CN105821202B - 一种用于步进式加热炉的滑块 - Google Patents

一种用于步进式加热炉的滑块 Download PDF

Info

Publication number
CN105821202B
CN105821202B CN201610248768.XA CN201610248768A CN105821202B CN 105821202 B CN105821202 B CN 105821202B CN 201610248768 A CN201610248768 A CN 201610248768A CN 105821202 B CN105821202 B CN 105821202B
Authority
CN
China
Prior art keywords
sliding block
composite ceramics
walking beam
metab
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610248768.XA
Other languages
English (en)
Other versions
CN105821202A (zh
Inventor
杨晓波
吴道君
周守洪
李军营
皮镜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Shenwu Thermal Energy Technology Co Ltd
Original Assignee
Hubei Shenwu Thermal Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Shenwu Thermal Energy Technology Co Ltd filed Critical Hubei Shenwu Thermal Energy Technology Co Ltd
Priority to CN201610248768.XA priority Critical patent/CN105821202B/zh
Publication of CN105821202A publication Critical patent/CN105821202A/zh
Application granted granted Critical
Publication of CN105821202B publication Critical patent/CN105821202B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/70Furnaces for ingots, i.e. soaking pits
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种用于步进式加热炉的滑块,所述金属底座上设有螺栓通孔,复合陶瓷组件上设有与螺栓通孔对应的螺栓孔,金属底座与复合陶瓷组件通过耐热螺栓连接。与现有技术相比,本发明采用特殊的耐热滑块结构和材质替代金属5‑Cr25Ni20Si2和Co22作为耐热滑块在加热炉上应用,表现出了耐磨损、耐高温、抗氧化、能抵抗机械载负荷和滑动摩擦和抗热震性能好的优良性能,并且还能够消除“黑印”,提高轧钢成品率,降低了滑块使用成本。

Description

一种用于步进式加热炉的滑块
技术领域
本发明属于复合结构陶瓷制备方法及这一技术领域,特别属于用于步进式加热炉的滑块及其制备方法这一技术领域。
背景技术
由于现代社会的发展,国防、汽车、造船等工业用大型宽厚板的需求增加,轧钢加热炉是钢铁企业轧钢生产及产品加工的重要设备,而加热炉滑块作为轧钢加热炉的关键部件,长期处于高温、高磨损、氧化、腐蚀等恶劣工况,因此对加热炉滑块的材质和结构要求比较严格。
轧钢加热炉通常使用 高炉、焦炉混合煤气做为燃料,加热炉内设有若干个水冷管横梁,采用无缝钢管制作, 梁上面镶嵌有间隔布置的金属耐热滑块。通常使用的金属耐热滑块材料为5-Cr25Ni20Si2和Co22。加热时,因为炉内温度为1250-1350℃,金属耐热滑块直接与水冷管连接,环境非常恶劣,导致各种不良问题产生。具体来说,主要表现为:
一、传统的加热炉滑块一般都是金属材质,因为金属耐热滑块的导热系数高,一般为40~60W/m.K,高温钢坯与金属耐热滑块接触部分温度比其它部分低而形成“黑印”,这种水印导致钢坯温度不均匀,局部硬度高,进轧制机进行轧制时,容易产生尺寸偏差和内部缺陷,使废品率升高。
二、传统的加热炉滑块在1300℃的高温使用温度下,金属材料在长期工作后,抗蠕变强度降低,同时抗氧化和抗侵蚀性能也会降低,使用寿命大大下降。
三、传统的加热炉滑块,使用使用Ni和Co的合金,一般为进口材料,成本比较高。
虽然现有技术已经对传统加热炉滑块进行了改进,如在上下合金滑块之间涂覆耐高温绝热涂料,但是此方案“黑印”改善不明显、并且继承了传统加热炉滑块所有缺陷。也有采用金属复合陶瓷(公开号:CN101063187A)、乃至赛龙复合陶瓷(公开号:CN1951872A)作为加热炉滑块的,但由于陶瓷原料选择的不合理以及工艺落后,依然存在普通复合陶瓷耐压强度、热态抗弯强度不高,在长期工作后抗氧化和抗侵蚀性能降低,使用寿命短等问题;此外,合金复合陶瓷滑块还存在导热系数高等诸多问题。
发明内容
本发明所要解决传统的加热炉滑块成本高、导热系数高、抗蠕变强度低,抗氧化和抗侵蚀性能低等技术问题。本发明所要解决的另一个技术问题是普通复合陶瓷耐压强度、热态抗弯强度不高,长期工作后抗氧化和抗侵蚀性能降低。
本发明解决技术问题的技术方案是:一种用于步进式加热炉的滑块,其特征是所述滑块由金属底座、复合陶瓷组件连接组合而成,所述金属底座为U字型,其U字型构造将方形复合陶瓷组件半包围住,金属底座底部与步进式加热炉的水冷管横梁连接。
作为优选,所述金属底座上设有螺栓通孔,复合陶瓷组件上设有与螺栓通孔对应的螺栓孔,金属底座与复合陶瓷组件的螺栓孔通过耐热螺栓螺纹连接。
作为优选,所述复合陶瓷组件主要由包括以下组分按重量比配制而成:Al2O3 85~99份、TiC 1~10份、WO3 1~5份、Y2O3添加剂1~8份、BeO 0.1~0.2份。
作为优选,所述复合陶瓷主要由以下陶瓷粉料按重量比烧结而成:Al2O3 93~97份、TiC 6~10份、WO3 1~2份、亚纳米级Y2O3添加剂 4~7份、BeO 0.1~0.2份、ZrB2 0.1~0.2份、TiN 0.1~0.2份。
作为优选,所述的复合陶瓷的生产工艺为:A.精确称量各组分,将各组分依次装入球磨机,加入陶瓷粉料总重量0.9~1.2倍重量的液态湿混剂,球磨直至粉料直径为2~4um后,将料浆进行真空干燥去除液态湿混剂,得到粉料,将粉料破碎、过筛,保存备用;
B.将制好的粉料装入滑块上层的模具中,采用等静压加压成型,其压力为150~180MPa,对成型后的陶瓷件进行粗加工,加工后的半成品放入高温炉中进行烧结,使用中性的充氮气保护进行烧结,从室温逐渐升温1580℃保温烧成,然后随炉冷却;
C.将烧结好的复合陶瓷组件进行后期处理,然后制品进行三维定位测量,并对制品进行精加工,精加工的复合陶瓷组件即得成品。
作为优选,所述液态湿混剂为无水乙醇、无水甲醇中的一种。
作为优选,所述的充氮气保护进行烧结的过程为:从室温升到1400℃,升温速度50℃/分钟, 在1400℃保温2~2.5小时;然后从1400℃升到1550~1600℃:升温速度25℃/分钟,在1550~1600℃保温2.5-3小时。
本发明复合陶瓷组件由复合陶瓷材料制成,具有强度高、耐热性和硬度、抗氧化和抗侵蚀性能等优良性质。根据轧钢加热炉用耐热滑块的使用条件,金属底座、复合陶瓷组合连接增强了复合陶瓷组件的稳定性和耐冲击性能。具有较高的低、高温强度,较低的热膨胀系数和导热率,优良的抗热震稳定性、抗氧化性及抗渣性,既保证了高温下的稳定性,又对钢坯局部温度影响又小。
本发明添加了亚纳米级Y2O3,粒度20-200nm,在烧制过程中,亚纳米级Y2O3进入Al2O3晶格中,有Al2O3在低温下被充分烧结,使得制品显气孔率下降明显,从而提高了常温、高温强度,同时对热震性能有所改善。
与现有技术相比,本发明采用特殊的耐热滑块结构和陶瓷材质替代金属5-Cr25Ni20Si2和Co22作为耐热滑块在加热炉上应用,表现出了耐磨损、耐高温、抗氧化、能抵抗机械载负荷和滑动摩擦和抗热震性能好的优良性能,并且还能够消除“黑印”,提高轧钢成品率,降低了滑块使用成本;在Al2O3复合陶瓷添加了特殊成分后,使Al2O3复合陶瓷材料的性能大幅度提高,使材料具有更好的抗热震稳定性、韧性,特别是耐压强度和高温抗折强度大幅度提升。
附图说明
图1是本发明的金属底座、复合陶瓷组件结构示意图;
图2是本发明的装配图;
图3是本发明的剖面结构示意图;
图4是本发明的使用状态参考图。
具体实施方式
下面结合具体实施方式,对发明的技术方案作进一步具体的说明。
如图1、2、3所示,用于步进式加热炉的滑块由金属底座2、复合陶瓷组件1连接组合而成,金属底座2为U字型,其U字型构造将方形复合陶瓷组件1半包围住,金属底座上设有螺栓通孔10,复合陶瓷组件上设有与螺栓通孔对应的螺栓孔11,金属底座2与复合陶瓷组件的螺栓孔11通过耐热螺栓12螺纹连接,金属底座2底部与步进式加热炉的水冷管横梁3焊接。
实施例一:该用于步进式加热炉的滑块的制备方法包括以下步骤:
A. 将Al2O3 95 份、TiC 6份、WO3 1 份、Y2O3稀土复合添加剂 4份、BeO 0.1 份、ZrB2 0.1份、TiN 0.2份、液态湿混剂(可以采用无水乙醇、无水甲醇)95.5份依次装入球磨机,球磨72h,直至粉料直径为2~4um后,将料浆进行真空干燥去除无水乙醇,得到粉料,将粉料破碎、过筛,保存备用;
B.将制好的粉料装入滑块上层的模具中,采用等静压加压成型,其压力为150MPa,对成型后的陶瓷件进行粗加工,加工后的半成品放入高温炉中进行烧结,从室温升到1400℃,升温速度50℃/分钟, 在1400℃保温2~2.5小时;然后从1400℃升到1580℃:升温速度25℃/分钟,在 1580℃保温2.5-3小时,使用中性的氮气气氛进行保护,然后随炉冷却;
C.将烧结好的复合陶瓷组件进行后期处理,然后制品进行三维定位测量,并对制品进行精加工,精加工的复合陶瓷组件经过耐热合金螺栓和金属底座装配后即得成品。在Al2O3复合陶瓷添加了TiC、WO3、Y2O3、BeO、ZrB、TiN,尤其是Y2O3、ZrB、TiN组合,使Al2O3复合陶瓷材料的性能大幅度提高,使材料具有更好的抗热震稳定性、韧性,特别是耐压强度和高温抗折强度大幅度提升。
实施例二:该步进式加热炉的滑块的制备方法包括以下步骤:
A. 将Al2O3 97 份、TiC 8份、WO3 1.5 份、Y2O3稀土复合添加剂 7份、BeO 0.15 份、ZrB2 0.1份、TiN 0.1份、液态湿混剂(可以采用无水乙醇、无水甲醇)135份依次装入球磨机,球磨72h,直至粉料直径为2~4um后,将料浆进行真空干燥去除无水乙醇,得到粉料,将粉料破碎、过筛,保存备用;
B.将制好的粉料装入滑块上层的模具中,采用等静压加压成型,其压力为180MPa,对成型后的陶瓷件进行粗加工,加工后的半成品放入高温炉中进行烧结,从室温升到1400℃,升温速度50℃/分钟, 在1400℃保温2~2.5小时;然后从1400℃升到1600℃:升温速度25℃/分钟,在 1600℃保温2.5-3小时,使用中性的氮气气氛进行保护,然后随炉冷却;
C.将烧结好的复合陶瓷组件进行后期处理,然后制品进行三维定位测量,并对制品进行精加工,精加工的复合陶瓷组件经过耐热合金螺栓和金属底座装配后即得成品。在Al2O3复合陶瓷添加了TiC、WO3、Y2O3、BeO、ZrB、TiN,尤其是Y2O3、ZrB、TiN组合,使Al2O3复合陶瓷材料的性能大幅度提高,使材料具有更好的抗热震稳定性、韧性,特别是耐压强度和高温抗折强度大幅度提升。
实施例三:该用于步进式加热炉的滑块的制备方法包括以下步骤:
A. 将Al2O3 86 份、TiC 3份、WO3 4 份、Y2O3稀土复合添加剂 2份、BeO 0.2份、液态湿混剂(可以采用无水乙醇、无水甲醇)96份依次装入球磨机,球磨72h,直至粉料直径为2~4um后,将料浆进行真空干燥去除无水乙醇,得到粉料,将粉料破碎、过筛,保存备用;
B.将制好的粉料装入滑块上层的模具中,采用等静压加压成型,其压力为160MPa,对成型后的陶瓷件进行粗加工,加工后的半成品放入高温炉中进行烧结,从室温升到1400℃,升温速度50℃/分钟, 在1400℃保温2~2.5小时;然后从1400℃升到1600℃:升温速度25℃/分钟,在 1550℃保温2.5-3小时,使用中性的氮气气氛进行保护,然后随炉冷却;
C.将烧结好的复合陶瓷组件进行后期处理,然后制品进行三维定位测量,并对制品进行精加工,精加工的复合陶瓷组件经过耐热合金螺栓和金属底座装配后即得成品。在Al2O3复合陶瓷添加了TiC、WO3、Y2O3、BeO、ZrB、TiN,使Al2O3复合陶瓷材料的性能得到一定幅度提高,使材料具有较好的抗热震稳定性、韧性,耐压强度和高温抗折强度得以提升。
实施例四:该用于步进式加热炉的滑块的制备方法包括以下步骤:
A. 将Al2O3 90 份、TiC 1.5份、WO3 5 份、Y2O3稀土复合添加剂8份、BeO 0.2份、液态湿混剂(可以采用无水乙醇、无水甲醇)113份依次装入球磨机,球磨72h,直至粉料直径为2~4um后,将料浆进行真空干燥去除无水乙醇,得到粉料,将粉料破碎、过筛,保存备用;
B.将制好的粉料装入滑块上层的模具中,采用等静压加压成型,其压力为170MPa,对成型后的陶瓷件进行粗加工,加工后的半成品放入高温炉中进行烧结,从室温升到1400℃,升温速度50℃/分钟, 在1400℃保温2~2.5小时;然后从1400℃升到1600℃:升温速度25℃/分钟,在 1590℃保温2.5-3小时,使用中性的氮气气氛进行保护,然后随炉冷却;
C.将烧结好的复合陶瓷组件进行后期处理,然后制品进行三维定位测量,并对制品进行精加工,精加工的复合陶瓷组件经过耐热合金螺栓和金属底座装配后即得成品。在Al2O3复合陶瓷添加了TiC、WO3、Y2O3、BeO、ZrB、TiN,使Al2O3复合陶瓷材料的性能得到一定幅度提高,使材料具有较好的抗热震稳定性、韧性,耐压强度和高温抗折强度得以提升。
用实施例一和实施例二分别制成的2块滑块使用1年后,检验结果如下:
1、陶瓷耐热滑块上表面没有观察到磨损情况,陶瓷耐热滑块没有发现裂纹和剥落的情况;
2、陶瓷耐热滑块在炉内经受住了频繁的温度波动(900℃-1300℃);
3、坯在炉内连续步进,陶瓷耐热滑块经受住了连续高频次的机械负荷压力,钢坯重达2~3吨;
4、由于陶瓷材料的导热系数远远低于合金材料的导热系数,加热炉内钢坯与Al2O3复合陶瓷耐热滑块接触的部分不会产生“黑印”。
用实施例三和实施例四分别制成的2块滑块使用半年后,检验结果如下:
1、陶瓷耐热滑块上表面没有观察到磨损情况,陶瓷耐热滑块没有发现裂纹和剥落的情况;
2、陶瓷耐热滑块在炉内经受住了频繁的温度波动(900℃-1300℃);
3、坯在炉内连续步进,陶瓷耐热滑块经受住了连续高频次的机械负荷压力,钢坯重达2~3吨;
4、由于陶瓷材料的导热系数远远低于合金材料的导热系数,加热炉内钢坯与Al2O3复合陶瓷耐热滑块接触的部分不会产生“黑印”。
本发明的实施例一、二与购得常规陶瓷加热炉滑块作对比,其结果如下:
本发明的实施例三、四与购得常规陶瓷加热炉滑块作对比,其结果如下:

Claims (5)

1.一种用于步进式加热炉的滑块,其特征是所述滑块由金属底座、复合陶瓷组件连接组合而成,所述金属底座为U字型,其U字型构造将方形复合陶瓷组件半包围住,金属底座底部与步进式加热炉的水冷管横梁连接;
所述金属底座上设有螺栓通孔,复合陶瓷组件上设有与螺栓通孔对应的螺栓孔,金属底座与复合陶瓷组件通过耐热螺栓连接;
所述复合陶瓷组件主要由以下组分按重量比配制而成:Al2O3 85~99份、TiC 1~10份、WO3 1~5份、Y2O3添加剂1~8份、BeO 0.1~0.2份。
2.根据权利要求1所述的一种用于步进式加热炉的滑块,其特征在于所述复合陶瓷组件主要由以下陶瓷粉料按重量比烧结而成:Al2O3 93~97份、TiC 6~10份、WO3 1~2份、亚纳米级Y2O3添加剂4~7份、BeO 0.1~0.2份、ZrB2 0.1~0.2份、TiN 0.1~0.2份。
3.根据权利要求1所述的一种用于步进式加热炉的滑块,其特征在于所述复合陶瓷组件的生产工艺为:
A .精确称量各组分,将各组分依次装入球磨机,加入陶瓷粉料总重量0.9~1.2倍重量的液态湿混剂,球磨直至粉料直径为2~4um后,将料浆进行真空干燥去除液态湿混剂,得到粉料,将粉料破碎、过筛,保存备用;
B .将制好的粉料装入滑块上层的模具中,采用等静压加压成型,其压力为150~180MPa,对成型后的陶瓷件进行粗加工,加工后的半成品放入高温炉中进行烧结,使用中性的充氮气保护进行烧结,从室温逐渐升温1580℃保温烧成,然后随炉冷却;
C .将烧结好的复合陶瓷组件进行后期处理,然后制品进行三维定位测量,并对制品进行精加工,精加工的复合陶瓷组件即得成品。
4.根据权利要求3所述的一种用于步进式加热炉的滑块,其特征在于所述液态湿混剂为无水乙醇、无水甲醇中的一种。
5.根据权利要求3所述的一种用于步进式加热炉的滑块,其特征在于所述充氮气保护进行烧结的过程为:从室温升到1400℃,升温速度50℃/分钟, 在1400℃保温2~2.5小时;然后从1400℃升到1580℃:升温速度25℃/分钟,在1580℃保温2.5-3小时。
CN201610248768.XA 2016-04-20 2016-04-20 一种用于步进式加热炉的滑块 Expired - Fee Related CN105821202B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610248768.XA CN105821202B (zh) 2016-04-20 2016-04-20 一种用于步进式加热炉的滑块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610248768.XA CN105821202B (zh) 2016-04-20 2016-04-20 一种用于步进式加热炉的滑块

Publications (2)

Publication Number Publication Date
CN105821202A CN105821202A (zh) 2016-08-03
CN105821202B true CN105821202B (zh) 2018-07-13

Family

ID=56526328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610248768.XA Expired - Fee Related CN105821202B (zh) 2016-04-20 2016-04-20 一种用于步进式加热炉的滑块

Country Status (1)

Country Link
CN (1) CN105821202B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106498147B (zh) * 2016-12-14 2019-01-01 四川德胜集团钒钛有限公司 一种轧钢加热炉滑块的制备工艺
CN108680030A (zh) * 2018-06-14 2018-10-19 攀钢集团攀枝花钢钒有限公司 防止步进式加热炉结瘤的垫块结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1951872A (zh) * 2005-10-21 2007-04-25 马鞍山钢铁股份有限公司 一种用于步进式加热炉滑块的复合陶瓷及其制备方法
CN100469732C (zh) * 2007-04-05 2009-03-18 洛阳安德路石化设备有限公司 一种陶瓷材料及其制备方法
CN201555458U (zh) * 2009-12-23 2010-08-18 王洪大 一种加热炉用滑块
CN201645007U (zh) * 2010-04-28 2010-11-24 湖南精城特种陶瓷有限公司 一种耐磨陶瓷紧固装置
CN201787817U (zh) * 2010-08-06 2011-04-06 中冶京诚工程技术有限公司 加热炉垫块
CN102408242A (zh) * 2011-08-19 2012-04-11 武汉科技大学 一种热轧步进式加热炉用复合陶瓷垫块及其制备方法
CN102898164B (zh) * 2012-11-07 2014-02-19 湖北红花高温材料有限公司 一种步进式加热炉用SiSiC 质垫块及其制备方法

Also Published As

Publication number Publication date
CN105821202A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
CN102465290B (zh) 一种具有双层金属复合管的制造方法
CN103993202A (zh) 一种超超临界电站锅炉管材用镍基合金及制备方法
CN105906353A (zh) 一种耐磨耐高温的复合陶瓷材料
CN105821202B (zh) 一种用于步进式加热炉的滑块
CN106424136A (zh) 一种以if钢为中间层的钛钢复合板及其制造方法
CN103866320B (zh) 一种改善镍基碳化钨激光熔覆涂层的方法
CN105441713A (zh) 一种钛合金无缝管及其制备方法
CN105202275A (zh) 一种钛合金tc4热轧管及其制备方法
CN105483441A (zh) 一种制备中间合金强化的锆钛合金的方法
CN107620011A (zh) 一种耐热不锈钢无缝管及其制备方法
CN103409658B (zh) 一种耐600℃高温高强可焊接钛合金
CN206232785U (zh) 一种用于步进式加热炉的耐高温、长寿命滑块
CN107675057A (zh) 一种轴承用的耐高温可润滑的陶瓷合金材料及其制备方法
CN109371392B (zh) 一种用于海工液压活塞杆的镍基抗磨耐蚀涂层的组合物、涂层及其制备方法
CN104384871B (zh) 一种铝合金钎焊板的生产工艺
CN104862569B (zh) 一种用于热挤压模具的钼基材料与表面渗碳处理工艺
CN102808136B (zh) 一种百万机组超超临界汽轮机滤网体材料的制造方法
CN110004363A (zh) 一种耐磨无缝钢管及其制造方法
CN114101554B (zh) 一种富镍的镍钛金属间化合物的多向锻造方法
CN101812580B (zh) 辊底加热炉炉辊的辊环
CN107602100A (zh) 一种氧化铝耐磨陶瓷制备工艺的研究
JPH0373614B2 (zh)
CN112517639A (zh) 一种450MPa含Nb高强合金钢的制造方法
JP2014009390A (ja) 溶射材料粉末、溶射材料焼結体及び溶射材料の製造方法
JPH031369B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Yang Xiaobo

Inventor after: Wu Daojun

Inventor after: Zhou Shouhong

Inventor after: Li Junying

Inventor after: Pi Jing

Inventor before: Wu Daojun

Inventor before: Zhou Shouhong

Inventor before: Li Junying

Inventor before: Yang Xiaobo

Inventor before: Pi Jing

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180713

Termination date: 20190420