CN105806243A - 一种前后表面平行物体内部应变率场的光学测量方法 - Google Patents

一种前后表面平行物体内部应变率场的光学测量方法 Download PDF

Info

Publication number
CN105806243A
CN105806243A CN201610243091.0A CN201610243091A CN105806243A CN 105806243 A CN105806243 A CN 105806243A CN 201610243091 A CN201610243091 A CN 201610243091A CN 105806243 A CN105806243 A CN 105806243A
Authority
CN
China
Prior art keywords
voxel
cuboid
image
measuring point
summit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610243091.0A
Other languages
English (en)
Other versions
CN105806243B (zh
Inventor
王学滨
马冰
冯威武
白雪元
齐大雷
武其奡
李阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Technical University
Original Assignee
Liaoning Technical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Technical University filed Critical Liaoning Technical University
Priority to CN201610243091.0A priority Critical patent/CN105806243B/zh
Publication of CN105806243A publication Critical patent/CN105806243A/zh
Application granted granted Critical
Publication of CN105806243B publication Critical patent/CN105806243B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种前后表面平行物体内部应变率场的光学测量方法,首先利用数字图像相关方法获得受载的前后表面平行物体前后表面测点的速度场;其次将前后表面平行物体剖分成无间隙、无重叠、成行成列的以测点为顶点的体素长方体,将各体素长方体简化为由4个体素四面体构成的中空的体素长方体,前后表面测点即为各体素四面体的顶点,由各体素四面体顶点的速度场计算各体素四面体的应变率;最后根据各体素四面体的应变率计算体素长方体的应变率,进而获得前后表面平行物体内部的应变率场。本发明提出的测量方法计算方法简单,具有测量精度高、测量条件低等优点,在固体实验力学领域有广阔的应用前景,对于滑坡、岩爆等灾害预防大有裨益。

Description

一种前后表面平行物体内部应变率场的光学测量方法
技术领域
本发明涉及物体应变率场的光学测量方法,特别涉及一种前后表面平行物体内部应变率场的光学测量方法。
背景技术
光学测量技术是近年来得到迅速发展的一种新的测试技术,其重要特点是非接触、全场测量、高测量灵敏度及时间和空间上的大动态范围。数字图像相关方法是一种热门的光学测量技术,可以测量物体的面内和离面位移,具有测试条件低、测试面积及量程变化范围大、精度可达到被测像素的百分之一等特点。
数字图像相关方法的基本原理是对变形前后采集的物体表面的两幅散斑图像进行相关处理,以实现物体变形场的测量,多用于物体平面内变形和离面变形的测量。物体内部应变率场不同于物体表面应变率场,裂缝通常由物体内部萌生并逐渐扩展至物体表面,通过测量物体内部的应变率场可以更准确地了解物体内部的变形状态,这对于滑坡、岩爆等灾害预防尤为重要。目前,基于数字图像相关方法的前后表面平行物体内部应变率场的测量技术鲜有研究,尤其是对于前后表面平行但前后表面变形不同物体内部应变率场的测试技术。
发明内容
针对现有技术的不足,本发明提出一种前后表面平行物体内部应变率场的光学测量方法。该方法的具体步骤如下:
步骤1、采用数字图像相关方法获得受载的前后表面平行物体前后表面测点的速度场;
步骤1.1若受载的前后表面平行物体的前后表面不具有天然纹理,采用涂料制作人工散斑场;在受载的前后表面平行物体前表面前方及后表面后方分别布置拍摄装置,采集不同加载时刻受载的前后表面平行物体的前后表面的图像,拍摄装置由计算机控制,保证前后表面图像的拍摄时间同步;
步骤1.2、选择若干张受载的前后表面平行物体前表面的图像,根据拍摄时间,确定所选择若干张图像中任意相邻两张图像之间的拍摄时间间隔,设置子区尺寸、测点数目,在第1张前表面图像上等间距布置测点,确定前表面图像上测点坐标,利用数字图像相关方法确定前表面图像上测点在除第1张前表面图像外其他的前表面图像上的坐标;选择若干张受载的前后表面平行物体后表面的图像,所选后表面图像的时刻与所选前表面图像的时刻相同,设置与前表面图像相同的子区尺寸和测点数目,将过第1张前表面图像上测点作垂直于前表面的直线与后表面的交点作为后表面图像上测点的坐标,利用数字图像相关方法确定后表面图像上测点在除第1张后表面图像外其他的后表面图像上的坐标,所述第1张前表面图像为前表面未变形图像,所述第1张后表面图像为后表面未变形图像;
步骤1.3、根据若干张前表面图像上测点的坐标及相邻两张图像之间的时间间隔,计算前表面图像上各测点的速度场;根据若干张后表面图像上测点的坐标及相邻两张图像之间的时间间隔,计算后表面图像上各测点的速度场;
步骤2、将前后表面平行物体剖分成无间隙、无重叠、成行成列的以第1张前表面图像上的测点和第1张后表面图像上的测点为顶点的若干个体素长方体,将各体素长方体简化为由4个体素四面体构成的中空的体素长方体,第1张前表面图像上的测点和第1张后表面图像上的测点即为4个体素四面体的顶点,由各体素四面体顶点的速度场计算各体素四面体的应变率,所述体素为三维空间最小单位,为二维像素在三维空间的推广,所述体素长方体为由若干体素构成的长方体,体素长方体内部不包括任何测点,所述体素四面体为由若干体素构成的四面体;
步骤2.1、将前后表面平行物体剖分成无间隙、无重叠、成行成列的以第1张前表面图像上的测点和第1张后表面图像上的测点为顶点的若干个体素长方体,其长厚高分别为a、b及c,将各体素长方体分别置于坐标系原点处,(0,0,0)为体素长方体的顶点1,(a,0,0)为体素长方体的顶点2,(0,b,0)为体素长方体的顶点3,(a,b,0)为体素长方体的顶点4,(0,0,c)为体素长方体的顶点5,(a,0,c)为体素长方体的顶点6,(0,b,c)为体素长方体的顶点7,(a,b,c)为体素长方体的顶点8,各体素长方体顶点的速度即为第1张前表面图像和第1张后表面图像中对应测点的速度;
步骤2.2、将各体素长方体简化成由4个体素四面体构成的中空的体素长方体,第1张前表面图像上的测点和第1张后表面图像上的测点即为4个体素四面体的顶点;
步骤2.3、由各体素四面体顶点的速度场计算各体素四面体的应变率,其计算公式为:
ξ x x ( 1 ) = v x ( 2 ) - v x ( 1 ) a ξ x x ( 2 ) = v x ( 4 ) - v x ( 3 ) a ξ x x ( 3 ) = v x ( 6 ) - v x ( 5 ) a ξ x x ( 4 ) = v x ( 8 ) - v x ( 7 ) a - - - ( 1 )
ξ y y ( 1 ) = v y ( 2 ) - v y ( 4 ) b ξ y y ( 2 ) = v y ( 1 ) - v y ( 3 ) b ξ y y ( 3 ) = v y ( 5 ) - v y ( 7 ) b ξ y y ( 4 ) = v y ( 6 ) - v y ( 8 ) b - - - ( 2 )
ξ z z ( 1 ) = v z ( 2 ) - v z ( 6 ) c ξ z z ( 2 ) = v z ( 3 ) - v z ( 7 ) c ξ z z ( 3 ) = v z ( 1 ) - v z ( 5 ) c ξ z z ( 4 ) = v z ( 4 ) - v z ( 8 ) c - - - ( 3 )
{ ξ x y ( 1 ) = v y ( 2 ) - v y ( 1 ) 2 a + v x ( 4 ) - v x ( 2 ) 2 b ξ x y ( 2 ) = v y ( 4 ) - v y ( 3 ) 2 a + v x ( 3 ) - v x ( 1 ) 2 b ξ x y ( 3 ) = v y ( 6 ) - v y ( 5 ) 2 a + v x ( 7 ) - v x ( 5 ) 2 b ξ x y ( 4 ) = v y ( 8 ) - v y ( 7 ) 2 a + v x ( 8 ) - v x ( 6 ) 2 b - - - ( 4 )
ξ x z ( 1 ) = v z ( 1 ) - v z ( 2 ) 2 a + v x ( 2 ) - v x ( 6 ) 2 c ξ x z ( 2 ) = v z ( 3 ) - v z ( 4 ) 2 a + v x ( 3 ) - v x ( 7 ) 2 c ξ x z ( 3 ) = v z ( 5 ) - v z ( 6 ) 2 a + v x ( 1 ) - v x ( 5 ) 2 c ξ x z ( 4 ) = v z ( 7 ) - v z ( 8 ) 2 a + v x ( 4 ) - v x ( 8 ) 2 c - - - ( 5 )
ξ y z ( 1 ) = v z ( 2 ) - v z ( 4 ) 2 b + v y ( 2 ) - v y ( 6 ) 2 c ξ y z ( 2 ) = v z ( 1 ) - v z ( 3 ) 2 b + v y ( 3 ) - v y ( 7 ) 2 c ξ y z ( 3 ) = v z ( 5 ) - v z ( 7 ) 2 b + v y ( 1 ) - v y ( 5 ) 2 c ξ y z ( 4 ) = v z ( 6 ) - v z ( 8 ) 2 b + v y ( 4 ) - v y ( 8 ) 2 c - - - - ( 6 )
其中,分别为各体素长方体各顶点的速度在x方向上的分量,分别为各体素长方体各顶点的速度在y方向上的分量,分别为各体素长方体各顶点的速度在z方向上的分量,分别为4个体素四面体作用面方位为x、指向为x的应变率;分别为4个体素四面体作用面方位为y、指向为y的应变率,分别为4个体素四面体作用面方位为z、指向为z的应变率, 分别为4个体素四面体作用面方位为x、指向为y的应变率,分别为4个体素四面体作用面方位为x、指向为z的应变率,分别为4个体素四面体作用面方位为y、指向为z的应变率;
步骤3、根据各体素四面体的应变率计算体素长方体的应变率,进而获得前后表面平行物体内部应变率场;
步骤3.1、计算4个体素四面体的体积V(k),k=1~4:
V ( 1 ) = 1 6 a b c V ( 2 ) = 1 6 a b c V ( 3 ) = 1 6 a b c V ( 4 ) = 1 6 a b c - - - ( 7 )
步骤3.2、由4个体素四面体的应变率通过体积平均计算体素长方体的应变率,计算公式为
ξ i j c u b o i d = Σ k = 1 4 ξ i j ( k ) V ( k ) Σ k = 1 4 V ( k ) - - - ( 8 )
其中,为体素长方体作用面方位为i、指向为j的应变率,i取为x、y或z,j取为x、y或z,为体素长方体的各体素四面体作用面方位为i、指向为j的应变率;
将式(1)~(7)代入式(8),可得各体素长方体的应变率,
ξ x x c u b o i d = v x ( 2 ) + v x ( 4 ) + v x ( 6 ) + v x ( 8 ) - v x ( 1 ) - v x ( 3 ) - v x ( 5 ) - v x ( 7 ) 4 a ξ y y c u b o i d = v y ( 1 ) + v y ( 2 ) + v y ( 5 ) + v y ( 6 ) - v y ( 3 ) - v y ( 4 ) - v y ( 7 ) - v y ( 8 ) 4 b ξ z z c u b o i d = v z ( 1 ) + v z ( 2 ) + v z ( 3 ) + v z ( 4 ) - v z ( 5 ) - v z ( 6 ) - v z ( 7 ) - v z ( 8 ) 4 c ξ x y c u b o i d = v y ( 2 ) + v y ( 4 ) + v y ( 6 ) + v y ( 8 ) - v y ( 1 ) - v y ( 3 ) - v y ( 5 ) - v y ( 7 ) 8 a + v x ( 3 ) + v x ( 4 ) + v x ( 7 ) + v x ( 8 ) - v x ( 1 ) - v x ( 2 ) - v x ( 5 ) - v x ( 6 ) 8 b ξ x z c u b o i d = v z ( 1 ) + v z ( 3 ) + v z ( 5 ) + v z ( 7 ) - v z ( 2 ) - v z ( 4 ) - v z ( 6 ) - v z ( 8 ) 8 a + v x ( 1 ) + v x ( 2 ) + v x ( 3 ) + v x ( 4 ) - v x ( 5 ) - v x ( 6 ) - v x ( 7 ) - v x ( 8 ) 8 c ξ y z c u b o i d = v z ( 1 ) + v z ( 2 ) + v z ( 5 ) + v z ( 6 ) - v z ( 3 ) - v z ( 4 ) - v z ( 7 ) - v z ( 8 ) 8 b + v y ( 1 ) + v y ( 2 ) + v y ( 3 ) + v y ( 4 ) - v y ( 5 ) - v y ( 6 ) - v y ( 7 ) - v y ( 8 ) 8 c - - - ( 9 ) .
有益效果:
一种前后表面平行物体内部应变率场的光学测量方法,采用数字图像相关方法获得受载的前后表面平行物体前后平行表面上测点的速度场,将前后表面平行物体剖分成无间隙、无重叠、成行成列的以前后平行表面的测点为顶点的体素长方体,将体素长方体简化为由4个体素四面体构成的中空的体素长方体,前后平行表面上的测点即为各体素四面体的顶点,由各体素四面体顶点的速度场计算各体素四面体的应变率,由各体素四面体的应变率通过体积平均计算各体素长方体的应变率。该测量方法可用于前后表面平行但前后表面变形不同物体内部的应变率场的测量,包括3个线应变率和3个切应变率,在应变率较高区域,应变增加较快,该区域是未来裂纹发生的区域,通过探测应变率较高区域的时空分布规律,可提前获知未来破坏区域的具体位置。该测量方法计算方法简单,利用数字图像相关方法使得测量精度高、测量条件低,在固体实验力学领域有广阔的应用前景,对于滑坡、岩爆等灾害预防大有裨益。
附图说明
图1为本发明的一种前后表面平行物体内部应变率场的光学测量方法的流程图;
图2为本发明一种实施例的散斑图,其中图2(a)为巷道围岩结构的第1张前表面散斑图,图2(b)为巷道围岩结构的第1张后表面散斑图;
图3为本发明一种实施例的速度场云图,其中图3(a)为受载的巷道围岩结构前表面上测点的速度场云图;图3(b)为受载的巷道围岩结构后表面上测点的速度场云图;
图4为本发明一种实施例的将一个体素长方体简化为由4个体素四面体构成的中空的体素长方体的示意图;
图5为本发明一种实施例的受载的巷道围岩结构的应变率云图,其中图5(a)为受载的巷道围岩结构的应变率云图,图5(b)为受载的巷道围岩结构的应变率云图,图5(c)为受载的巷道围岩结构的应变率云图,图5(d)为受载的巷道围岩结构的应变率云图,图5(e)为受载的巷道围岩结构的应变率云图,图5(f)为受载的巷道围岩结构的应变率云图。
具体实施方式
下面结合附图对本发明具体实施方式做详细说明。一种前后表面平行物体内部应变率场的光学测量方法,选用受压应力作用下前后表面平行的巷道围岩结构作为实施例,具体步骤如下,如图1所示:
步骤1、利用数字图像相关方法获得受载的前后表面平行的巷道围岩结构前后表面测点的速度场,本发明适用于前后表面平行物体,本实施例选用前后表面平行的巷道围岩结构;
步骤1.1、若受载的前后表面平行的巷道围岩结构的前后表面不具有天然纹理,采用涂料制作人工散斑场;在受载的前后表面平行的巷道围岩结构的前表面前方及后表面后方分别布置拍摄装置,采集不同加载时刻受载的前后表面平行物体前后表面的图像,拍摄装置由计算机控制,保证前后表面图像的拍摄时间同步;
将前后表面平行的巷道围岩结构置于平台上,长度为1m,厚度为0.5m,高度为1m,在前后表面平行的巷道围岩结构的前后表面采用涂料制作人工散斑场,如图2所示;在前后表面平行的巷道围岩结构前表面前方及后表面后方分别布置拍摄装置,在上边界进行恒速度加载,速度大小v=0.083mm/s,方向垂直向下,采集不同加载时刻受载的前后表面平行的巷道围岩结构前后表面的图像;
步骤1.2、选择若干张受载的前后表面平行的巷道围岩结构前表面的图像,本实施例中选择3张前后表面平行的巷道围岩结构前表面的图像,根据拍摄时间,确定第1、2张及第2、3张图像之间的拍摄时间间隔分别为35s及2s,设置子区尺寸为21×21像素,测点数目58×58,在第1张前表面图像上等间距布置测点,间距为50像素,确定前表面图像上测点坐标,利用数字图像相关方法确定测点在第2、3张前表面图像上的坐标;选择若干张受载的前后表面平行的巷道围岩结构后表面的图像,本实施例中选择3张前后表面平行的巷道围岩结构后表面的图像,所选后表面图像的拍摄时刻与所选前表面图像的拍摄时刻相同,设置与前表面图像相同的子区尺寸及测点数目,将过第1张前表面图像上测点作垂直于前表面的直线与后表面的交点作为后表面图像上测点的坐标,利用数字图像相关方法确定后表面图像上测点在第2、3张后表面图像上的坐标;
步骤1.3、根据若干张前表面图像上测点的坐标及相邻两张图像之间的时间间隔,计算前表面图像上各测点的速度场,本实施例中根据第2、3张前表面图像上测点的坐标及其时间间隔,计算前表面图像上各测点的速度场;根据若干张后表面图像上测点的坐标及相邻两张图像之间的时间间隔,计算后表面图像上各测点的速度场,本实施例中根据第2、3张后表面图像上测点的坐标及其时间间隔,计算后表面图像上各测点的速度场,如图3所示。
步骤2、将前后表面平行的巷道围岩结构剖分成无间隙、无重叠、成行成列的以第1张前表面图像上的测点和第1张后表面图像上的测点为顶点的若干个体素长方体,本实施例中为57×57个体素长方体,将各体素长方体简化为由4个体素四面体构成的中空的体素长方体,如图4所示,第1张前表面图像上的测点和第1张后表面图像上的测点即为4个体素四面体的顶点,由各体素四面体顶点的速度场计算各体素四面体的应变率;
步骤2.1、将前后表面平行的巷道围岩结构剖分成无间隙、无重叠、成行成列的以第1张前表面图像上的测点和第1张后表面图像上的测点为顶点的57×57个体素长方体,其长厚高分别为a、b、c,将各体素长方体分别置于坐标系原点处,(0,0,0)为体素长方体的顶点1,(a,0,0)为体素长方体的顶点2,(0,b,0)为体素长方体的顶点3,(a,b,0)为体素长方体的顶点4,(0,0,c)为体素长方体的顶点5,(a,0,c)为体素长方体的顶点6,(0,b,c)为体素长方体的顶点7,(a,b,c)为体素长方体的顶点8,各体素长方体顶点的速度即为第1张前表面图像和第1张后表面图像中对应测点的速度;
步骤2.2、将各体素长方体简化成由4个体素四面体构成的中空的体素长方体,第1张前表面图像上的测点和第1张后表面图像上的测点即为4个体素四面体的顶点,4个体素四面体的顶点编号分别为2146、3147、5167及8467,如图4所示;
步骤2.3、由各体素四面体顶点的速度计算各体素四面体的应变率,其计算公式为:
ξ x x ( 1 ) = v x ( 2 ) - v x ( 1 ) a ξ x x ( 2 ) = v x ( 4 ) - v x ( 3 ) a ξ x x ( 3 ) = v x ( 6 ) - v x ( 5 ) a ξ x x ( 4 ) = v x ( 8 ) - v x ( 7 ) a - - - ( 1 )
ξ y y ( 1 ) = v y ( 2 ) - v y ( 4 ) b ξ y y ( 2 ) = v y ( 1 ) - v y ( 3 ) b ξ y y ( 3 ) = v y ( 5 ) - v y ( 7 ) b ξ y y ( 4 ) = v y ( 6 ) - v y ( 8 ) b - - - ( 2 )
ξ z z ( 1 ) = v z ( 2 ) - v z ( 6 ) c ξ z z ( 2 ) = v z ( 3 ) - v z ( 7 ) c ξ z z ( 3 ) = v z ( 1 ) - v z ( 5 ) c ξ z z ( 4 ) = v z ( 4 ) - v z ( 8 ) c - - - ( 3 )
{ ξ x y ( 1 ) = v y ( 2 ) - v y ( 1 ) 2 a + v x ( 4 ) - v x ( 2 ) 2 b ξ x y ( 2 ) = v y ( 4 ) - v y ( 3 ) 2 a + v x ( 3 ) - v x ( 1 ) 2 b ξ x y ( 3 ) = v y ( 6 ) - v y ( 5 ) 2 a + v x ( 7 ) - v x ( 5 ) 2 b ξ x y ( 4 ) = v y ( 8 ) - v y ( 7 ) 2 a + v x ( 8 ) - v x ( 6 ) 2 b - - - ( 4 )
ξ x z ( 1 ) = v z ( 1 ) - v z ( 2 ) 2 a + v x ( 2 ) - v x ( 6 ) 2 c ξ x z ( 2 ) = v z ( 3 ) - v z ( 4 ) 2 a + v x ( 3 ) - v x ( 7 ) 2 c ξ x z ( 3 ) = v z ( 5 ) - v z ( 6 ) 2 a + v x ( 1 ) - v x ( 5 ) 2 c ξ x z ( 4 ) = v z ( 7 ) - v z ( 8 ) 2 a + v x ( 4 ) - v x ( 8 ) 2 c - - - ( 5 )
ξ y z ( 1 ) = v z ( 2 ) - v z ( 4 ) 2 b + v y ( 2 ) - v y ( 6 ) 2 c ξ y z ( 2 ) = v z ( 1 ) - v z ( 3 ) 2 b + v y ( 3 ) - v y ( 7 ) 2 c ξ y z ( 3 ) = v z ( 5 ) - v z ( 7 ) 2 b + v y ( 1 ) - v y ( 5 ) 2 c ξ y z ( 4 ) = v z ( 6 ) - v z ( 8 ) 2 b + v y ( 4 ) - v y ( 8 ) 2 c - - - ( 6 )
线应变率ξxx、ξyy及ξzz能够引起体素四面体体积的变化,以线应变率ξxx为例。对于体素四面体2146,仅各顶点x方向的运动可能引起x方向线应变率,其中顶点4及6的x方向的运动不能引起体素四面体体积的变化,故仅顶点1及2的x方向的运动能引起x方向线应变率,即式(1)中的
切应变率ξxy、ξxz及ξyz能够引起体素四面体形状的变化,以切应变率ξxy为例。对于体素四面体2146,仅各顶点x方向及y方向的运动可能引起切应变率,切应变率与xoy平面内的∠124有关,顶点6的运动不会引起∠124的变化,顶点1的x方向的运动也不能引起∠124的变化,顶点4的y方向的运动不能引起∠124的变化;所以,仅有顶点2及4的x方向的运动能引起∠124的变化,产生一部分切应变率为仅有顶点1及2的y方向的运动能引起∠124的变化,产生另一部分切应变率为
步骤3、根据各体素四面体的应变率计算体素长方体的应变率,进而获得前后表面平行物体内部应变率场,如图5所示;
步骤3.1、计算4个体素四面体的体积V(k),k=1~4:
V ( 1 ) = 1 6 a b c V ( 2 ) = 1 6 a b c V ( 3 ) = 1 6 a b c V ( 4 ) = 1 6 a b c - - - ( 7 )
步骤3.2、由4个体素四面体的应变率通过体积平均计算体素长方体的应变率,计算公式为
ξ i j c u b o i d = Σ k = 1 4 ξ i j ( k ) V ( k ) Σ k = 1 4 V ( k ) - - - ( 8 )
将式(1)~(7)代入式(8),可得各体素长方体的应变率,
ξ x x c u b o i d = v x ( 2 ) + v x ( 4 ) + v x ( 6 ) + v x ( 8 ) - v x ( 1 ) - v x ( 3 ) - v x ( 5 ) - v x ( 7 ) 4 a ξ y y c u b o i d = v y ( 1 ) + v y ( 2 ) + v y ( 5 ) + v y ( 6 ) - v y ( 3 ) - v y ( 4 ) - v y ( 7 ) - v y ( 8 ) 4 b ξ z z c u b o i d = v z ( 1 ) + v z ( 2 ) + v z ( 3 ) + v z ( 4 ) - v z ( 5 ) - v z ( 6 ) - v z ( 7 ) - v z ( 8 ) 4 c ξ x y c u b o i d = v y ( 2 ) + v y ( 4 ) + v y ( 6 ) + v y ( 8 ) - v y ( 1 ) - v y ( 3 ) - v y ( 5 ) - v y ( 7 ) 8 a + v x ( 3 ) + v x ( 4 ) + v x ( 7 ) + v x ( 8 ) - v x ( 1 ) - v x ( 2 ) - v x ( 5 ) - v x ( 6 ) 8 b ξ x z c u b o i d = v z ( 1 ) + v z ( 3 ) + v z ( 5 ) + v z ( 7 ) - v z ( 2 ) - v z ( 4 ) - v z ( 6 ) - v z ( 8 ) 8 a + v x ( 1 ) + v x ( 2 ) + v x ( 3 ) + v x ( 4 ) - v x ( 5 ) - v x ( 6 ) - v x ( 7 ) - v x ( 8 ) 8 c ξ y z c u b o i d = v z ( 1 ) + v z ( 2 ) + v z ( 5 ) + v z ( 6 ) - v z ( 3 ) - v z ( 4 ) - v z ( 7 ) - v z ( 8 ) 8 b + v y ( 1 ) + v y ( 2 ) + v y ( 3 ) + v y ( 4 ) - v y ( 5 ) - v y ( 6 ) - v y ( 7 ) - v y ( 8 ) 8 c - - - ( 9 ) .
由图5可见,较小,其分布较为均匀,而其他应变率都呈现一定的不均匀性,特别是云图中,可观察到位于前后表面平行的巷道围岩结构左上部的狭长且倾斜的应变集中区域,该区域的3种应变率较高,表示应变增加较快,该区域是未来裂纹发生的区域;的云图中,可观察到前后表面平行的巷道围岩结构的2种应变率被分成了两个不同区域,分别位于通过前后表面平行的巷道围岩左上角直线的下方和右下角的直线的上方,在这两个区域的交界处,存在一定的应变率梯度。上述结果反映了受载的前后表面平行的巷道围岩结构发生贯通巷道表面的剪切错动的客观规律,由此也说明了本发明提出的测量方法的正确性。

Claims (3)

1.一种前后表面平行物体内部应变率场的光学测量方法,其特征在于:包括以下步骤:
步骤1、利用数字图像相关方法获得受载的前后表面平行物体前后表面测点的速度场;
步骤1.1、若受载的前后表面平行物体的前后表面不具有天然纹理,采用涂料制作人工散斑场;在受载的前后表面平行物体前表面前方及后表面后方分别布置拍摄装置,采集不同加载时刻受载的前后表面平行物体前后表面的图像,拍摄装置由计算机控制,保证前后表面图像的拍摄时间同步;
步骤1.2、选择若干张受载的前后表面平行物体前表面的图像,根据拍摄时间,确定所选择若干张图像中任意相邻两张图像之间的拍摄时间间隔,设置子区尺寸、测点数目,在第1张前表面图像上等间距布置测点,确定前表面图像上测点坐标,利用数字图像相关方法确定前表面图像上的测点在除第1张前表面图像外其他的前表面图像上的坐标;选择若干张受载的前后表面平行物体后表面的图像,所选后表面图像的时刻与所选前表面图像的时刻相同,设置与前表面图像相同的子区尺寸和测点数目,将过第1张前表面图像上测点作垂直于前表面的直线与后表面的交点作为后表面图像上测点的坐标,利用数字图像相关方法确定后表面图像上测点在除第1张后表面图像外其他的后表面图像上的坐标,所述第1张前表面图像为前表面未变形图像,所述第1张后表面图像为后表面未变形图像;
步骤1.3、根据若干张前表面图像上测点的坐标及相邻两张图像之间的时间间隔,计算前表面图像上各测点的速度场;根据若干张后表面图像上测点的坐标及相邻两张图像之间的时间间隔,计算后表面图像上各测点的速度场;
步骤2、将前后表面平行物体剖分成无间隙、无重叠、成行成列的以第1张前表面图像上的测点和第1张后表面图像上的测点为顶点的若干个体素长方体,将各体素长方体简化为由4个体素四面体构成的中空的体素长方体,第1张前表面图像上的测点和第1张后表面图像上的测点即为4个体素四面体的顶点,由各体素四面体顶点的速度场计算各体素四面体的应变率,所述体素为三维空间最小单位,为二维像素在三维空间的推广,所述体素长方体为由若干体素构成的长方体,体素长方体内部不包括任何测点,所述体素四面体为由若干体素构成的四面体;
步骤3、根据各体素四面体的应变率计算体素长方体的应变率,进而获得前后表面平行物体内部的应变率场。
2.根据权利要求1所述的一种前后表面平行物体内部应变率场的光学测量方法,其特征在于:所述步骤2具体步骤如下:
步骤2.1、将前后表面平行物体剖分成无间隙、无重叠、成行成列的以第1张前表面图像上的测点和第1张后表面图像上的测点为顶点的若干个体素长方体,其长厚高分别为a、b、c,将各体素长方体分别置于坐标系原点处,(0,0,0)为体素长方体的顶点1,(a,0,0)为体素长方体的顶点2,(0,b,0)为体素长方体的顶点3,(a,b,0)为体素长方体的顶点4,(0,0,c)为体素长方体的顶点5,(a,0,c)为体素长方体的顶点6,(0,b,c)为体素长方体的顶点7,(a,b,c)为体素长方体的顶点8,各体素长方体顶点的速度即为第1张前表面图像和第1张后表面图像中对应测点的速度;
步骤2.2、将各体素长方体简化成由4个体素四面体构成的中空的体素长方体,第1张前表面图像上的测点和第1张后表面图像上的测点即为4个体素四面体的顶点;
步骤2.3、由各体素四面体顶点的速度场计算各体素四面体的应变率,其计算公式为
ξ x x ( 1 ) = v x ( 2 ) - v x ( 1 ) a ξ x x ( 2 ) = v x ( 4 ) - v x ( 3 ) a ξ x x ( 3 ) = v x ( 6 ) - v x ( 5 ) a ξ x x ( 4 ) = v x ( 8 ) - v x ( 7 ) a - - - ( 1 )
ξ y y ( 1 ) = v y ( 2 ) - v y ( 4 ) b ξ y y ( 2 ) = v y ( 1 ) - v y ( 3 ) b ξ y y ( 3 ) = v y ( 5 ) - v y ( 7 ) b ξ y y ( 4 ) = v y ( 6 ) - v y ( 8 ) b - - - ( 2 )
ξ z z ( 1 ) = v z ( 2 ) - v z ( 6 ) c ξ z z ( 2 ) = v z ( 3 ) - v z ( 7 ) c ξ z z ( 3 ) = v z ( 1 ) - v z ( 5 ) c ξ z z ( 4 ) = v z ( 4 ) - v z ( 8 ) c - - - ( 3 )
ξ x y ( 1 ) = v y ( 2 ) - v y ( 1 ) 2 a + v x ( 4 ) - v x ( 2 ) 2 b ξ x y ( 2 ) = v y ( 4 ) - v y ( 3 ) 2 a + v x ( 3 ) - v x ( 1 ) 2 b ξ x y ( 3 ) = v y ( 6 ) - v y ( 5 ) 2 a + v x ( 7 ) - v x ( 5 ) 2 b ξ x y ( 4 ) = v y ( 8 ) - v y ( 7 ) 2 a + v x ( 8 ) - v x ( 6 ) 2 b - - - ( 4 )
ξ x z ( 1 ) = v z ( 1 ) - v z ( 2 ) 2 a + v x ( 2 ) - v x ( 6 ) 2 c ξ x z ( 2 ) = v z ( 3 ) - v z ( 4 ) 2 a + v x ( 3 ) - v x ( 7 ) 2 c ξ x z ( 3 ) = v z ( 5 ) - v z ( 6 ) 2 a + v x ( 1 ) - v x ( 5 ) 2 c ξ x z ( 4 ) = v z ( 7 ) - v z ( 8 ) 2 a + v x ( 4 ) - v x ( 8 ) 2 c - - - ( 5 )
ξ y z ( 1 ) = v z ( 2 ) - v z ( 4 ) 2 b + v y ( 2 ) - v y ( 6 ) 2 c ξ y z ( 2 ) = v z ( 1 ) - v z ( 3 ) 2 b + v y ( 3 ) - v y ( 7 ) 2 c ξ y z ( 3 ) = v z ( 5 ) - v z ( 7 ) 2 b + v y ( 1 ) - v y ( 5 ) 2 c ξ y z ( 4 ) = v z ( 6 ) - v z ( 8 ) 2 b + v y ( 4 ) - v y ( 8 ) 2 c - - - ( 6 )
其中,分别为各体素长方体各顶点的速度在x方向上的分量,分别为各体素长方体各顶点的速度在y方向上的分量,分别为各体素长方体各顶点的速度在z方向上的分量,分别为4个体素四面体作用面方位为x、指向为x的应变率;分别为4个体素四面体作用面方位为y、指向为y的应变率,分别为4个体素四面体作用面方位为z、指向为z的应变率, 分别为4个体素四面体作用面方位为x、指向为y的应变率,分别为4个体素四面体作用面方位为x、指向为z的应变率,分别为4个体素四面体作用面方位为y、指向为z的应变率。
3.根据权利要求1所述的一种前后表面平行物体内部应变率场的光学测量方法,其特征在于:所述步骤3具体步骤如下:
步骤3.1、计算4个体素四面体的体积V(k),k=1~4;
步骤3.2、由4个体素四面体的应变率通过体积平均计算各体素长方体的应变率,计算公式为
ξ i j c u b o i d = Σ k = 1 4 ξ i j ( k ) V ( k ) Σ k = 1 4 V ( k ) - - - ( 7 )
其中,为体素长方体作用面方位为i、指向为j的应变率,i取为x、y或z,j取为x、y或z,为体素长方体的各体素四面体作用面方位为i、指向为j的应变率;
将式(1)~(6)代入式(7),可得各体素长方体的应变率,
ξ x x c u b o i d = v x ( 2 ) + v x ( 4 ) + v x ( 6 ) + v x ( 8 ) - v x ( 1 ) - v x ( 2 ) - v x ( 5 ) - v x ( 7 ) 4 a ξ y y c u b o i d = v y ( 1 ) + v y ( 2 ) + v y ( 5 ) + v y ( 6 ) - v y ( 3 ) - v y ( 4 ) - v y ( 7 ) - v y ( 8 ) 4 b ξ z z c u b o i d = v z ( 1 ) + v z ( 2 ) + v z ( 3 ) + v z ( 4 ) - v z ( 5 ) - v z ( 6 ) - v y ( 7 ) - v z ( 8 ) 4 c ξ x y c u b o i d = v y ( 2 ) + v y ( 4 ) + v y ( 6 ) + v y ( 8 ) - v y ( 1 ) - v y ( 3 ) - v y ( 5 ) - v y ( 7 ) 8 a + v x ( 3 ) + v x ( 4 ) + v x ( 7 ) + v x ( 8 ) - v x ( 1 ) - v x ( 2 ) - v x ( 5 ) - v x ( 6 ) 8 b ξ x z c u b o i d = v z ( 1 ) + v z ( 3 ) + v z ( 5 ) + v z ( 7 ) - v z ( 2 ) - v z ( 4 ) - v z ( 6 ) - v z ( 8 ) 8 a + v x ( 1 ) + v x ( 2 ) + v x ( 3 ) + v x ( 4 ) - v x ( 5 ) - v x ( 6 ) - v x ( 7 ) - v x ( 8 ) 8 c ξ y z c u b o i d = v z ( 1 ) + v z ( 2 ) + v z ( 5 ) + v z ( 6 ) - v z ( 3 ) - v z ( 4 ) - v z ( 7 ) - v z ( 8 ) 8 b + v y ( 1 ) + v y ( 2 ) + v y ( 3 ) + v y ( 4 ) - v y ( 5 ) - v y ( 6 ) - v y ( 7 ) - v y ( 8 ) 8 c - - - ( 8 ) .
CN201610243091.0A 2016-04-19 2016-04-19 一种前后表面平行物体内部应变率场的光学测量方法 Expired - Fee Related CN105806243B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610243091.0A CN105806243B (zh) 2016-04-19 2016-04-19 一种前后表面平行物体内部应变率场的光学测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610243091.0A CN105806243B (zh) 2016-04-19 2016-04-19 一种前后表面平行物体内部应变率场的光学测量方法

Publications (2)

Publication Number Publication Date
CN105806243A true CN105806243A (zh) 2016-07-27
CN105806243B CN105806243B (zh) 2018-07-03

Family

ID=56458219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610243091.0A Expired - Fee Related CN105806243B (zh) 2016-04-19 2016-04-19 一种前后表面平行物体内部应变率场的光学测量方法

Country Status (1)

Country Link
CN (1) CN105806243B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106767481A (zh) * 2016-12-30 2017-05-31 辽宁工程技术大学 一种应变局部化带内应变场的半子区相关光学测量方法
CN107121333A (zh) * 2017-04-24 2017-09-01 苏州汇才土水工程科技有限公司 一种整体‑局部相结合的试样变形测量装置及方法
CN105928466B (zh) * 2016-05-27 2018-11-09 辽宁工程技术大学 一种物体平面内的应变率场的光学测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045922A (ja) * 2006-08-11 2008-02-28 Toyama Univ レーザスペックルによるナノメートル変位測定方法と装置
JP2010249589A (ja) * 2009-04-14 2010-11-04 Toyo Seiki Seisakusho:Kk 歪み計測方法及び歪み計測装置
CN104457603A (zh) * 2014-08-18 2015-03-25 清华大学 一种高温环境下物体变形测量方法
CN104864819A (zh) * 2015-01-19 2015-08-26 华中科技大学 一种基于数字散斑的高速三维应变测量方法
CN105157594A (zh) * 2015-09-05 2015-12-16 辽宁工程技术大学 一种基于半子区分割法的数字图像相关方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045922A (ja) * 2006-08-11 2008-02-28 Toyama Univ レーザスペックルによるナノメートル変位測定方法と装置
JP2010249589A (ja) * 2009-04-14 2010-11-04 Toyo Seiki Seisakusho:Kk 歪み計測方法及び歪み計測装置
CN104457603A (zh) * 2014-08-18 2015-03-25 清华大学 一种高温环境下物体变形测量方法
CN104864819A (zh) * 2015-01-19 2015-08-26 华中科技大学 一种基于数字散斑的高速三维应变测量方法
CN105157594A (zh) * 2015-09-05 2015-12-16 辽宁工程技术大学 一种基于半子区分割法的数字图像相关方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JEONG WAHN YOO, BRIAN MORAN, JIUN-SHYAN CHEN: "Stabilized conforming nodal integration in the natural-element method", 《INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING》 *
王学滨等: "岩石试件端面效应的变形局部化数值模拟研究", 《工程地质学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105928466B (zh) * 2016-05-27 2018-11-09 辽宁工程技术大学 一种物体平面内的应变率场的光学测量方法
CN106767481A (zh) * 2016-12-30 2017-05-31 辽宁工程技术大学 一种应变局部化带内应变场的半子区相关光学测量方法
CN106767481B (zh) * 2016-12-30 2018-12-28 辽宁工程技术大学 一种应变局部化带内应变场的半子区相关光学测量方法
CN107121333A (zh) * 2017-04-24 2017-09-01 苏州汇才土水工程科技有限公司 一种整体‑局部相结合的试样变形测量装置及方法

Also Published As

Publication number Publication date
CN105806243B (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
CN104864819B (zh) 一种基于数字散斑的高速三维应变测量方法
US20160161448A1 (en) Imaging method and apparatus based on magnetic fulx leakage testing
CN104748696B (zh) 一种大倾角机翼全场变形测量方法
CN108398229B (zh) 一种飞行器三维表面流动分布风洞测量方法
Adam et al. Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation: Integration of X-ray computed tomography and digital volume correlation techniques
CN102927934B (zh) 一种利用单个InSAR干涉对获取矿区地表三维形变场的方法
Zhou et al. A novel meshless numerical method for modeling progressive failure processes of slopes
CN104165750B (zh) 立体视觉结合陀螺仪风洞模型位姿测量方法
CN110045432A (zh) 基于3d-glq的球坐标系下重力场正演方法及三维反演方法
CN105806243A (zh) 一种前后表面平行物体内部应变率场的光学测量方法
CN104848838B (zh) 两种构形条件下岩土试样剪切带倾角演变规律观测方法
CN105258642B (zh) 基于数字图像相关的实时光学引伸计测量方法
CN102183761B (zh) 星载干涉合成孔径雷达数字高程模型重建方法
Zhao et al. Dynamic geometrical shape measurement and structural analysis of inflatable membrane structures using a low-cost three-camera system
CN104424380A (zh) 机械变形测量仪的模拟
CN106846247B (zh) 空间环境数据多尺度显示方法、模型建立方法及装置
Ji et al. A deformation detection method for aircraft skin on uniform pressure by using speckle image correlation technology
Yuan et al. Stereo particle image velocimetry measurement of 3D soil deformation around laterally loaded pile in sand
CN107748834A (zh) 一种计算起伏观测面磁场的快速、高精度数值模拟方法
Zhao et al. An image-based method for evaluating local deformations of saturated sand in undrained torsional shear tests
CN116046572A (zh) 一种多功能含隐蔽缺陷地铁隧道受力分析方法
CN105928466B (zh) 一种物体平面内的应变率场的光学测量方法
CN113834875A (zh) 基于三维六方体测线布置的弹性波层析成像检测方法及系统
Yuan et al. Effect of passive pile on 3D ground deformation and on active pile response
CN202024732U (zh) 一种数码位移测量仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180703

Termination date: 20210419

CF01 Termination of patent right due to non-payment of annual fee