CN105823720A - 一种研究岩体孔隙及裂隙结构与座逾渗特征的方法及装置 - Google Patents

一种研究岩体孔隙及裂隙结构与座逾渗特征的方法及装置 Download PDF

Info

Publication number
CN105823720A
CN105823720A CN201610387241.5A CN201610387241A CN105823720A CN 105823720 A CN105823720 A CN 105823720A CN 201610387241 A CN201610387241 A CN 201610387241A CN 105823720 A CN105823720 A CN 105823720A
Authority
CN
China
Prior art keywords
rock
grid
core
rock mass
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610387241.5A
Other languages
English (en)
Other versions
CN105823720B (zh
Inventor
赵万春
王婷婷
赵丹
付晓飞
冯笑含
张来娣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang Saince Science And Technology Information Consulting Service Co Ltd
Original Assignee
Northeast Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Petroleum University filed Critical Northeast Petroleum University
Priority to CN201610387241.5A priority Critical patent/CN105823720B/zh
Publication of CN105823720A publication Critical patent/CN105823720A/zh
Application granted granted Critical
Publication of CN105823720B publication Critical patent/CN105823720B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials

Abstract

本发明涉及的是一种研究岩体孔隙及裂隙结构与座逾渗特征的方法及装置,其中的装置包括岩心实验装置、操作台、图像放大装置与透射镜扫描图像处理系统、岩体切割系统,岩心实验装置包括由标准岩心、岩心夹持装置组成的被测试件体,被测试件体置于滑动底座上,操作台的上表面设置有刻度尺,操作台的一侧具有支架,液压顶固定在支架的侧面,液压顶从侧面顶在岩心夹持器上,岩心夹持器从一侧将标准岩心进行夹持固定;岩体切割系统由聚焦粒子束发射头与FIB智能控制系统组成,聚焦粒子束发射头固定在标准岩心的上方。本发明实现了岩体孔隙裂隙双重介质分布特征的可视化描述,对岩体逾渗与连通的特征给予清晰的描述。

Description

一种研究岩体孔隙及裂隙结构与座逾渗特征的方法及装置
技术领域
本发明涉及石油与天然气、矿业、岩土等工程中岩体微观技术领域,具体涉及一种研究岩体孔隙及裂隙结构与座逾渗特征的方法及装置。
背景技术
在常规与非常规油气藏的开采中,孔隙裂隙双重介质是普遍的一类介质。由于不同类型岩体的复杂结构与特性,以及岩体内部孔隙及裂隙结构特征的描述不够准确,实际开采中存在很多技术和安全问题无法解决。目前,对于岩体内部结构特征的研究还仅限于孔隙介质,主要是基于统计概率的最大逾渗团特征研究,而岩体中的裂隙分布对岩体的变形破坏特性及逾渗特征的影响也很大。对于孔隙裂隙双重介质以及孔隙裂隙在整个岩体的分布情况没有确切描述,因此无法可视化岩体的孔裂隙结构特征。而对岩体内部孔裂隙的复杂连通行为的描述不完善,制约了岩体孔裂隙结构演化的进一步研究,如:外载作用下岩体内部结构的演化规律、不同外部条件下岩体逾渗阈值变化等方面的研究。尽管目前对岩体内部特征的研究成果能够在一定程度上满足当前认识,但对于岩体孔隙及裂隙结构无法给予系统的阐述,从而影响岩体逾渗特征及规律的研究与发展。
发明内容
本发明的一个目的是提供一种研究岩体孔隙及裂隙结构与座逾渗特征的方法,这种研究岩体孔隙及裂隙结构与座逾渗特征方法用于解决现有的岩体孔隙裂隙双重介质连通特征无法准确描述的问题,本发明的另一个目的是提供这种研究岩体孔隙及裂隙结构与座逾渗特征的装置。
本发明解决其技术问题所采用的技术方案是:这种研究岩体孔隙及裂隙结构与座逾渗特征的方法:
第一步:现场选取实验岩心,对岩心进行抛光,按照仪器规定制作成标准的岩样尺寸即标准岩心,置于岩心实验装置中;
第二步:通过图像放大装置与透射镜扫描图像处理系统对标准岩心进行扫描,将扫描岩心图像传输至计算机图像处理系统中;
第三步:通过岩体切割系统对实验岩心进行纵向切割扫描,并将单张切割岩体以标准图像形式传输至计算机图像处理系统中。计算机图像处理系统对单张岩心图像进行网格剖分,并进行坐标标注,标注原则为:假定岩心图像尺寸为L0×L0,将图像划分成边长为L×L的正方形子网格。其中任一张网格剖面的第一个网格的坐标为设定为(0,0,0),则该剖面内任意网格的坐标为(m,n,k),m,n=1,2,…,L0/L,k为岩体纵向上被剖开的份数,k=1,2,…,H/h,H为岩体总厚度,h为岩体纵向切割的单位步长厚度。对岩心图像进行灰度扫描,若任意网格(m,n,k)被孔隙占据,孔隙长度r<L,则该网格被赋予向量值表示为[m,n,k,1]。不考虑裂隙在网格内的弯曲,若裂隙落入网格的某一格子中,裂隙长度l满足L≤l≤L,即认为该格子为裂隙单元,该网格被赋予向量值[m,n,k,-1]。若该网格的空间被岩石基质占据,则该网格被赋予向量值表示为[m,n,k,0],其中m,n为任意网格点坐标;
第四步:重复第三步操作,将岩体所有剖分的图像进行扫描,得到整个岩体孔裂隙与基质岩石的三维向量表示形式为:
基质:;孔隙:;裂隙:
第五步:通过寻址获取连通团的特征,假设两个网格均为孔隙时是不连通的,一个裂隙单元或基质单元周围至少有一个裂隙单元或基质单元与之相连通,将孔隙单元、基质单元和裂隙单元在网格中的1,0,-1分布按照1+1=1,1+0=1,1+(-1)=-1,0+0=0,-1+0=-1,-1+(-1)=-1的准则对孔隙和裂隙的向量值进行叠加,最后形成了孔裂隙共存的向量值表示;
第六步:重复上述第五步的操作,对整个岩体中所有的裂隙网格寻址结束;
第七步:对任意孔隙网格坐标(m,n,k),按照第五步的寻址路径对整个岩体中的孔隙网格寻址,若找到与其连通的孔隙网格坐标,记录该相对坐标,若寻址网格特征为裂隙或岩石基质或与之前寻址的网格相对坐标相同则完成一次寻址过程,对所有寻址路径寻址完成,此时,整个岩体中所有孔裂隙网格寻址结束,整个岩体的孔裂隙连通情况确定;
第八步:统计整个岩体的孔隙或裂隙连通团所包含的单元数量,得到最大连通团包含的网格数量F,确定岩体的逾渗概率为P=F/[(L0/L)2×(H/h)];
上述方案步骤五中寻址方法与过程如下:对任意裂隙网格坐标(m,n,k)设定寻址的路径包括:m+1、m-1、n+1、n-1、k+1、k-1,其中此处的1≤m,n≤L0/L-1,1≤k≤H/h-1;在寻址过程中,每一步沿上述6个坐标方位进行路径寻址,若找到与其连通的裂隙网格坐标,记录该相对坐标,若找到与其连通的孔隙网格坐标,按照向量叠加准则进行向量坐标叠加;若寻址网格特征为岩石基质或与之前寻址的网格相对坐标相同则完成一次寻址过程,若整个寻址过程的所有寻址路径均完成,则该网格的寻址过程终止,寻址过程中有经过的轨迹即为其相连通的裂隙连通团。
上述研究岩体孔隙及裂隙结构与座逾渗特征的方法使用的装置包括岩心实验装置、操作台、图像放大装置与透射镜扫描图像处理系统、岩体切割系统,岩心实验装置包括由标准岩心、岩心夹持装置组成的被测试件体,被测试件体置于滑动底座上,滑动底座的滚轮位于操作台上,操作台的上表面设置有刻度尺,操作台的一侧具有支架,液压顶固定在支架的侧面,液压顶从侧面顶在岩心夹持器上,岩心夹持器从一侧将标准岩心进行夹持固定;岩体切割系统由聚焦粒子束发射头与FIB智能控制系统组成,聚焦粒子束发射头固定在标准岩心的上方。
上述方案中的图像放大装置与透射镜扫描图像处理系统包括由体视显微镜、CCD摄像机、显微观测架和计算机图像处理系统,TEM透射电镜与CCD摄像机相连,并置于显微观测架上,CCD摄像机连接计算机图像处理系统。
本发明具有以下有益效果:
1、本发明实现了岩体孔隙裂隙双重介质分布特征的可视化描述,对岩体逾渗与连通的特征给予清晰的描述。
2、本发明更直观的测定了岩体的孔裂隙结构,对于岩体内部结构的研究是很好的补充。
3、本发明对未来的数字化岩心描述、微观、纳观孔裂隙特征描述给予了更加合理的方法与手段。
附图说明
图1是本发明中岩体三维结构网格划分示意图;
图2是座逾渗模型(三维);
图3是本发明中装置总体结构示意图。
1-标准岩心;2-岩心夹持器;3-FIB智能控制系统;4-聚焦粒子束发射头;5-TEM透射电镜;6-CCD摄像机;7-显微观测架;8-计算机图像处理系统;9-滑动底座;10-刻度尺;11-操作台;12-固定底座;13-液压顶。
具体实施方式
下面结合附图对本发明作进一步的说明:
这种研究岩体孔裂隙结构与逾渗特征的描述方法在图3所示的装置中进行。具体如下:
第一步:现场选取实验岩心,对岩心进行抛光,按照仪器规定制作成标准的岩样尺寸,置于岩心实验装置中。
第二步:通过图像放大装置与透射镜扫描图像处理系统对标准岩心按照进行扫描,将扫描岩心图像传输至计算机图像处理系统中,计算机图像处理系统中安装系统处理软件。
第三步:通过岩体切割系统对实验岩心进行纵向切割扫描,并将单张切割岩体以标准图像形式传输至计算机图像处理系统中。参阅图2,计算机图像处理系统对单张岩心图像进行网格剖分,并进行坐标标注,标注原则为:假定岩心图像尺寸为L0×L0,将图像划分成边长为L×L的正方形子网格。其中任一张网格剖面的第一个网格的坐标为设定为(0,0,0),则该剖面内任意网格的坐标为(m,n,k),m,n=1,2,…,L0/L,k为岩体纵向上被剖开的份数,k=1,2,…,H/h,H为岩体总厚度,h为岩体纵向切割的单位步长厚度。对岩心图像进行灰度扫描,若任意网格(m,n,k)被孔隙占据,孔隙长度r<L,则该网格被赋予向量值表示为[m,n,k,1]。不考虑裂隙在网格内的弯曲,若裂隙落入网格的某一格子中,裂隙长度l满足L≤l≤L,即认为该格子为裂隙单元,该网格被赋予向量值[m,n,k,-1]。若该网格的空间被岩石基质占据,则该网格被赋予向量值表示为[m,n,k,0],其中m,n为任意网格点坐标。
第四步:重复第三步操作,将岩体所有剖分的图像进行扫描,得到整个岩体孔裂隙与基质岩石的三维向量表示形式为:
基质:;孔隙:;裂隙:
第五步:通过寻址路径的方法获取连通团的特征,假设两个网格均为孔隙时是不连通的,一个裂隙(或基质)单元周围至少有一个裂隙(或基质)单元与之相连通,将孔隙单元、基质单元和裂隙单元在网格中的1,0,-1分布按照1+1=1,1+0=1,1+(-1)=-1,0+0=0,-1+0=-1,-1+(-1)=-1的准则对孔隙和裂隙的向量值进行叠加,最后形成了孔裂隙共存的向量值表示。参阅图2,本发明运用三维座逾渗模型研究岩体孔裂隙结构分布情况,即一个座周围有6个相邻的座与之相连通。具体寻址方法与过程如下:对任意裂隙网格坐标(m,n,k)设定寻址的路径包括:m+1、m-1、n+1、n-1、k+1、k-1,其中此处的1≤m,n≤L0/L-1,1≤k≤H/h-1。在寻址过程中,每一步沿上述6个坐标方位进行路径寻址,若找到与其连通的裂隙网格坐标,记录该相对坐标,若找到与其连通的孔隙网格坐标,按照向量叠加准则进行向量坐标叠加;若寻址网格特征为岩石基质或与之前寻址的网格相对坐标相同则完成一次寻址过程,若整个寻址过程的所有寻址路径均完成,则该网格的寻址过程终止,寻址过程中有经过的轨迹即为其相连通的裂隙连通团。
第六步:重复上述第五步的操作,对整个岩体中所有的裂隙网格寻址结束。
第七步:对任意孔隙网格坐标(m,n,k),按照第五步的寻址路径对整个岩体中的孔隙网格寻址,若找到与其连通的孔隙网格坐标,记录该相对坐标,若寻址网格特征为裂隙或岩石基质或与之前寻址的网格相对坐标相同则完成一次寻址过程,对所有寻址路径寻址完成。此时,整个岩体中所有孔裂隙网格寻址结束,整个岩体的孔裂隙连通情况确定。
第八步:统计整个岩体的孔隙或裂隙连通团所包含的单元数量,得到最大连通团包含的网格数量F,确定岩体的逾渗概率为P=F/[(L0/L)2×(H/h)]。
如图3所示,本发明研究岩体孔隙及裂隙结构与座逾渗特征的方法使用的装置包括岩心实验装置、操作台11、图像放大装置与透射镜扫描图像处理系统、岩体切割系统,岩心实验装置包括由标准岩心1、岩心夹持器2组成的被测试件体,被测试件体置于滑动底座9上,滑动底座9的滚轮位于操作台11上,操作台11的上表面设置有刻度尺10,操作台11的一侧具有支架,液压顶13固定在支架的侧面,液压顶13从侧面顶在岩心夹持器2上,岩心夹持器2从一侧将标准岩心1进行夹持固定;岩体切割系统由聚焦粒子束发射头4与FIB智能控制系统3组成,聚焦粒子束发射头4固定在标准岩心1的上方。滑动底座9能够通过滚轮在操作台11上滑动,滑动步长可调节。
图像放大装置与透射镜扫描图像处理系统包括由体视显微镜、CCD摄像机6、显微观测架7和计算机图像处理系统8。体视显微镜采用TEM透射电镜5,TEM透射电镜5与CCD摄像机6相连,并置于显微观测架7上,对标准岩心1进行扫描计算机测定,CCD摄像机6连接计算机图像处理系统8,扫描结果经CCD摄像机6成像装置成像,并传输至计算机图像处理系统8中,计算机图像处理系统8经对图像按照操作第三步-第七步对图像进行逾渗研究与连通特征描述。
岩体切割系统由FIB智能控制系统3、聚焦粒子束发射头4组成,其中FIB智能控制系统3内置控制软件,可对聚焦粒子束发射头4实施岩心切割,液压顶13对岩心移动实施控制,岩心切割厚度尺寸可通过刻度尺10实现控制。
最后所应说明的是,以上实施例仅用以说明本发明技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (4)

1.一种研究岩体孔隙及裂隙结构与座逾渗特征的方法,其特征在于:这种研究岩体孔隙及裂隙结构与座逾渗特征的方法:
第一步:现场选取实验岩心,对岩心进行抛光,按照仪器规定制作成标准的岩样尺寸即标准岩心,置于岩心实验装置中;
第二步:通过图像放大装置与透射镜扫描图像处理系统对标准岩心进行扫描,将扫描岩心图像传输至计算机图像处理系统中;
第三步:通过岩体切割系统对实验岩心进行纵向切割扫描,并将单张切割岩体以标准图像形式传输至计算机图像处理系统中;计算机图像处理系统对单张岩心图像进行网格剖分,并进行坐标标注,标注原则为:假定岩心图像尺寸为L0×L0,将图像划分成边长为L×L的正方形子网格,其中任一张网格剖面的第一个网格的坐标为设定为(0,0,0),则该剖面内任意网格的坐标为(m,n,k),m,n=1,2,…,L0/L,k为岩体纵向上被剖开的份数,k=1,2,…,H/h,H为岩体总厚度,h为岩体纵向切割的单位步长厚度;对岩心图像进行灰度扫描,若任意网格(m,n,k)被孔隙占据,孔隙长度r<L,则该网格被赋予向量值表示为[m,n,k,1];不考虑裂隙在网格内的弯曲,若裂隙落入网格的某一格子中,裂隙长度l满足L≤l≤L,即认为该格子为裂隙单元,该网格被赋予向量值[m,n,k,-1],若该网格的空间被岩石基质占据,则该网格被赋予向量值表示为[m,n,k,0],其中m,n为任意网格点坐标;
第四步:重复第三步操作,将岩体所有剖分的图像进行扫描,得到整个岩体孔裂隙与基质岩石的三维向量表示形式为:
基质:;孔隙:;裂隙:
第五步:通过寻址获取连通团的特征,假设两个网格均为孔隙时是不连通的,一个裂隙单元或基质单元周围至少有一个裂隙单元或基质单元与之相连通,将孔隙单元、基质单元和裂隙单元在网格中的1,0,-1分布按照1+1=1,1+0=1,1+(-1)=-1,0+0=0,-1+0=-1,-1+(-1)=-1的准则对孔隙和裂隙的向量值进行叠加,最后形成了孔裂隙共存的向量值表示;
第六步:重复上述第五步的操作,对整个岩体中所有的裂隙网格寻址结束;
第七步:对任意孔隙网格坐标(m,n,k),按照第五步的寻址路径对整个岩体中的孔隙网格寻址,若找到与其连通的孔隙网格坐标,记录该相对坐标,若寻址网格特征为裂隙或岩石基质或与之前寻址的网格相对坐标相同则完成一次寻址过程,对所有寻址路径寻址完成,此时,整个岩体中所有孔裂隙网格寻址结束,整个岩体的孔裂隙连通情况确定;
第八步:统计整个岩体的孔隙或裂隙连通团所包含的单元数量,得到最大连通团包含的网格数量F,确定岩体的逾渗概率为P=F/[(L0/L)2×(H/h)]。
2.根据权利要求1所述的研究岩体孔隙及裂隙结构与座逾渗特征的方法,其特征在于:所述的步骤五中寻址方法与过程如下:对任意裂隙网格坐标(m,n,k)设定寻址的路径包括:m+1、m-1、n+1、n-1、k+1、k-1,其中此处的1≤m,n≤L0/L-1,1≤k≤H/h-1;在寻址过程中,每一步沿上述6个坐标方位进行路径寻址,若找到与其连通的裂隙网格坐标,记录该相对坐标,若找到与其连通的孔隙网格坐标,按照向量叠加准则进行向量坐标叠加;若寻址网格特征为岩石基质或与之前寻址的网格相对坐标相同则完成一次寻址过程,若整个寻址过程的所有寻址路径均完成,则该网格的寻址过程终止,寻址过程中有经过的轨迹即为其相连通的裂隙连通团。
3.一种权利要求1或2所述的研究岩体孔隙及裂隙结构与座逾渗特征的方法使用的装置,其特征在于:这种研究岩体孔隙及裂隙结构与座逾渗特征的方法使用的装置包括岩心实验装置、操作台(11)、图像放大装置与透射镜扫描图像处理系统、岩体切割系统,岩心实验装置包括由标准岩心(1)、岩心夹持器(2)组成的被测试件体,被测试件体置于滑动底座(9)上,滑动底座(9)的滚轮位于操作台(11)上,操作台(11)的上表面设置有刻度尺(10),操作台(11)的一侧具有支架,液压顶(13)固定在支架的侧面,液压顶(13)从侧面顶在岩心夹持器(2)上,岩心夹持器(2)从一侧将标准岩心(1)进行夹持固定;岩体切割系统由聚焦粒子束发射头(4)与FIB智能控制系统(5)组成,聚焦粒子束发射头(4)固定在标准岩心(1)的上方。
4.根据权利要求3所述的研究岩体孔隙及裂隙结构与座逾渗特征的方法使用的装置,其特征在于:所述的图像放大装置与透射镜扫描图像处理系统包括由体视显微镜、CCD摄像机(6)、显微观测架(7)和计算机图像处理系统(8),TEM透射电镜(5)与CCD摄像机(6)相连,并置于显微观测架(7)上,CCD摄像机(6)连接计算机图像处理系统(8)。
CN201610387241.5A 2016-06-04 2016-06-04 一种研究岩体孔隙及裂隙结构与座逾渗特征的方法及装置 Active CN105823720B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610387241.5A CN105823720B (zh) 2016-06-04 2016-06-04 一种研究岩体孔隙及裂隙结构与座逾渗特征的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610387241.5A CN105823720B (zh) 2016-06-04 2016-06-04 一种研究岩体孔隙及裂隙结构与座逾渗特征的方法及装置

Publications (2)

Publication Number Publication Date
CN105823720A true CN105823720A (zh) 2016-08-03
CN105823720B CN105823720B (zh) 2019-10-01

Family

ID=56531902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610387241.5A Active CN105823720B (zh) 2016-06-04 2016-06-04 一种研究岩体孔隙及裂隙结构与座逾渗特征的方法及装置

Country Status (1)

Country Link
CN (1) CN105823720B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109270068A (zh) * 2018-11-02 2019-01-25 东北石油大学 一种岩芯照相辅助平台
US20210116347A1 (en) * 2019-10-22 2021-04-22 Guilin University Of Technology Simulation device for preferential flow of fissured-porous dual-permeability media and experimental method
CN114112840A (zh) * 2021-11-17 2022-03-01 中国地质大学(武汉) 一种研究孔隙-裂隙双重介质渗流特性的试验装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525154A (zh) * 2003-02-25 2004-09-01 朱玉双 透射显微油气渗流机理及储层伤害分析仪
CN201965077U (zh) * 2010-12-17 2011-09-07 中国石油天然气股份有限公司 一种岩心ct扫描固定装置
US20140142853A1 (en) * 2012-11-16 2014-05-22 Chevron U.S.A. Inc. Methods and systems for determining minimum porosity for presence of clathrates in sediment
CN104634710A (zh) * 2013-11-08 2015-05-20 中国石油天然气集团公司 一种岩体孔隙逾渗与连通特征的分析方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525154A (zh) * 2003-02-25 2004-09-01 朱玉双 透射显微油气渗流机理及储层伤害分析仪
CN201965077U (zh) * 2010-12-17 2011-09-07 中国石油天然气股份有限公司 一种岩心ct扫描固定装置
US20140142853A1 (en) * 2012-11-16 2014-05-22 Chevron U.S.A. Inc. Methods and systems for determining minimum porosity for presence of clathrates in sediment
CN104634710A (zh) * 2013-11-08 2015-05-20 中国石油天然气集团公司 一种岩体孔隙逾渗与连通特征的分析方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吕兆兴: "孔隙裂隙双重介质的三维逾渗数值模拟研究", 《岩土力学》 *
吕兆兴: "孔隙裂隙双重介质逾渗理论及应用研究", 《中国博士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109270068A (zh) * 2018-11-02 2019-01-25 东北石油大学 一种岩芯照相辅助平台
US20210116347A1 (en) * 2019-10-22 2021-04-22 Guilin University Of Technology Simulation device for preferential flow of fissured-porous dual-permeability media and experimental method
US11644402B2 (en) * 2019-10-22 2023-05-09 Guilin University Of Technology Simulation device for preferential flow of fissured-porous dual-permeability media and experimental method
CN114112840A (zh) * 2021-11-17 2022-03-01 中国地质大学(武汉) 一种研究孔隙-裂隙双重介质渗流特性的试验装置及方法

Also Published As

Publication number Publication date
CN105823720B (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
US10937210B2 (en) Method for reconstructing pore structure of core with micro-CT (computed tomography)
Nie et al. Characteristics of three organic matter pore types in the Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China
Guo et al. Quantitative pore characterization and the relationship between pore distributions and organic matter in shale based on Nano-CT image analysis: a case study for a lacustrine shale reservoir in the Triassic Chang 7 member, Ordos Basin, China
Bera et al. Understanding the micro structure of Berea Sandstone by the simultaneous use of micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM)
CN105823720A (zh) 一种研究岩体孔隙及裂隙结构与座逾渗特征的方法及装置
CN108829950B (zh) 一种基于岩心图像的非常规储层渗透率评价方法
CN113609696B (zh) 基于图像融合的多尺度多组分数字岩心构建方法及系统
CN104574420A (zh) 一种纳米级泥页岩数字岩心构建方法
US10247852B2 (en) Conditioning of expanded porosity
WO2014104909A1 (ru) Способ получения характеристической трехмерной модели образца пористого материала для исследования свойств проницаемости
CN104634710B (zh) 一种岩体孔隙逾渗与连通特征的分析方法及装置
CN111366753A (zh) 一种页岩有机质孔隙类型的微观识别方法
Kendrick et al. Crystal plasticity as an indicator of the viscous-brittle transition in magmas
Lemmens et al. FIB/SEM and automated mineralogy for core and cuttings analysis
Matsuzaki et al. Middle to Late Pleistocene radiolarian biostratigraphy in the water-mixed region of the Kuroshio and Oyashio currents, northeastern margin of Japan (JAMSTEC Hole 902-C9001C)
CN115630543A (zh) 基于一种高精度数字岩心重构模型三维有限元仿真方法
CN111257188A (zh) 碳酸盐岩孔隙系统的多尺度表征方法及装置
CN110927194B (zh) 确定泥页岩有机孔含量和孔径分布的方法
CN111507988A (zh) 一种基于数字图像处理的破碎岩体建模及渗流试验方法
CN116012545A (zh) 多尺度数字岩心建模方法、系统、存储介质及应用
CN103743742B (zh) 超稠油砂岩储层高清扫描观测方法
CN112504928B (zh) 储层岩石中裂缝的连通性的确定方法及装置
CN111272795B (zh) 支撑剂嵌入程度的确定方法、装置、设备及存储介质
Zahaf et al. Prediction of relative permeability and capillary pressure using digital rock physics: case study on two giant middle eastern carbonate reservoirs
Jin et al. Multi-scale digital rock quantitative evaluation technology on complex reservoirs

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210806

Address after: 163000 business service, No.8, building J02, Beichen green home, Saertu District, Daqing City, Heilongjiang Province

Patentee after: Heilongjiang saince science and Technology Information Consulting Service Co., Ltd

Address before: 163319 development road 199, Daqing high tech Development Zone, Heilongjiang

Patentee before: NORTHEAST PETROLEUM University