CN105811885A - 一种高输出功率矢量调制器 - Google Patents

一种高输出功率矢量调制器 Download PDF

Info

Publication number
CN105811885A
CN105811885A CN201610134401.5A CN201610134401A CN105811885A CN 105811885 A CN105811885 A CN 105811885A CN 201610134401 A CN201610134401 A CN 201610134401A CN 105811885 A CN105811885 A CN 105811885A
Authority
CN
China
Prior art keywords
phase
effect transistor
field effect
bonder
lange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610134401.5A
Other languages
English (en)
Inventor
管玉静
李媛媛
刘途远
龙飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu RML Technology Co Ltd
Original Assignee
Chengdu RML Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu RML Technology Co Ltd filed Critical Chengdu RML Technology Co Ltd
Priority to CN201610134401.5A priority Critical patent/CN105811885A/zh
Publication of CN105811885A publication Critical patent/CN105811885A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/38Angle modulation by converting amplitude modulation to angle modulation
    • H03C3/40Angle modulation by converting amplitude modulation to angle modulation using two signal paths the outputs of which have a predetermined phase difference and at least one output being amplitude-modulated
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/12Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of attenuating means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种高输出功率矢量调制器,包括:固定相位分离网络,用于产生2个正交通道;推挽双相衰减器组,用于对2个正交通道中的信号进行幅度和相位变换;功率分配合成器,用于将经过了幅度和相位变换的2个正交通道中的信号合成为一路信号,所述推挽双相衰减器组中采用管芯串联场效应管,所述管芯串联场效应管的管芯电阻较高,使得管芯能够承受的功率也随之提高,进而使得采用所述管芯串联场效应管的本发明矢量调制器的输出功率也大大提高。

Description

一种高输出功率矢量调制器
技术领域
本发明涉及一种矢量调制器,特别涉及一种高输出功率矢量调制器。
背景技术
矢量调制器是一种能够对任意输入信号实现360°范围内相移和一定量衰减功能的器件,即可实现对信号的相位和幅度的同时调制,相当于将移相器和衰减器的功能集成到了一起;
而随着数字电路遵循着摩尔定律飞速发展,大规模存储器和逻辑控制电路无论在性能、体积、功耗和成本上均有了极大的改善,使得矢量调制器更加灵活的控制相控阵天线阵元幅相的优势发挥了出来,而且这种优势将越发明显,尤其在微波/毫米波频段相控阵应用中,矢量调制器具有尺寸小、集成度高、控制线数少、倍频程带宽、控制精度高等独特的优势;也正因为如此,高性能矢量调制器越来越广泛的应用于数字通信系统、雷达对消系统、预失真系统以及相控阵雷达及电子战争系统中。
但是目前的矢量调制器却依然存在着输出功率较低的问题,其输出1dB功率只有2~3dBm。
发明内容
本发明的目的在于克服现有的矢量调制器却依然存在着输出功率较低的问题,提供一种输出功率较高的高输出功率矢量调制器。
为了实现上述发明目的,本发明提供了以下技术方案:
一种高输出功率矢量调制器,包括:
固定相位分离网络,用于产生2个正交通道;
推挽双相衰减器组,用于对2个正交通道中的信号进行幅度和相位变换;
功率分配合成器,用于将经过了幅度和相位变换的2个正交通道中的信号合成为一路信号,所述推挽双相衰减器组中采用管芯串联场效应管,所述管芯串联场效应管包括第一子场效应管和第二子场效应管,所述第一子场效应管和第二子场效应管的栅极连接在一起形成所述管芯串联场效应管的栅极,所述第一子场效应管的源极与第二子场效应管的漏极连接在一起,所述第二子场效应管的源极和所述第一子场效应管的漏极成为所述管芯串联场效应管的源极和漏极;所述管芯串联场效应管通过采用上述结构,使得其栅宽变成了所述第一子场效应管和第二子场效应管的栅宽之和,栅宽增加后的所述管芯串联场效应管的管芯电阻大大提高,使得管芯能够承受的功率也随之提高,进而使得采用所述管芯串联场效应管的本发明矢量调制器的输出功率也大大提高。
根据本发明实施例,所述固定相位分离网络包括输入lange耦合器,所述输入lange耦合器的反相端和同相端分别连接所述推挽双相衰减器组中的第一推挽双相衰减器和第二推挽双相衰减器,所述第一推挽双相衰减器和第二推挽双相衰减器的结构相同,用于分别接收一路正交通道中的信号,并对所述信号进行幅度和相位变换处理。其中,由于所述第二推挽双相衰减器和第一推挽双相衰减器的结构相同,所述2个正交通道中的信号均是从所述第二推挽双相衰减器和第一推挽双相衰减器的相同端口进入,但是所述第二推挽双相衰减器和第一推挽双相衰减器却是分别连接的所述输入lange耦合器的反相端和同相端,因此,所述2个正交通道中的信号不仅在进入所述第二推挽双相衰减器和第一推挽双相衰减器后的相位差为90度,而且在相位幅度变换完成,2路分别从所述第二推挽双相衰减器和第一推挽双相衰减器输出的信号依然相位相差90度,因此所述功率分配合成器始终是接收到2路相位差为90度的信号;进一步的,所述功率分配合成器将2路相位差为90度的信号合成为一个信号输出,实现对输入信号相位的0°~360°调制。
根据本发明实施例,所述第一推挽双相衰减器包括:Lange耦合器K2的同相端用于接收所述2个正交通道中其中1个正交通道的信号,Lange耦合器K2的反相端通过电阻R9接地,Lange耦合器K2的反相端与耦合器K4的同相端相连,Lange耦合器K2的同相端与耦合器K5的同相端相连;Lange耦合器K4的反相端与管芯串联场效应管T1的漏极相连,管芯串联场效应管T1的源极接地,Lange耦合器K4的反相端与Lange耦合器K8的反相端相连,Lange耦合器K4的同相端与管芯串联场效应管T2的漏极相连,管芯串联场效应管T2的源极接地,管芯串联场效应管T2的栅极经过R2及R1后与管芯串联场效应管T1的栅极相连;电阻R1与电阻R2的接点与控制电压V1相连;Lange耦合器K5的反相端与管芯串联场效应管T3的漏极相连,管芯串联场效应管T3的源极接地,管芯串联场效应管T3的栅极经过R2及R1后与管芯串联场效应管T4的栅极相连;电阻R3与电阻R4的接点与控制电压V2相连;Lange耦合器K5的反相端与Lange耦合器K8的反相端相连,Lange耦合器K5的同相端与管芯串联场效应管T4的漏极相连,管芯串联场效应管T4的源极接地;Lange耦合器K8的同相端与功率分配合成器的一端相连,Lange耦合器K8的反相端通过电阻阻值R10接地;所述第二推挽双相衰减器接受另一个正交通道中的信号,并将其进行相位幅度变换处理后输出至所述功率分配合成器的另一端,所述功率分配合成器将2路信号合成为1路信号输出;其中,通过调节所述耦合器的耦合线长度、宽度、及耦合线之间的距离的不同组合即可实现对本发明适量调制器的频带范围进行调整进而改变其通带范围。
根据本发明实施例,所述功率分配合成器为Wilkinson功分器。
与现有技术相比,本发明的有益效果:
采用由2个场效应管管芯串联后所构成的管芯串联场效应管后,所述管芯串联场效应管的管芯电阻大大提高,使得管芯能够承受的功率也随之提高,进而使得采用所述管芯串联场效应管的本发明矢量调制器的输出功率也大大提高。
附图说明
图1为高输出功率矢量调制器结构图;
图2为管芯串联场效应管内部结构图。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
实施例
一种高输出功率矢量调制器,包括:固定相位分离网络N,用于产生2个正交通道。
推挽双相衰减器组,用于对2个正交通道中的信号进行幅度和相位变换,具体的,所述推挽双相衰减器组包括第一推挽双相衰减器A1和第二推挽双相衰减器A2,用于分别接收一路正交通道中的信号,并对所述信号进行幅度和相位变换处理。
以及功率分配合成器,用于将经过了幅度和相位变换的2个正交通道中的信号合成为一路信号。
具体的,所述固定相位分离网络N包括输入Lange耦合器K1以及阻值为50Ω电阻R13,其中,所述输入Lange耦合器K1的1号引脚(同相端)通过共面波导CPW成为整个矢量调制器的输入端,Lange耦合器K1的2号引脚(反相端)经电阻阻值为50Ω的R13接地,而所述的Lange耦合器K1的3号引脚(反相端)和第一推挽双相衰减器A1中的Lange耦合器K2的1号引脚(同相端)相连,形成一个反向输入。而所述的Lange耦合器K1的4号引脚(同相端)则和第二推挽双相衰减器A2中的Lange耦合器K3的2号引脚(同相端)相连。其中,由于每个Lange耦合器的反相端移相相位是90°,而同相端移相相位是0°,因此Lange耦合器K1与Lange耦合器K2之间的相移为90°。
由于所述第二推挽双相衰减器A2和第一推挽双相衰减器A1的结构相同,下面以推挽双相衰减器1为例详细说明信号走向与相位变化。
具体的,所述第一推挽双相衰减器A1中的Lange耦合器K2的1号引脚(同相端)与所述的Lange耦合器K1的3号引脚(反相端)相连,用于接收1个正交通道的信号,Lange耦合器K2的2号引脚(反相端)通过电阻R9接地,Lange耦合器K2的3号引脚(反相端)与耦合器K4的1号引脚(同相端)相连,Lange耦合器K2的4号引脚(同相端)与耦合器K5的1号引脚(同相端)相连;Lange耦合器K4的2号引脚(反相端)与管芯串联场效应管T1的漏极相连,管芯串联场效应管T1的源极接地,Lange耦合器K4的3号引脚(反相端)与Lange耦合器K8的3号引脚反相端相连,Lange耦合器K4的4号引脚(同相端)与管芯串联场效应管T2的漏极相连,管芯串联场效应管T2的源极接地,管芯串联场效应管T2的栅极经过R2及R1后与管芯串联场效应管T1的栅极相连;电阻R1与电阻R2的接点与控制电压V1相连;Lange耦合器K5的2号引脚(反相端)与管芯串联场效应管T3的漏极相连,管芯串联场效应管T3的源极接地,管芯串联场效应管T3的栅极经过R2及R1后与管芯串联场效应管T4的栅极相连;电阻R3与电阻R4的接点与控制电压V2相连;Lange耦合器K5的3号引脚(反相端)与Lange耦合器K8的4号引脚(反相端)相连,Lange耦合器K5的4号引脚(同相端)管芯串联场效应管T4的漏极相连,管芯串联场效应管T4的源极接地;Lange耦合器K8的1号引脚(同相端)与Wilkinson功分器w的一端相连,Lange耦合器K8的2号引脚(反相端)通过电阻阻值为50Ω的R10接地。
其中,所述lange耦合器K2、K8的结构一样,K4、K5的结构一样。
所述推挽双相衰减器组中管芯串联场效应管T1、管芯串联场效应管T2、管芯串联场效应管T3和管芯串联场效应管T4采用的管芯串联结构如图2中标记TS所圈出的部分所示,即均分别由第一子场效应管ST1和第二子场效应管ST2管芯串联组成,即所述第一子场效应管ST1和第二子场效应管ST2的栅极(G1和G2)连接在一起形成所述管芯串联场效应管T1、管芯串联场效应管T2、管芯串联场效应管T3和管芯串联场效应管T4的栅极G,所述第一子场效应管ST1的源极S1与第二子场效应管ST2的漏极D2连接在一起,所述第二子场效应管ST2的源极S2和所述第一子场效应管ST1的漏极D1成为所述管芯串联场效应管T1、管芯串联场效应管T2、管芯串联场效应管T3和管芯串联场效应管T4的漏极D和源极S。所述管芯串联场效应管T1、管芯串联场效应管T2、管芯串联场效应管T3和管芯串联场效应管T4通过采用上述的管芯串联结构,使得其栅宽变成了所述第一子场效应管ST1和第二子场效应管ST2的栅宽之和,栅宽增加后的所述管芯串联场效应管的管芯电阻大大提高,使得管芯能够承受的功率也随之提高,进而使得采用所述管芯串联场效应管的本发明矢量调制器的输出功率也大大提高。在实际的矢量调制器选择管芯的原则中,应该选用栅宽为2*50um的无源冷场效应管(即所述第一子场效应管ST1第二子场效应管ST2),而本发明矢量调制器采用管芯串联结构,所以管芯增大一倍变成了栅宽为2*100um的晶体管(即所述管芯串联场效应管T1、管芯串联场效应管T2、管芯串联场效应管T3和管芯串联场效应管T4),如图2所示,这样2*100栅宽的管芯相对于栅宽为2*50um的管芯,其电阻提高了一倍,那么管芯所能承受的功率也随之提高,进而使得采用所述管芯串联场效应管的本发明矢量调制器的输出功率也大大提高。
进一步的,由于所述第二推挽双相衰减器A2和第一推挽双相衰减器A1的结构相同,所述2个正交通道中的信号均是从所述第二推挽双相衰减器A2和第一推挽双相衰减器A1的相同端口进入,但是所述第二推挽双相衰减器A2和第一推挽双相衰减器A1却是分别连接的所述输入lange耦合器的反相端和同相端,因此,所述2个正交通道中的信号不仅在进入所述第二推挽双相衰减器A2和第一推挽双相衰减器A1后的相位差为90度,而且在相位幅度变换完成,2路分别从所述第二推挽双相衰减器A2和第一推挽双相衰减器输出的信号依然相位相差90度,因此所述功率分配合成器始终是接收到2路相位差为90度的信号;进一步的,所述Wilkinson功分器w将2路相位差为90度的信号合成为一个信号输出(OUT端输出),实现对输入信号相位的0°~360°调制。
本发明高输出功率矢量调制器工作原理:当传输信号从该矢量调制器的输入端(IN)进入后经由Lange耦合器K1会产生两个正交通道。每个通道分配一个单独的推挽双相衰减器,通过调整V1、V2、V3、V4的电压可以分别改变上下两组场效应管的阻抗,从而实现幅度的控制。同时其中一个正交通道通过推挽双相衰减器将信号在保持相位差不变的情况下转移给Wilkinson功分器的一路;而另一个正交通道同样将信号转移给Wilkinson功分器的另外一路。此时这两路信号相位相差90°,通过Wilkinson功分器合成为一个信号输出,实现相位在0°~360°调制。
综上所述,通过采用所述管芯串联场效应管以及调节lange耦合器K2、lange耦合器K4的耦合线长度、宽度、及耦合线之间的距离的不同组合即可实现最大环带在14GHz至19GHz的频带内插损-12dB、输出1dB功率可以达到10dBm以上。输入1dB功率大于20dBm,从而实现了较大的输出功率。

Claims (4)

1.一种高输出功率矢量调制器,包括:
固定相位分离网络,用于产生2个正交通道;
推挽双相衰减器组,用于对2个正交通道中的信号进行幅度和相位变换;
功率分配合成器,用于将经过了幅度和相位变换的2个正交通道中的信号合成为一路信号,其特征在于:
所述推挽双相衰减器组中采用管芯串联场效应管,所述管芯串联场效应管包括第一子场效应管和第二子场效应管,所述第一子场效应管和第二子场效应管的栅极连接在一起形成所述管芯串联场效应管的栅极,所述第一子场效应管的源极与第二子场效应管的漏极连接在一起,所述第二子场效应管的源极和所述第一子场效应管的漏极成为所述管芯串联场效应管的源极和漏极。
2.根据权利要求1所述的高输出功率矢量调制器,其特征在于,所述固定相位分离网络包括输入lange耦合器,所述输入lange耦合器的反相端和同相端分别连接所述推挽双相衰减器组中的第一推挽双相衰减器和第二推挽双相衰减器,所述第一推挽双相衰减器和第二推挽双相衰减器的结构相同,用于分别接收一路正交通道中的信号,并对所述信号进行幅度和相位变换处理。
3.根据权利要求2所述的高输出功率矢量调制器,其特征在于,所述第一推挽双相衰减器包括:Lange耦合器K2的同相端用于接收所述2个正交通道中其中1个正交通道的信号,Lange耦合器K2的反相端通过电阻R9接地,Lange耦合器K2的反相端与耦合器K4的同相端相连,Lange耦合器K2的同相端与耦合器K5的同相端相连;Lange耦合器K4的反相端与管芯串联场效应管T1的漏极相连,管芯串联场效应管T1的源极接地,Lange耦合器K4的反相端与Lange耦合器K8的反相端相连,Lange耦合器K4的同相端与管芯串联场效应管T2的漏极相连,管芯串联场效应管T2的源极接地,管芯串联场效应管T2的栅极经过R2及R1后与管芯串联场效应管T1的栅极相连;电阻R1与电阻R2的接点与控制电压V1相连;Lange耦合器K5的反相端与管芯串联场效应管T3的漏极相连,管芯串联场效应管T3的源极接地,管芯串联场效应管T3的栅极经过R2及R1后与管芯串联场效应管T4的栅极相连;电阻R3与电阻R4的接点与控制电压V2相连;Lange耦合器K5的反相端与Lange耦合器K8的反相端相连,Lange耦合器K5的同相端与管芯串联场效应管T4的漏极相连,管芯串联场效应管T4的源极接地;Lange耦合器K8的同相端与功率分配合成器的一端相连,Lange耦合器K8的反相端通过电阻阻值R10接地;所述第二推挽双相衰减器接受另一个正交通道中的信号,并将其进行相位幅度变换处理后输出至所述功率分配合成器的另一端,所述功率分配合成器将2路信号合成为1路信号输出。
4.根据权利要求3所述的高输出功率矢量调制器,其特征在于,所述功率分配合成器为Wilkinson功分器。
CN201610134401.5A 2016-03-09 2016-03-09 一种高输出功率矢量调制器 Pending CN105811885A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610134401.5A CN105811885A (zh) 2016-03-09 2016-03-09 一种高输出功率矢量调制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610134401.5A CN105811885A (zh) 2016-03-09 2016-03-09 一种高输出功率矢量调制器

Publications (1)

Publication Number Publication Date
CN105811885A true CN105811885A (zh) 2016-07-27

Family

ID=56467020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610134401.5A Pending CN105811885A (zh) 2016-03-09 2016-03-09 一种高输出功率矢量调制器

Country Status (1)

Country Link
CN (1) CN105811885A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113589233A (zh) * 2021-07-21 2021-11-02 东南大学 一种基于pin二极管的s波段高功率双平衡矢量调制器及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030157905A1 (en) * 2002-02-18 2003-08-21 Matsushita Electric Industrial Co., Ltd. Transmitter and associated method for reducing the adjacent channel power during wireless communications
CN201290128Y (zh) * 2008-10-07 2009-08-12 成都雷电微力科技有限公司 一种单片毫米波矢量调制器
CN101888218A (zh) * 2010-06-30 2010-11-17 西安电子科技大学 基于GaAs HBT器件的模拟反射型I-Q矢量调制电路
US20120326781A1 (en) * 2010-03-04 2012-12-27 Mitsubishi Electric Corporation Transmission module and phased array antenna apparatus
CN205385459U (zh) * 2016-03-09 2016-07-13 成都雷电微力科技有限公司 一种高输出功率矢量调制器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030157905A1 (en) * 2002-02-18 2003-08-21 Matsushita Electric Industrial Co., Ltd. Transmitter and associated method for reducing the adjacent channel power during wireless communications
CN201290128Y (zh) * 2008-10-07 2009-08-12 成都雷电微力科技有限公司 一种单片毫米波矢量调制器
US20120326781A1 (en) * 2010-03-04 2012-12-27 Mitsubishi Electric Corporation Transmission module and phased array antenna apparatus
CN101888218A (zh) * 2010-06-30 2010-11-17 西安电子科技大学 基于GaAs HBT器件的模拟反射型I-Q矢量调制电路
CN205385459U (zh) * 2016-03-09 2016-07-13 成都雷电微力科技有限公司 一种高输出功率矢量调制器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘斐珂: ""Ka波段高功率开关芯片研究"", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
张敏: ""毫米波矢量调制器的研究"", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113589233A (zh) * 2021-07-21 2021-11-02 东南大学 一种基于pin二极管的s波段高功率双平衡矢量调制器及其控制方法

Similar Documents

Publication Publication Date Title
US9509252B2 (en) Doherty amplifier
CN101572492B (zh) 变压器功率合成器
Deferm et al. A 120GHz 10Gb/s phase-modulating transmitter in 65nm LP CMOS
CN106207320B (zh) 移相器和天线
CN101986560A (zh) 放大电路、半导体集成电路、无线传输系统和通信装置
CN105356014B (zh) 微带开关型移相器及应用其的移相模块
CN103856177B (zh) 可变移相器、半导体集成电路和移相方法
CN104426483A (zh) 宽带放大器
CN101997488A (zh) 具有高控制分辨率的矢量调制器
US20200153075A1 (en) Branch-line coupler
CN205385459U (zh) 一种高输出功率矢量调制器
US9722541B2 (en) Distributed amplifier
CN105406161A (zh) 一种耦合度调节范围大且具有可重构响应的横跨定向耦合器
CN107615678A (zh) 一种双频相控阵
CN105811885A (zh) 一种高输出功率矢量调制器
WO2017091944A1 (zh) 微带开关型移相器及应用其的移相模块
CN201290128Y (zh) 一种单片毫米波矢量调制器
CN106443591A (zh) 一种相控阵雷达多功能子阵波束形成网络
CN104157933A (zh) 超小型微波宽带可调移相衰减器
CN204144404U (zh) 超小型微波宽带可调移相衰减器
US2863042A (en) Echo transmitter and receiver having means to produce stable intermediate frequency despite transmitter frequency drift
CN208173762U (zh) 紧凑型s波段8通道大功率合成器
US20050048943A1 (en) Integrated millimeter-wave quadrature generator
CN105680888A (zh) 一种采用cmos工艺实现的太赫兹发射机电路
CN208939955U (zh) 基于大规模多输入多输出技术实现本振驱动功能的电路结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160727

RJ01 Rejection of invention patent application after publication