CN105802160B - 剑麻纤维素纳米晶须增强聚乳酸/乳酸‑羟基乙醇酸共聚物生物复合材料的制备方法 - Google Patents
剑麻纤维素纳米晶须增强聚乳酸/乳酸‑羟基乙醇酸共聚物生物复合材料的制备方法 Download PDFInfo
- Publication number
- CN105802160B CN105802160B CN201610177804.8A CN201610177804A CN105802160B CN 105802160 B CN105802160 B CN 105802160B CN 201610177804 A CN201610177804 A CN 201610177804A CN 105802160 B CN105802160 B CN 105802160B
- Authority
- CN
- China
- Prior art keywords
- nano whisker
- cellulose nano
- sisal cellulose
- lactic acid
- pla
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920002678 cellulose Polymers 0.000 title claims abstract description 75
- 239000001913 cellulose Substances 0.000 title claims abstract description 75
- 244000198134 Agave sisalana Species 0.000 title claims abstract description 73
- 239000000463 material Substances 0.000 title claims abstract description 49
- 239000002253 acid Substances 0.000 title claims abstract description 40
- 229920001577 copolymer Polymers 0.000 title claims abstract description 30
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 239000011173 biocomposite Substances 0.000 title claims abstract description 19
- 239000004310 lactic acid Substances 0.000 title claims abstract description 13
- 235000014655 lactic acid Nutrition 0.000 title claims abstract description 13
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- AZHSSKPUVBVXLK-UHFFFAOYSA-N ethane-1,1-diol Chemical compound CC(O)O AZHSSKPUVBVXLK-UHFFFAOYSA-N 0.000 title abstract 4
- 239000004626 polylactic acid Substances 0.000 claims abstract description 79
- 229920000747 poly(lactic acid) Polymers 0.000 claims abstract description 75
- 230000002708 enhancing effect Effects 0.000 claims abstract description 29
- 239000000835 fiber Substances 0.000 claims abstract description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N EtOH Substances CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 55
- 239000000178 monomer Substances 0.000 claims description 45
- 239000003708 ampul Substances 0.000 claims description 36
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 27
- 239000000843 powder Substances 0.000 claims description 27
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 claims description 27
- 239000003999 initiator Substances 0.000 claims description 18
- 238000000746 purification Methods 0.000 claims description 18
- 238000003756 stirring Methods 0.000 claims description 18
- 238000001035 drying Methods 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 238000013019 agitation Methods 0.000 claims description 9
- 238000010792 warming Methods 0.000 claims description 9
- 238000010257 thawing Methods 0.000 claims description 8
- 210000000481 breast Anatomy 0.000 claims description 2
- 230000015556 catabolic process Effects 0.000 abstract description 6
- 238000006731 degradation reaction Methods 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 6
- 230000005501 phase interface Effects 0.000 abstract description 5
- 229920000642 polymer Polymers 0.000 abstract description 5
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 238000007334 copolymerization reaction Methods 0.000 description 8
- QTGOXASYCKGBTQ-UHFFFAOYSA-N ethane-1,1-diol 2-hydroxypropanoic acid Chemical compound C(C)(O)O.C(C(O)C)(=O)O QTGOXASYCKGBTQ-UHFFFAOYSA-N 0.000 description 8
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 229920001432 poly(L-lactide) Polymers 0.000 description 7
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 5
- 239000012620 biological material Substances 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 235000007685 Pleurotus columbinus Nutrition 0.000 description 1
- 240000001462 Pleurotus ostreatus Species 0.000 description 1
- 235000001603 Pleurotus ostreatus Nutrition 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 230000033558 biomineral tissue development Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/14—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/06—Biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
- C08L2205/16—Fibres; Fibrils
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明公开了一种剑麻纤维素纳米晶须增强聚乳酸/乳酸‑羟基乙醇酸共聚物生物复合材料的制备方法。该方法采用聚乳酸低聚物接枝剑麻纤维素纳米晶须,利用接枝后的剑麻纤维素纳米晶须与聚乳酸良好的相容性和界面结合作用制备剑麻纤维素纳米晶须增强聚乳酸材料,然后采用溶液共混法制备具有良好相界面结合力和稳定性、优秀的力学性能、降解性能和生物相容性的剑麻纤维素纳米晶须增强聚乳酸/乳酸‑羟基乙醇酸共聚物生物复合材料。本发明方法制备工艺简单,所制备的剑麻纤维素纳米晶须增强聚乳酸/乳酸‑羟基乙醇酸共聚物生物复合材料具有良好的相界面结合力和稳定性、优秀的力学性能和生物相容性。
Description
技术领域
本发明属于复合材料制备技术领域,特别涉及一种剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物生物复合材料的制备方法。
背景技术
左旋聚乳酸(PLLA)作骨移植替代材料植入体内后,随着骨创伤的逐渐治愈,能够通过酯键水解而逐渐降解,并最终分解为水和二氧化碳,被人体吸收或排出体外,无需二次手术取出,简化了手术程序且提高了治疗效果,从而成为新一代生物材料研究热点(Q.W.Zhang, V.N. Mochalin, I. Neitzel, et al. Mechanical properties andbiomineralization of multifunctional nanodiamond-PLLA composites for bonetissue engineering[J]. Biomaterials, 2012, 33(20): 5067-5075.)。但是,单纯的聚乳酸材料断裂伸长率低、脆性大,难以满足某些医疗修复人体组织的要求。乳酸-羟基乙醇酸共聚物(PLGA)具有非常好的韧性,其断裂伸长率可达到PLLA的几十到几百倍。因此,可在PLLA材料中掺入一定比例的PLGA材料,提高PLLA材料的断裂伸长率,以期改善单纯PLLA材料存在的韧性差的问题。掺入一定量PLGA后,由于PLGA的力学强度低而导致PLLA/PLGA复合材料的强度随着降低。通过天然植物纤维增强改性聚乳酸可有效提高复合材料的力学性能和降解性能(A. Hidayat, S. Tachibana. Characterization of polylactic acid(PLA)/kenaf composite degradation by immobilized mycelia of Pleurotusostreatus[J]. International Biodeterioration & Biodegradation, 2012, 71: 50-54.)。
剑麻纤维素纳米晶须具有高纯度、高结晶度、高杨氏模量、高强度(其强度2~3GPa)等特性,以及具有生物材料的轻质、可降解、生物相容及可再生等特点;同时,剑麻纤维素纳米晶须表面含有大量的羟基,具有很高的反应活性,经过修饰后的剑麻纤维素纳米晶须与聚合物具有良好的界面相容性,比纤维素更能有效提高复合材料的强度和韧性,适于作为高性能生物复合材料的增强材料(H. Mark. Defects in natural fibres: theirorigin, characteristics and implications for natural fibre-reinforcedcomposites[J]. Journal of Materials Science, 2012, 47(2): 599-609; Q.F. Shi,C.J. Zhou, Y.Y. Yue, et al. Mechanical properties and in vitro degradation ofelectrospun bio-nanocomposite mats from PLA and cellulose nanocrystals[J].Carbohydrate Polymers, 2012, 90(1): 301-308.)。
本发明利用聚乳酸低聚物接枝剑麻纤维素纳米晶须与聚乳酸良好的相容性和界面结合作用制备剑麻纤维素纳米晶须增强聚乳酸材料。然后采用溶液共混法制备具有良好的相界面结合力和稳定性、优秀的力学性能、降解性能和生物相容性的剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物生物复合材料。
发明内容
本发明的目的是提供一种剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物生物复合材料的制备方法。
本发明的思路:首先采用聚乳酸低聚物接枝剑麻纤维素纳米晶须,利用接枝后的剑麻纤维素纳米晶须与聚乳酸良好的相容性和界面结合作用制备剑麻纤维素纳米晶须增强聚乳酸材料,然后采用溶液共混法制备具有良好相界面结合力和稳定性、优秀的力学性能、降解性能和生物相容性的剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物生物复合材料。
具体步骤为:
(1)由乳酸减压蒸馏制备提纯后的L-丙交酯单体,将剑麻纤维素纳米晶须与提纯后的L-丙交酯单体按照物质的量之比为1:99~30:70混合均匀后置于安瓿瓶中,于400 ℃下处理2 h,再真空冷却至室温,然后加入引发剂辛酸亚锡,抽真空,将安瓿瓶瓶内压强降至1Pa以下,用酒精喷灯封口,所加入的辛酸亚锡与L-丙交酯单体物质的量之比为1:12000。
(2)将步骤(1)封装好的安瓿瓶置于120~125 ℃的恒温干燥箱中,待L-丙交酯单体全部融化后,上下摇动安瓿瓶使L-丙交酯单体与引发剂辛酸亚锡混合均匀,放入恒温干燥箱中进行预聚合3~4 h,获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须,升温至140 ℃,继续进行聚合反应24h后自然冷却至室温,粉粹后获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末。
(3)将步骤(2)制得的接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末和乳酸-羟基乙醇酸共聚物粉末按照质量比为75:25加入二氯甲烷中,并放入一个十字形聚四氟磁力搅拌子,置于磁力搅拌仪上连续搅拌24 h,然后经分液漏斗滴入高速搅拌下的乙醇中进行溶液纺丝,得到纤维状剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物,再在40 ℃下真空干燥12 h,以充分除去纤维中的乙醇和水,即得到剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物生物复合材料。
本发明方法制备工艺简单,所制备的剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物生物复合材料具有良好的相界面结合力和稳定性、优秀的力学性能和生物相容性。
具体实施方式
实施例1:
(1) 由乳酸减压蒸馏制备提纯后的L-丙交酯单体,将剑麻纤维素纳米晶须与提纯后的L-丙交酯单体按照物质的量之比为1:99混合均匀后置于安瓿瓶中,于400 ℃下处理2h,再真空冷却至室温,然后加入引发剂辛酸亚锡,抽真空,将安瓿瓶瓶内压强降至1 Pa以下,用酒精喷灯封口,所加入的辛酸亚锡与L-丙交酯单体物质的量之比为1:12000。
(2)将步骤(1)封装好的安瓿瓶置于123 ℃的恒温干燥箱中,待L-丙交酯单体全部融化后,上下摇动安瓿瓶使L-丙交酯单体与引发剂辛酸亚锡混合均匀,放入恒温干燥箱中进行预聚合3.5 h,获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须,升温至140 ℃,继续进行聚合反应24h后自然冷却至室温,粉粹后获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末。
(3)将步骤(2)制得的接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末和乳酸-羟基乙醇酸共聚物粉末按照质量比为75:25加入二氯甲烷中,并放入一个十字形聚四氟磁力搅拌子,置于磁力搅拌仪上连续搅拌24 h,然后经分液漏斗滴入高速搅拌下的乙醇中进行溶液纺丝,得到纤维状剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物,再在40 ℃下真空干燥12 h,以充分除去纤维中的乙醇和水,即得到剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物生物复合材料。
实施例2:
(1) 由乳酸减压蒸馏制备提纯后的L-丙交酯单体,将剑麻纤维素纳米晶须与提纯后的L-丙交酯单体按照物质的量之比为5:95混合均匀后置于安瓿瓶中,于400 ℃下处理2h,再真空冷却至室温,然后加入引发剂辛酸亚锡,抽真空,将安瓿瓶瓶内压强降至1 Pa以下,用酒精喷灯封口,所加入的辛酸亚锡与L-丙交酯单体物质的量之比为1:12000。
(2)将步骤(1)封装好的安瓿瓶置于123 ℃的恒温干燥箱中,待L-丙交酯单体全部融化后,上下摇动安瓿瓶使L-丙交酯单体与引发剂辛酸亚锡混合均匀,放入恒温干燥箱中进行预聚合3.5 h,获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须,升温至140 ℃,继续进行聚合反应24h后自然冷却至室温,粉粹后获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末。
(3)将步骤(2)制得的接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末和乳酸-羟基乙醇酸共聚物粉末按照质量比为75:25加入二氯甲烷中,并放入一个十字形聚四氟磁力搅拌子,置于磁力搅拌仪上连续搅拌24 h,然后经分液漏斗滴入高速搅拌下的乙醇中进行溶液纺丝,得到纤维状剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物,再在40 ℃下真空干燥12 h,以充分除去纤维中的乙醇和水,即得到剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物生物复合材料。
实施例3:
(1) 由乳酸减压蒸馏制备提纯后的L-丙交酯单体,将剑麻纤维素纳米晶须与提纯后的L-丙交酯单体按照物质的量之比为10:90混合均匀后置于安瓿瓶中,于400 ℃下处理2h,再真空冷却至室温,然后加入引发剂辛酸亚锡,抽真空,将安瓿瓶瓶内压强降至1 Pa以下,用酒精喷灯封口,所加入的辛酸亚锡与L-丙交酯单体物质的量之比为1:12000。
(2)将步骤(1)封装好的安瓿瓶置于123 ℃的恒温干燥箱中,待L-丙交酯单体全部融化后,上下摇动安瓿瓶使L-丙交酯单体与引发剂辛酸亚锡混合均匀,放入恒温干燥箱中进行预聚合3.5 h,获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须,升温至140 ℃,继续进行聚合反应24h后自然冷却至室温,粉粹后获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末。
(3)将步骤(2)制得的接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末和乳酸-羟基乙醇酸共聚物粉末按照质量比为75:25加入二氯甲烷中,并放入一个十字形聚四氟磁力搅拌子,置于磁力搅拌仪上连续搅拌24 h,然后经分液漏斗滴入高速搅拌下的乙醇中进行溶液纺丝,得到纤维状剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物,再在40 ℃下真空干燥12 h,以充分除去纤维中的乙醇和水,即得到剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物生物复合材料。
实施例4:
(1) 由乳酸减压蒸馏制备提纯后的L-丙交酯单体,将剑麻纤维素纳米晶须与提纯后的L-丙交酯单体按照物质的量之比为15:85混合均匀后置于安瓿瓶中,于400 ℃下处理2h,再真空冷却至室温,然后加入引发剂辛酸亚锡,抽真空,将安瓿瓶瓶内压强降至1 Pa以下,用酒精喷灯封口,所加入的辛酸亚锡与L-丙交酯单体物质的量之比为1:12000。
(2)将步骤(1)封装好的安瓿瓶置于123 ℃的恒温干燥箱中,待L-丙交酯单体全部融化后,上下摇动安瓿瓶使L-丙交酯单体与引发剂辛酸亚锡混合均匀,放入恒温干燥箱中进行预聚合3.5 h,获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须,升温至140 ℃,继续进行聚合反应24h后自然冷却至室温,粉粹后获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末。
(3)将步骤(2)制得的接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末和乳酸-羟基乙醇酸共聚物粉末按照质量比为75:25加入二氯甲烷中,并放入一个十字形聚四氟磁力搅拌子,置于磁力搅拌仪上连续搅拌24 h,然后经分液漏斗滴入高速搅拌下的乙醇中进行溶液纺丝,得到纤维状剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物,再在40 ℃下真空干燥12 h,以充分除去纤维中的乙醇和水,即得到剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物生物复合材料。
实施例5:
(1) 由乳酸减压蒸馏制备提纯后的L-丙交酯单体,将剑麻纤维素纳米晶须与提纯后的L-丙交酯单体按照物质的量之比为20:80混合均匀后置于安瓿瓶中,于400 ℃下处理2h,再真空冷却至室温,然后加入引发剂辛酸亚锡,抽真空,将安瓿瓶瓶内压强降至1 Pa以下,用酒精喷灯封口,所加入的辛酸亚锡与L-丙交酯单体物质的量之比为1:12000。
(2)将步骤(1)封装好的安瓿瓶置于123 ℃的恒温干燥箱中,待L-丙交酯单体全部融化后,上下摇动安瓿瓶使L-丙交酯单体与引发剂辛酸亚锡混合均匀,放入恒温干燥箱中进行预聚合3.5 h,获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须,升温至140 ℃,继续进行聚合反应24h后自然冷却至室温,粉粹后获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末。
(3)将步骤(2)制得的接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末和乳酸-羟基乙醇酸共聚物粉末按照质量比为75:25加入二氯甲烷中,并放入一个十字形聚四氟磁力搅拌子,置于磁力搅拌仪上连续搅拌24 h,然后经分液漏斗滴入高速搅拌下的乙醇中进行溶液纺丝,得到纤维状剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物,再在40 ℃下真空干燥12 h,以充分除去纤维中的乙醇和水,即得到剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物生物复合材料。
实施例6:
(1) 由乳酸减压蒸馏制备提纯后的L-丙交酯单体,将剑麻纤维素纳米晶须与提纯后的L-丙交酯单体按照物质的量之比为25:75混合均匀后置于安瓿瓶中,于400 ℃下处理2h,再真空冷却至室温,然后加入引发剂辛酸亚锡,抽真空,将安瓿瓶瓶内压强降至1 Pa以下,用酒精喷灯封口,所加入的辛酸亚锡与L-丙交酯单体物质的量之比为1:12000。
(2)将步骤(1)封装好的安瓿瓶置于123 ℃的恒温干燥箱中,待L-丙交酯单体全部融化后,上下摇动安瓿瓶使L-丙交酯单体与引发剂辛酸亚锡混合均匀,放入恒温干燥箱中进行预聚合3.5 h,获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须,升温至140 ℃,继续进行聚合反应24h后自然冷却至室温,粉粹后获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末。
(3)将步骤(2)制得的接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末和乳酸-羟基乙醇酸共聚物粉末按照质量比为75:25加入二氯甲烷中,并放入一个十字形聚四氟磁力搅拌子,置于磁力搅拌仪上连续搅拌24 h,然后经分液漏斗滴入高速搅拌下的乙醇中进行溶液纺丝,得到纤维状剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物,再在40 ℃下真空干燥12 h,以充分除去纤维中的乙醇和水,即得到剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物生物复合材料。
实施例7:
(1) 由乳酸减压蒸馏制备提纯后的L-丙交酯单体,将剑麻纤维素纳米晶须与提纯后的L-丙交酯单体按照物质的量之比为30:70混合均匀后置于安瓿瓶中,于400 ℃下处理2h,再真空冷却至室温,然后加入引发剂辛酸亚锡,抽真空,将安瓿瓶瓶内压强降至1 Pa以下,用酒精喷灯封口,所加入的辛酸亚锡与L-丙交酯单体物质的量之比为1:12000。
(2)将步骤(1)封装好的安瓿瓶置于123 ℃的恒温干燥箱中,待L-丙交酯单体全部融化后,上下摇动安瓿瓶使L-丙交酯单体与引发剂辛酸亚锡混合均匀,放入恒温干燥箱中进行预聚合3.5 h,获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须,升温至140 ℃,继续进行聚合反应24h后自然冷却至室温,粉粹后获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末。
(3)将步骤(2)制得的接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末和乳酸-羟基乙醇酸共聚物粉末按照质量比为75:25加入二氯甲烷中,并放入一个十字形聚四氟磁力搅拌子,置于磁力搅拌仪上连续搅拌24 h,然后经分液漏斗滴入高速搅拌下的乙醇中进行溶液纺丝,得到纤维状剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物,再在40 ℃下真空干燥12 h,以充分除去纤维中的乙醇和水,即得到剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物生物复合材料。
Claims (1)
1.一种剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物生物复合材料的制备方法,其特征在于具体步骤为:
(1)由乳酸减压蒸馏制备提纯后的L-丙交酯单体,将剑麻纤维素纳米晶须与提纯后的L-丙交酯单体按照物质的量之比为1:99~30:70混合均匀后置于安瓿瓶中,于400 ℃下处理2 h,再真空冷却至室温,然后加入引发剂辛酸亚锡,抽真空,将安瓿瓶瓶内压强降至1 Pa以下,用酒精喷灯封口,所加入的辛酸亚锡与L-丙交酯单体物质的量之比为1:12000;
(2)将步骤(1)封装好的安瓿瓶置于120~125 ℃的恒温干燥箱中,待L-丙交酯单体全部融化后,上下摇动安瓿瓶使L-丙交酯单体与引发剂辛酸亚锡混合均匀,放入恒温干燥箱中进行预聚合3~4 h,获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须,升温至140 ℃,继续进行聚合反应24h后自然冷却至室温,粉粹后获得接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末;
(3)将步骤(2)制得的接枝聚乳酸低聚物的剑麻纤维素纳米晶须增强聚乳酸粉末和乳酸-羟基乙醇酸共聚物粉末按照质量比为75:25加入二氯甲烷中,并放入一个十字形聚四氟磁力搅拌子,置于磁力搅拌仪上连续搅拌24 h,然后经分液漏斗滴入高速搅拌下的乙醇中进行溶液纺丝,得到纤维状剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物,再在40 ℃下真空干燥12 h,以充分除去纤维中的乙醇和水,即得到剑麻纤维素纳米晶须增强聚乳酸/乳酸-羟基乙醇酸共聚物生物复合材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610177804.8A CN105802160B (zh) | 2016-03-28 | 2016-03-28 | 剑麻纤维素纳米晶须增强聚乳酸/乳酸‑羟基乙醇酸共聚物生物复合材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610177804.8A CN105802160B (zh) | 2016-03-28 | 2016-03-28 | 剑麻纤维素纳米晶须增强聚乳酸/乳酸‑羟基乙醇酸共聚物生物复合材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105802160A CN105802160A (zh) | 2016-07-27 |
CN105802160B true CN105802160B (zh) | 2018-04-10 |
Family
ID=56454423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610177804.8A Active CN105802160B (zh) | 2016-03-28 | 2016-03-28 | 剑麻纤维素纳米晶须增强聚乳酸/乳酸‑羟基乙醇酸共聚物生物复合材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105802160B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109137522A (zh) * | 2017-06-16 | 2019-01-04 | 赵云飞 | 一种改性的剑麻纤维的制备方法 |
CN107281493A (zh) * | 2017-06-20 | 2017-10-24 | 苏州乔纳森新材料科技有限公司 | 一种聚乳酸‑聚乙醇酸共聚复合材料及其制备方法 |
CN111286984B (zh) * | 2020-04-07 | 2022-10-04 | 浙江理工大学 | 一种超亲水非织造材料的制备方法及产品 |
CN112898636B (zh) * | 2021-02-18 | 2022-02-18 | 陕西科技大学 | 一种自愈合纤维素基塑料的制备方法 |
CN112592587A (zh) * | 2021-03-04 | 2021-04-02 | 旗众科技有限公司 | 聚乳酸生物复合材料的制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104292439B (zh) * | 2014-10-07 | 2016-01-13 | 桂林理工大学 | 剑麻纤维素纳米晶须/聚乳酸生物复合材料的制备方法 |
-
2016
- 2016-03-28 CN CN201610177804.8A patent/CN105802160B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN105802160A (zh) | 2016-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105802160B (zh) | 剑麻纤维素纳米晶须增强聚乳酸/乳酸‑羟基乙醇酸共聚物生物复合材料的制备方法 | |
Mohamed et al. | A review on the recent research of polycaprolactone (PCL) | |
Gönen et al. | Fabrication of bioactive glass containing nanocomposite fiber mats for bone tissue engineering applications | |
CN104292439B (zh) | 剑麻纤维素纳米晶须/聚乳酸生物复合材料的制备方法 | |
Xu et al. | Pea pod-mimicking hydroxyapatite nanowhisker-reinforced poly (lactic acid) composites with bone-like strength | |
Hussain et al. | A review on PLA-based biodegradable materials for biomedical applications | |
CN105780189A (zh) | 剑麻纤维素纳米晶须增强聚乳酸/聚丁二酸乙二醇酯生物复合材料的制备方法 | |
Movahedi et al. | Electrospun halloysite nanotube loaded polyhydroxybutyrate-starch fibers for cartilage tissue engineering | |
Ghezzi et al. | Mesenchymal stem cell‐seeded multilayered dense collagen‐silk fibroin hybrid for tissue engineering applications | |
Fakhri et al. | Introducing photo-crosslinked bio-nanocomposites based on polyvinylidene fluoride/poly (glycerol azelaic acid)-g-glycidyl methacrylate for bone tissue engineering | |
Cortizo et al. | Biodegradable polymers for bone tissue engineering | |
EP2576646A1 (en) | Method for preparing a degradable polymer network | |
Saudi et al. | Assessing physicochemical, mechanical, and in vitro biological properties of polycaprolactone/poly (glycerol sebacate)/hydroxyapatite composite scaffold for nerve tissue engineering | |
Lizundia et al. | Tuneable hydrolytic degradation of poly (L-lactide) scaffolds triggered by ZnO nanoparticles | |
Masek et al. | Technological limitations in obtaining and using cellulose biocomposites | |
Ma et al. | Injectable hyaluronic acid/poly (γ-glutamic acid) hydrogel with step-by-step tunable properties for soft tissue engineering | |
CN110812530B (zh) | 一种phbv提高plla的形状记忆和促成骨效应的方法 | |
Subramanian et al. | Tunable mechanical properties of Mo3Se3-poly vinyl alcohol-based/silk fibroin-based nanowire ensure the regeneration mechanism in tenocytes derived from human bone marrow stem cells | |
Ghalia et al. | Mechanical and biodegradability of porous PCL/PEG copolymer-reinforced cellulose nanofibers for soft tissue engineering applications | |
CN108079377A (zh) | 一种聚乙醇酸树脂复合材料及其制造方法 | |
CN107320782A (zh) | 可吸收的生物医用聚乳酸复合材料及其制备方法 | |
CN106730020A (zh) | 一种碳酸锶改性丝素复合材料及其制备方法 | |
Wu | Preparation, characterisation, and biocompatibility of Ganoderma lucidum fibre-based composites with polylactic acid | |
Singhaboot et al. | Development and characterization of polyvinyl alcohol/bacterial cellulose composite for environmentally friendly film | |
CN106729949A (zh) | 一种可吸收高分子/羟基磷灰石晶须复合的手术缝合线及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20160727 Assignee: Guilin Qi Hong Technology Co.,Ltd. Assignor: GUILIN University OF TECHNOLOGY Contract record no.: X2023980044172 Denomination of invention: Preparation Method of Sisal Cellulose Nanowhisker Reinforced Polylactic Acid/Lactic Acid Hydroxyglycolic Acid Copolymer Biocomposites Granted publication date: 20180410 License type: Common License Record date: 20231024 |
|
EE01 | Entry into force of recordation of patent licensing contract |