Published As

Publication number Publication date
CN105825530A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
CN110087092B (zh) 基于图像重构卷积神经网络的低码率视频编解码方法
US9438930B2 (en) Systems and methods for wavelet and channel-based high definition video encoding
CN102123278B (zh) 基于分布式压缩感知技术的信源编解码的方法
Liu et al. Motion-aware decoding of compressed-sensed video
CN105825530B (zh) 基于感兴趣区域的海岸带高光谱图像分布式有损编码和解码方法
US20160050440A1 (en) Low-complexity depth map encoder with quad-tree partitioned compressed sensing
CN109361919A (zh) 一种联合超分辨率和去压缩效应的图像编码性能提升方法
CN110099280A (zh) 一种无线自组织网络带宽受限下的视频业务质量增强方法
CN111669588B (zh) 一种超低时延的超高清视频压缩编解码方法
WO2023279961A1 (zh) 视频图像的编解码方法及装置
CN107124612B (zh) 基于分布式压缩感知的高光谱图像压缩方法
Zhao et al. Compressive-sensed image coding via stripe-based DPCM
Kumar et al. Performance evaluation of image compression techniques
CN103533351B (zh) 一种多量化表的图像压缩方法
CN103402090A (zh) 一种基于霍夫曼无损压缩算法的改进方法
CN107770537B (zh) 基于线性重建的光场图像压缩方法
Panda et al. Competency assessment of image compression in the lossy and lossless domain
CN113194312A (zh) 结合视觉显著性的行星科学探测图像自适应量化编码系统
WO2010064569A1 (ja) 動画像データの圧縮方法
Fan et al. Learned lossless jpeg transcoding via joint lossy and residual compression
WO2023279968A1 (zh) 视频图像的编解码方法及装置
Vijay et al. A review of image transmission using real time technique over wmsn
Delaunay et al. Bit-plane analysis and contexts combining of JPEG2000 contexts for on-board satellite image compression
CN116934881A (zh) 基于语义图谱的图像-语义信息联合压缩编码方法
Bernatin et al. A Survey on Efficient memory in video codec using Hybrid Algorithm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190215

Termination date: 20210321

CF01 Termination of patent right due to non-payment of annual fee