CN105816428B - 一种雷公藤内酯醇纳米脂质体及其制备方法 - Google Patents

一种雷公藤内酯醇纳米脂质体及其制备方法 Download PDF

Info

Publication number
CN105816428B
CN105816428B CN201610275859.2A CN201610275859A CN105816428B CN 105816428 B CN105816428 B CN 105816428B CN 201610275859 A CN201610275859 A CN 201610275859A CN 105816428 B CN105816428 B CN 105816428B
Authority
CN
China
Prior art keywords
triptolide
nano liposomes
preparation
water phase
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610275859.2A
Other languages
English (en)
Other versions
CN105816428A (zh
Inventor
林绥
阙慧卿
钱丽萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIAN ACADEMY OF MEDICAL SCIENCES
Original Assignee
FUJIAN ACADEMY OF MEDICAL SCIENCES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIAN ACADEMY OF MEDICAL SCIENCES filed Critical FUJIAN ACADEMY OF MEDICAL SCIENCES
Priority to CN201610275859.2A priority Critical patent/CN105816428B/zh
Publication of CN105816428A publication Critical patent/CN105816428A/zh
Application granted granted Critical
Publication of CN105816428B publication Critical patent/CN105816428B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • A61K31/585Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin containing lactone rings, e.g. oxandrolone, bufalin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于雷公藤内酯醇制剂的制备领域,具体涉及一种雷公藤内酯醇纳米脂质体及其制备方法。按重量分数计,其原料组成为:卵磷脂0.1‑0.2%,硬脂酸0.02‑0.04%,poloxamer188 0.2%,甘油2.25%,雷公藤内酯醇0.008‑0.016%,余量为水。本发明通过采用高压均质法将雷公藤内酯醇制成纳米脂质体,平均包封率为88.52%,平均粒径为97.8nm,Zeta电位为31.7。

Description

一种雷公藤内酯醇纳米脂质体及其制备方法
技术领域
本发明属于雷公藤内酯醇制剂的制备领域,具体涉及一种雷公藤内酯醇纳米脂质体及其制备方法。
背景技术
雷公藤内酯醇(Triptolide,又称雷公藤内酯,雷公藤甲素)是一种免疫抑制剂,对移植器官的排斥反应有很强的抑制作用。大量体内和体外的研究证明,雷公藤内酯醇对多种癌症如白血病、乳腺癌、胰腺癌及肺癌等均有良好的抗肿瘤活性。然而目前适用的雷公藤内酯醇制剂由于其严重的毒副反应而限制了它的使用,脂质体作为药物载体具有能增加与细胞的亲和力,提高疗效,口服减轻对胃肠道刺激,降低副作用的特点。
“雷公藤内酯醇脂质体的制备,林建峰、苏志伟等,第四次全国雷公藤学术会议论文汇编,2004年05月”用反相蒸发法制备雷公藤内酯醇脂质体,雷公藤内酯醇脂质体形态轮廓清晰,呈圆球形囊状颗粒,平均粒径为255nm,包封率为86.18%。然而其不足之处在于:平均粒径为255nm,不是纳米级(小于100nm)的脂质体,而我们现在制备的是纳米级的脂质体,平均粒径为97.8nm,具有一定的靶向性。纳米脂质体(nano liposomes)是一种在常规脂质体的基础上结合纳米技术发展起来的新型载药系统,在稳定性、吸收和体内分布等方面具有纳米粒子的特殊效应,可以携载亲水性、疏水性及两亲性药物,直接输送至靶组织发挥药效作用。
泊洛沙姆(Poloxamer)为聚氧乙烯聚氧丙烯醚嵌段共聚物,商品名为普兰尼克(Pluronic)。这是一类新型的高分子非离子表面活性剂。Poloxamer188(Pluronic F68)作为一种水包油乳化剂是目前用于静脉乳剂极少数合成乳化剂之一。用量0.1%~5%。用本品制备的乳剂,乳粒少,一般在1μm以下,吸收率高。物理性质稳定,能够耐受热压灭菌和低温冰冻。
发明内容
本发明的目的在于针对现有技术的不足,提供一种雷公藤内酯醇纳米脂质体及其制备方法。本发明通过采用高压均质法将雷公藤内酯醇制成纳米脂质体,平均包封率为88.52%,平均粒径为97.8nm,Zeta电位为31.7。
为实现本发明的目的,采用如下技术方案:
一种雷公藤内酯醇纳米脂质体,按重量分数计,其原料组成为:卵磷脂0.1-0.2%,硬脂酸0.02-0.04%,poloxamer188 0.2%,甘油2.25%,雷公藤内酯醇0.008-0.016%,余量为水。
一种如上所述的雷公藤内酯醇纳米脂质体的制备方法,采用高压均质法制得纳米脂质体;包括以下步骤:
1)将卵磷脂、硬脂酸置于同一圆底烧杯中,加入适量二氯甲烷溶解,再加入雷公藤内酯醇溶解充分后,置旋转蒸发挥尽二氯甲烷,并在烧瓶壁上形成一层薄膜;
2)将poloxamer188溶于80 ℃ 300 ml等温等渗的甘油水溶液中,作为水相;
3)待水相冷却至35-45℃,将水相加入步骤1)的圆底烧杯中,使薄膜脱落并充分溶解;
4)将溶解均匀的溶液于高压均质机中,在85MPa均质10min。
本发明与现有技术比较具有以下优点:
本发明通过采用高压均质法将雷公藤内酯醇制成纳米脂质体,平均包封率为88.52%,平均粒径为97.8nm,Zeta电位为31.7;制备方法简单,易于操作。
具体实施方式
为进一步公开而不是限制本发明,以下结合实例对本发明作进一步的详细说明。
实施例1
一种雷公藤内酯醇纳米脂质体,按重量分数计,其原料组成为:卵磷脂0.1%,硬脂酸0.04%,poloxamer188 0.2%,甘油2.25%,雷公藤内酯醇0.012%,余量为水。
一种如上所述的雷公藤内酯醇纳米脂质体的制备方法,采用高压均质法制得纳米脂质体;包括以下步骤:
1)将卵磷脂、硬脂酸置于同一圆底烧杯中,加入适量二氯甲烷溶解,再加入雷公藤内酯醇溶解充分后,置旋转蒸发挥尽二氯甲烷,并在烧瓶壁上形成一层薄膜;
2)将poloxamer188溶于80 ℃ 300 ml等温等渗的甘油水溶液中,作为水相;
3)待水相冷却至40℃,将水相加入步骤1)的圆底烧杯中,使薄膜脱落并充分溶解;
4)将溶解均匀的溶液于高压均质机中,在85MPa均质10min。
实施例2
一种雷公藤内酯醇纳米脂质体,按重量分数计,其原料组成为:卵磷脂0.2%,硬脂酸0.03%,poloxamer188 0.2%,甘油2.25%,雷公藤内酯醇0.016%,余量为水。
一种如上所述的雷公藤内酯醇纳米脂质体的制备方法,采用高压均质法制得纳米脂质体;包括以下步骤:
1)将卵磷脂、硬脂酸置于同一圆底烧杯中,加入适量二氯甲烷溶解,再加入雷公藤内酯醇溶解充分后,置旋转蒸发挥尽二氯甲烷,并在烧瓶壁上形成一层薄膜;
2)将poloxamer188溶于80 ℃ 300 ml等温等渗的甘油水溶液中,作为水相;
3)待水相冷却至35℃,将水相加入步骤1)的圆底烧杯中,使薄膜脱落并充分溶解;
4)将溶解均匀的溶液于高压均质机中,在85MPa均质10min。
实施例3
一种雷公藤内酯醇纳米脂质体,按重量分数计,其原料组成为:卵磷脂0.15%,硬脂酸0.02%,poloxamer188 0.2%,甘油2.25%,雷公藤内酯醇0.008%,余量为水。
一种如上所述的雷公藤内酯醇纳米脂质体的制备方法,采用高压均质法制得纳米脂质体;包括以下步骤:
1)将卵磷脂、硬脂酸置于同一圆底烧杯中,加入适量二氯甲烷溶解,再加入雷公藤内酯醇溶解充分后,置旋转蒸发挥尽二氯甲烷,并在烧瓶壁上形成一层薄膜;
2)将poloxamer188溶于80 ℃ 300 ml等温等渗的甘油水溶液中,作为水相;
3)待水相冷却至45℃,将水相加入步骤1)的圆底烧杯中,使薄膜脱落并充分溶解;
4)将溶解均匀的溶液于高压均质机中,在85MPa均质10min。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (1)

1.一种雷公藤内酯醇纳米脂质体,其特征在于:按重量分数计,其原料组成为:卵磷脂0.1-0.2%,硬脂酸0.02-0.04%,poloxamer188 0.2%,甘油2.25%,雷公藤内酯醇0.008-0.016%,余量为水;其制备方法为采用高压均质法制得纳米脂质体;包括以下步骤:
1)将卵磷脂、硬脂酸置于同一圆底烧杯中,加入适量二氯甲烷溶解,再加入雷公藤内酯醇溶解充分后,置旋转蒸发挥尽二氯甲烷,并在烧瓶壁上形成一层薄膜;
2)将poloxamer188溶于80 ℃ 300 ml等温等渗的甘油水溶液中,作为水相;
3)待水相冷却至35-45℃,将水相加入步骤1)的圆底烧杯中,使薄膜脱落并充分溶解;
4)将溶解均匀的溶液于高压均质机中,在85MPa均质10min。
CN201610275859.2A 2016-04-29 2016-04-29 一种雷公藤内酯醇纳米脂质体及其制备方法 Expired - Fee Related CN105816428B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610275859.2A CN105816428B (zh) 2016-04-29 2016-04-29 一种雷公藤内酯醇纳米脂质体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610275859.2A CN105816428B (zh) 2016-04-29 2016-04-29 一种雷公藤内酯醇纳米脂质体及其制备方法

Publications (2)

Publication Number Publication Date
CN105816428A CN105816428A (zh) 2016-08-03
CN105816428B true CN105816428B (zh) 2018-10-23

Family

ID=56527785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610275859.2A Expired - Fee Related CN105816428B (zh) 2016-04-29 2016-04-29 一种雷公藤内酯醇纳米脂质体及其制备方法

Country Status (1)

Country Link
CN (1) CN105816428B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113143985A (zh) * 2021-01-25 2021-07-23 河南中医药大学 一种雷公藤提取成分脂质体在制备鼻腔给药防治脂多糖诱导的行为认知障碍药物中的应用
CN114831962A (zh) * 2022-04-29 2022-08-02 福建省医学科学研究院 一种雷公藤内酯醇固体脂质纳米粒及其滴丸的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1543932A (zh) * 2003-11-25 2004-11-10 华中科技大学 固体脂质纳米粒在制备用于离子导入透皮给药的药物中的应用
CN101015549A (zh) * 2006-02-08 2007-08-15 福建省医学科学研究所 雷公藤内酯醇脂质体纳米颗粒的制备及检测方法
CN103393598A (zh) * 2013-08-06 2013-11-20 南京中医药大学 一种治疗小细胞肺癌的雷公藤甲素脂质体制剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1543932A (zh) * 2003-11-25 2004-11-10 华中科技大学 固体脂质纳米粒在制备用于离子导入透皮给药的药物中的应用
CN101015549A (zh) * 2006-02-08 2007-08-15 福建省医学科学研究所 雷公藤内酯醇脂质体纳米颗粒的制备及检测方法
CN103393598A (zh) * 2013-08-06 2013-11-20 南京中医药大学 一种治疗小细胞肺癌的雷公藤甲素脂质体制剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
雷公藤内酯醇固体脂质纳米粒的制备及作用研究;梅之南;《http://www.docin.com/p-1442663492.html》;20160128;第33页2.3.6节;第33页2.4.1节;第35页最后1段;第43页最后1段 *

Also Published As

Publication number Publication date
CN105816428A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
Shah et al. Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment
Lakshminarayanan et al. Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens
Yeo et al. Niosomes: a review of their structure, properties, methods of preparation, and medical applications
Fraguas-Sánchez et al. PLGA nanoparticles for the intraperitoneal administration of CBD in the treatment of ovarian cancer: In Vitro and In Ovo assessment
Wang et al. Codelivery of curcumin and doxorubicin by MPEG-PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer
Tavano et al. Doxorubicin loaded magneto-niosomes for targeted drug delivery
Gong et al. Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic drug delivery, part 2: in vitro and in vivo toxicity evaluation
Xie et al. Design of a novel curcumin-soybean phosphatidylcholine complex-based targeted drug delivery systems
Wang et al. Biodegradable polymeric micelles coencapsulating paclitaxel and honokiol: a strategy for breast cancer therapy in vitro and in vivo
Wang et al. Alpha-tocopheryl polyethylene glycol succinate-emulsified poly (lactic-co-glycolic acid) nanoparticles for reversal of multidrug resistance in vitro
Chen et al. Targeted delivery of curcumin to tumors via PEG-derivatized FTS-based micellar system
Chen et al. Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin B-loaded lecithin-based mixed polymeric micelles
Abbas et al. Development and optimization of curcumin analog nano-bilosomes using 21.31 full factorial design for anti-tumor profiles improvement in human hepatocellular carcinoma: In-vitro evaluation, in-vivo safety assay
CN104042567A (zh) 一种蛇葡萄素纳米胶束及其应用
Wang et al. Improving anti-melanoma effect of curcumin by biodegradable nanoparticles
Umar et al. Cubosomes: design, development, and tumor-targeted drug delivery applications
Osama et al. Design, optimization, characterization, and in vivo evaluation of sterosomes as a carrier of metformin for treatment of lung cancer
Wang et al. Redox-responsive self-assembly PEG nanoparticle enhanced triptolide for efficient antitumor treatment
Liang et al. In vivo pharmacokinetics, biodistribution and antitumor effect of paclitaxel-loaded micelles based on α-tocopherol succinate-modified chitosan
Jin et al. Preparation of ginsenoside compound-K mixed micelles with improved retention and antitumor efficacy
Li et al. Soybean lecithin stabilizes disulfiram nanosuspensions with a high drug-loading content: remarkably improved antitumor efficacy
Milan et al. The optimized delivery of triterpenes by liposomal nanoformulations: Overcoming the challenges
Mohsen Cationic polymeric nanoparticles for improved ocular delivery and antimycotic activity of terconazole
Ding et al. Improved oral bioavailability of magnolol by using a binary mixed micelle system
CN105816428B (zh) 一种雷公藤内酯醇纳米脂质体及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181023

Termination date: 20200429