CN105801900A - 一种可选择富集f-离子的印迹聚合物制备方法及应用 - Google Patents

一种可选择富集f-离子的印迹聚合物制备方法及应用 Download PDF

Info

Publication number
CN105801900A
CN105801900A CN201610175477.2A CN201610175477A CN105801900A CN 105801900 A CN105801900 A CN 105801900A CN 201610175477 A CN201610175477 A CN 201610175477A CN 105801900 A CN105801900 A CN 105801900A
Authority
CN
China
Prior art keywords
ion
imprinted polymer
tio
nano
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610175477.2A
Other languages
English (en)
Other versions
CN105801900B (zh
Inventor
李辉
张月
王素素
龚梦婷
简琦沅
黄小英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Huizheng Biotechnology Co ltd
Original Assignee
Jishou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jishou University filed Critical Jishou University
Priority to CN201610175477.2A priority Critical patent/CN105801900B/zh
Publication of CN105801900A publication Critical patent/CN105801900A/zh
Application granted granted Critical
Publication of CN105801900B publication Critical patent/CN105801900B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0207Compounds of Sc, Y or Lanthanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3278Polymers being grafted on the carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/10Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种可选择富集F‑离子的印迹聚合物及其制法与用途,称取La2+‑Fe3+‑Mg2+‑Fˉ复合物置于小烧杯中,加入乙腈和二甲基亚砜,震荡后加入功能单体四乙烯基吡啶,加入经表面修饰过的纳米TiO2混合后,再加入交联剂乙二醇二甲基丙烯酸酯和引发剂偶氮二异丁腈,充分混合后,转入圆底烧瓶,超声脱气,通入氩气,封瓶,聚合反应24 h,将所得的块状聚合物粉碎,过筛,经多次洗脱、过滤后干燥即得。本发明得到的复合印迹材料聚合物结构疏松,可以对氟离子高识别性高效迅速吸附,因此可以对氟离子进行分离和富集,在去除废水中的氟离子的应用上有着很好的前景,同时也有着可持续发展和保护环境的重要意义。

Description

一种可选择富集 F- 离子的印迹聚合物制备方法及应用
技术领域
本发明涉及一种可选择富集F-离子的印迹聚合物及其制备方法和应用。
背景技术
分子印迹技术(Molecular imprinting technique, MIT)是一种利用记忆模板分子(离子)与单体接触时形成的作用点,除去模板分子(离子)后,制得具有与模板分子(离子)空间构型相匹配作用点的空穴的高选择性识别能力新型聚合物MIPs的技术。印迹技术具有许多优点:1.预定性,即它可以根据不同的目的制备不同的MIPs,以满足各种不同的需要。2.高识别性,MIPS是按照模板分子(离子)定做的,可专一地识别印迹分子(离子)。3.实用性,即MIPs是由化学合成的方法制备的,因此有天然分子识别系统所不具备的抗恶劣环境的能力,从而表现出高度的稳定性和长的使用寿命。印迹技术应用于药学、化工等各种领域中,其有目的的培养高效选择识别能力特点非常适用于分离、纯化目标物质、生物催化、给药系统。
按照模板分子(离子)与功能单体聚合的作用力,印迹技术主要可以分为非共价型和共价型两种。除了上述两种方式,还有金属螯合法。它的基本原理是将模板分子(离子)与功能单体之间是通过配体原子与金属间的配位作用相结合的,金属与配体之间的配位作用相对非共价键有足够的稳定性,同时又可以通过环境条件的改变,来控制配位键的结合与断裂速度。金属离子一方面可以把自身作为模板,利用其与功能单体配位原子之间的配位作用实现金属离子自身的印迹;另一方面,可以利用金属离子作为功能单体的组成部分,促成能与金属离子形成配位键的分子(离子)的印迹。该方法的优点是,制作工艺灵活简单,成本低,并且利用该方法制备的聚合物材料抗恶劣环境能力强,吸附能力好。目前,金属螯合法已被广泛应用于各个领域。如,XiaoLi S等以该方法制备聚合物,对河水中的双酚类物质进行有效萃取。Feng Lu等以Cu-EDTA、An- EDTA、Fe- EDTA和Cd- EDTA为模板分子制备了印迹聚合物并进行了吸附实验,结果表明对模板分子具有良好的选择吸附性。
制备印迹聚合物的方法有很多,包括本体聚合、原位聚合、悬浮聚合以及表面聚合等。 其中,表面印迹聚合法是指,先通过各种措施在膜表面产生自由基,然后膜表面产生的自由基进一步与功能基团或改性单体反应,从而达到接枝的目的。简而言之就是采取措施把几乎所有的结合位点局限在具有良好可接枝性的表面上从而有利于模板分子(离子)的脱除和再结合。表面印迹聚合法的优点是:1、用该方法制备的印迹聚合物解决了传统方法中洗脱模板分子(离子)的困难这个难题。2、吸附目标分子(离子)的速率比较快。3、应用于色谱柱中的时候,色谱柱会出现低压高流速的特点。Liu等用掺杂了ZnS量子点的Mn为载体,合成了具有高灵敏度的焚光感应量子点核壳印迹聚合物对水体中4-硝基苯酚进行处理。
随着科技的发展,含氟的碳氢化合物成为一种非常重要的化工新型材料,广泛用于医药、机械、化工等各个领域。有关氟产品化工企业日益增多,企业往往要排放含氟废水。如果水体的氟超过了水体的自净能力,氟含量就会逐步升高。人体蓄存过量氟中毒后的主要症状为牙齿变黄、变黑、腿呈X型或者手臂只能弯不能伸等,中毒轻者造成氟斑牙,重者出现氟骨症,甚至完全丧失劳动和生活自理能力。氟中毒一旦患上即永远成疾,药物只能减缓病情加重。氟离子现有的去除方法有:1、沉淀F离子去除法;2、吸附剂去除;3、陶瓷芯过滤器去除;4、反渗透除氟。其中沉淀法一般为采用钙盐沉淀法,及向高浓度含氟废水中投加石灰乳,生成氟化钙沉淀以去除。虽然此方法简单,处理方便,费用低,但泥渣沉降缓慢,脱水困难,处理后的出水很难达到国家标准。而陶瓷芯过滤器去除和反渗透除氟法处理含氟废水成本高,处理量小。
发明内容
鉴于现有技术的除氟效果均不够理想,本发明将表面印迹技术应用到去除氟离子的技术中,在水相体系中,采用金属螯合法制得了纳米TiO2负载La2+-Fe3+-Mg2+-F-复合配离子印迹聚合物材料,然后对其进行了表征和吸附动力学研究。
为获得可选择富集F-离子的印迹聚合物,本发明采取以下工艺步骤:
(1)纳米TiO2的预处理:将纳米TiO2在3.0 mol /L的硝酸溶液中浸泡10-15h后分离固体物质,用去离子水洗脱至pH 7.0再真空干燥、备用。用硝酸浸泡的目的是降低纳米TiO2表面张力和表面结合力,改善粒子易团聚的特性,提高粒子分散度。
(2)纳米TiO2的表面修饰:在制备纳米TiO2负载型印迹聚合物中,为了提高其应用性能,我们对纳米TiO2的表面进行有机修饰。表面修饰一方面可以改善纳米TiO2界面性能,从而增强在介质中的分散性和稳定性,另一方面可以提高纳米TiO2与聚合物的结合力,提高接枝率和负载后的稳定性。
将步骤(1)得到的纳米TiO2加入γ-MAPS的甲醇溶液(1/1, V/V),在313 K 温度下反应10-15 h 后冷却,磨碎备用。偶联剂(γ-MAPS)是一类具有两种不同性质官能团的物质,可以用来对纳米TiO2 进行表面修饰。
(3)La2+-Fe3+-Mg2+-F-复合配离子的制备:分别称取43.4 ㎎硝酸镧、48.4 ㎎硝酸铁、12.0 ㎎硫酸镁置于100 mL小烧杯中,加10.0 mL去离子水溶解后,再加入16.8 ㎎NaF,室温搅拌反应4 h后,过滤,得La2+-Fe3+-Mg2+-F-ˉ复合物,干燥备用。
(4)纳米TiO2表面接枝制备复合离子聚合物:称取0.14 gLa2+-Fe3+-Mg2+-F-ˉ复合物置于100.0 mL小烧杯中,加入5.0 mL乙腈和1.0 mL二甲基亚砜,震荡10 min,加入63.0 mg功能单体四乙烯基吡啶震荡30 min,加入200.0 mg经表面修饰过的纳米TiO2混合后,再加入1.19 g交联剂乙二醇二甲基丙烯酸酯和30.0 mg的引发剂偶氮二异丁腈,充分混合后,转入圆底烧瓶,超声脱气15 min,通入氩气15 min,封瓶,将圆底烧瓶放入60 ℃恒温水浴锅中聚合反应24 h,将所得的块状聚合物粉碎,过200目筛,将所得的聚合物用0.1 mmol/L的EDTA溶液洗脱24 h,然后用去离子水洗脱10 h,再将聚合物放入索氏提取器中用甲醇—乙酸(9/1)溶液洗脱48 h,再用甲醇索氏提取12 h,过滤后,固体放入真空干燥箱中60 ℃干燥24 h,即得离子印迹聚合物。
离子印迹聚合物可放于干燥箱中备用,非印迹聚合物(NIPs)的制备过程与印迹聚合物的制备过程一致,但在步骤中(3)不加入NaF。
为了评价离子印迹聚合物对卤族元素离子的吸附选择性,测试了MIPs和NIPs对F-、Clˉ、Brˉ、Iˉ的选择性,结果显示复合配离子印迹聚合物(MIPs)对F-的吸附选择性好,这是由于MIPs表面具有特异性吸附孔穴,所以对Fˉ表现出了较高的选择性。
为了了解和评价印迹聚合物对Fˉ的吸附性能,绘制了印迹聚合物和非印迹聚合物对氟离子吸附动力学曲线,结果表明:吸附量随着时间的增加而增加,3 h后吸附量不再随着时间的延长而明显变化。吸附过程可分为两个部分,一个快速吸附过程,一个缓慢吸附过程。吸附初期,Fˉ与聚合物中的结合位点迅速结合,并且由于传质推动力较大,因此吸附速率较快。但随着时间延长,结合位点逐渐减少,同时传质推动力下降,导致Fˉ吸附速率降低。达到吸附饱和时,对氟离子的饱和吸附量约为65.45 mg/g,非印迹聚合物的饱和吸附量为35.81 mg/g。印迹聚合物的高吸附量源于离子印迹聚合物中与测定离子相适应的识别位点的存在。
本发明采用硅烷偶联剂对二氧化钛进行表面修饰后,成功接枝了La2+-Fe3+-Mg2+-F-复合配离子印迹聚合物,红外光谱及热重分析表明了复合配离子印迹聚合物有效生成。吸附动力学测试表明在3 h内达到饱和吸附,显示了较快的吸附动力学过程,饱和吸附量约为65.45 mg/g,显示了该离子印迹聚合物较好的吸附能力。与现有技术相比,本发明的有益效果还在于:
聚合物结构疏松,可以对氟离子高识别性高效迅速吸附,因此可以对氟离子进行分离和富集,在去除废水中的氟离子的应用上有着很好的前景,同时也有着可持续发展和保护环境的重要意义。
具体实施方式
以下对可选择富集F-离子的印迹聚合物及其制法与应用进行详细说明。
实施例 1
(1)纳米TiO2的预处理:将纳米TiO2在3.0 mol /L的硝酸溶液中浸泡13h后分离固体物质,用去离子水洗脱至pH 7.0再真空干燥、备用。
(2)纳米TiO2的表面修饰:将步骤(1)得到的纳米TiO2加入γ-MAPS的甲醇溶液(1/1, V/V),在313 K 温度下反应12h 后冷却,磨碎备用。偶联剂(γ-MAPS)是一类具有两种不同性质官能团的物质,可以用来对纳米TiO2 进行表面修饰。
(3)La2+-Fe3+-Mg2+-F-复合配离子的制备:分别称取43.4 ㎎硝酸镧、48.4 ㎎硝酸铁、12.0 ㎎硫酸镁置于100 mL小烧杯中,加10.0 mL去离子水溶解后,再加入16.8 ㎎NaF,室温搅拌反应4 h后,过滤,得La2+-Fe3+-Mg2+-F-ˉ复合物,干燥备用。
(4)纳米TiO2表面接枝制备复合离子聚合物:称取0.14 gLa2+-Fe3+-Mg2+-F-ˉ复合物置于100.0 mL小烧杯中,加入5.0 mL乙腈和1.0 mL二甲基亚砜,震荡10 min,加入63.0 mg功能单体四乙烯基吡啶震荡30 min,加入200.0 mg经表面修饰过的纳米TiO2混合后,再加入1.19 g交联剂乙二醇二甲基丙烯酸酯和30.0 mg的引发剂偶氮二异丁腈,充分混合后,转入圆底烧瓶,超声脱气15 min,通入氩气15 min,封瓶,将圆底烧瓶放入60 ℃恒温水浴锅中聚合反应24 h,将所得的块状聚合物粉碎,过200目筛,将所得的聚合物用0.1 mmol/L的EDTA溶液洗脱24 h,然后用去离子水洗脱10 h,再将聚合物放入索氏提取器中用甲醇—乙酸(9/1)溶液洗脱48 h,再用甲醇索氏提取12 h,过滤后,固体放入真空干燥箱中60 ℃干燥24 h,即得。
实施例 2
(1)纳米TiO2的预处理:将纳米TiO2在3.0 mol /L的硝酸溶液中浸泡11h后分离固体物质,用去离子水洗脱至pH 7.0再真空干燥、备用。
(2)纳米TiO2的表面修饰:将步骤(1)得到的纳米TiO2加入γ-MAPS的甲醇溶液(1/1, V/V),在313 K 温度下反应14 h 后冷却,磨碎备用。偶联剂(γ-MAPS)是一类具有两种不同性质官能团的物质,可以用来对纳米TiO2 进行表面修饰。
(3)La2+-Fe3+-Mg2+-F-复合配离子的制备:分别称取43.4 ㎎硝酸镧、48.4 ㎎硝酸铁、12.0 ㎎硫酸镁置于100 mL小烧杯中,加10.0 mL去离子水溶解后,再加入16.8 ㎎NaF,室温搅拌反应4 h后,过滤,得La2+-Fe3+-Mg2+-F-ˉ复合物,干燥备用。
(4)纳米TiO2表面接枝制备复合离子聚合物:称取0.14 gLa2+-Fe3+-Mg2+-F-ˉ复合物置于100.0 mL小烧杯中,加入5.0 mL乙腈和1.0 mL二甲基亚砜,震荡10 min,加入63.0 mg功能单体四乙烯基吡啶震荡30 min,加入200.0 mg经表面修饰过的纳米TiO2混合后,再加入1.19 g交联剂乙二醇二甲基丙烯酸酯和30.0 mg的引发剂偶氮二异丁腈,充分混合后,转入圆底烧瓶,超声脱气15 min,通入氩气15 min,封瓶,将圆底烧瓶放入60 ℃恒温水浴锅中聚合反应24 h,将所得的块状聚合物粉碎,过200目筛,将所得的聚合物用0.1 mmol/L的EDTA溶液洗脱24 h,然后用去离子水洗脱10 h,再将聚合物放入索氏提取器中用甲醇—乙酸(9/1)溶液洗脱48 h,再用甲醇索氏提取12 h,过滤后,固体放入真空干燥箱中60 ℃干燥24 h,即得。
上述实施例并非对本发明作任何形式上的限制,任何熟悉本领域的技术人员,在不脱离本发明技术方案范围的情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (5)

1.一种可选择富集F-离子的印迹聚合物制备方法,其特征在于包含以下几个步骤:
(1)La2+-Fe3+-Mg2+-F-复合配离子的制备:分别称取43.4 ㎎硝酸镧、48.4 ㎎硝酸铁、12.0 ㎎硫酸镁置于100 mL小烧杯中,加10.0 mL去离子水溶解后,再加入16.8 ㎎NaF,室温搅拌反应4 h后,过滤,得La2+-Fe3+-Mg2+-F-ˉ复合物,干燥备用;
(2)纳米TiO2表面接枝制备复合离子聚合物:称取0.14 gLa2+-Fe3+-Mg2+-F-ˉ复合物置于100.0 mL小烧杯中,加入5.0 mL乙腈和1.0 mL二甲基亚砜,震荡10 min,加入63.0 mg功能单体四乙烯基吡啶震荡30 min,加入200.0 mg经表面修饰过的纳米TiO2混合后,再加入1.19 g交联剂乙二醇二甲基丙烯酸酯和30.0 mg的引发剂偶氮二异丁腈,充分混合后,转入圆底烧瓶,超声脱气15 min,通入氩气15 min,封瓶,将圆底烧瓶放入60 ℃恒温水浴锅中聚合反应24 h,将所得的块状聚合物粉碎,过200目筛,将所得的聚合物用0.1 mmol/L的EDTA溶液洗脱24 h,然后用去离子水洗脱10 h,再将聚合物放入索氏提取器中用甲醇—乙酸(9/1)溶液洗脱48 h,再用甲醇索氏提取12 h,过滤后,固体放入真空干燥箱中60 ℃干燥24 h,即得离子印迹聚合物。
2.根据权利要求1所述可选择富集F-离子的印迹聚合物制备方法,其特征在于表面修饰纳米TiO2的方法包含以下两个步骤:
(1)纳米TiO2的预处理:将纳米TiO2在3.0 mol /L的硝酸溶液中浸泡10-15h后分离固体物质,用去离子水洗脱至pH 7.0再真空干燥、备用;
(2)纳米TiO2的表面修饰:将步骤(1)得到的纳米TiO2加入γ-MAPS的甲醇溶液(1/1, V/V),在313 K 温度下反应10-15 h 后冷却,磨碎。
3.根据权利要求1或2所述方法制备的可选择富集F-离子的印迹聚合物。
4.一种分离水溶液中F-离子的方法,其特征在于:以含有权利要求3所述印迹聚合物的固体物质为吸附剂,从水溶液中吸附F-离子。
5.一种固相萃取剂,其特征在于:固相萃取剂中包含有权利要求1或2所述方法得到的可选择富集F-离子的印迹聚合物。
CN201610175477.2A 2016-03-26 2016-03-26 一种可选择富集f-离子的印迹聚合物制备方法及应用 Active CN105801900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610175477.2A CN105801900B (zh) 2016-03-26 2016-03-26 一种可选择富集f-离子的印迹聚合物制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610175477.2A CN105801900B (zh) 2016-03-26 2016-03-26 一种可选择富集f-离子的印迹聚合物制备方法及应用

Publications (2)

Publication Number Publication Date
CN105801900A true CN105801900A (zh) 2016-07-27
CN105801900B CN105801900B (zh) 2018-06-01

Family

ID=56453815

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610175477.2A Active CN105801900B (zh) 2016-03-26 2016-03-26 一种可选择富集f-离子的印迹聚合物制备方法及应用

Country Status (1)

Country Link
CN (1) CN105801900B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107179226A (zh) * 2017-06-15 2017-09-19 大工(青岛)新能源材料技术研究院有限公司 一种羟基磷灰石对氟离子的吸附检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030130462A1 (en) * 1999-12-03 2003-07-10 Mathias Ulbricht Method for producing template-textured materials with high binding specificity and selectivity and utilization of said materials
CN1631945A (zh) * 2004-11-25 2005-06-29 上海交通大学 分子表面印迹聚合物的制备方法
US20050189291A1 (en) * 1999-11-02 2005-09-01 Mip Technologies Ab Porous, molecularly imprinted polymer and a process for the preparation thereof
CN101024675A (zh) * 2006-02-16 2007-08-29 成均馆大学校产学协力团 利用离子印迹聚合物的重金属离子选择性分离
CN104804152A (zh) * 2014-01-26 2015-07-29 北京林业大学 基于纳米二氧化钛的山奈素印迹微球的制备方法及应用
CN105080504A (zh) * 2015-09-13 2015-11-25 衢州学院 一种氟离子表面印迹聚合物及其含氟水的处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050189291A1 (en) * 1999-11-02 2005-09-01 Mip Technologies Ab Porous, molecularly imprinted polymer and a process for the preparation thereof
US20030130462A1 (en) * 1999-12-03 2003-07-10 Mathias Ulbricht Method for producing template-textured materials with high binding specificity and selectivity and utilization of said materials
CN1631945A (zh) * 2004-11-25 2005-06-29 上海交通大学 分子表面印迹聚合物的制备方法
CN101024675A (zh) * 2006-02-16 2007-08-29 成均馆大学校产学协力团 利用离子印迹聚合物的重金属离子选择性分离
CN104804152A (zh) * 2014-01-26 2015-07-29 北京林业大学 基于纳米二氧化钛的山奈素印迹微球的制备方法及应用
CN105080504A (zh) * 2015-09-13 2015-11-25 衢州学院 一种氟离子表面印迹聚合物及其含氟水的处理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QINGZHAO YAO ET AL.: "Synthesis of TiO2 Hybrid Molecular Imprinted Polymer for Ethofumesate Linked by Silane Coupling Agent", 《JOURNAL OF INORGANIC & ORGANOMETALLIC POLYMERS & MATERIALS》 *
QINGZHAO YAO,YUMING ZHOU: "Synthesis of TiO2 Hybrid Molecular Imprinted Nanospheres", 《JOURNAL OF INORGANIC & ORGANOMETALLIC POLYMERS & MATERIALS》 *
谭先周 等: "纳米TiO2基绿原酸印迹聚合物的制备及其吸附研究", 《化工进展》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107179226A (zh) * 2017-06-15 2017-09-19 大工(青岛)新能源材料技术研究院有限公司 一种羟基磷灰石对氟离子的吸附检测方法

Also Published As

Publication number Publication date
CN105801900B (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
Mu et al. Adsorption of Cu (II) and Co (II) from aqueous solution using lignosulfonate/chitosan adsorbent
Kong et al. Dye removal by eco-friendly physically cross-linked double network polymer hydrogel beads and their functionalized composites
Yi et al. Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal
Zong et al. Synthesis of polyacrylonitrile-grafted cross-linked N-chlorosulfonamidated polystyrene via surface-initiated ARGET ATRP, and use of the resin in mercury removal after modification
Usman et al. Environmentally friendly fabrication of new β-Cyclodextrin/ZrO2 nanocomposite for simultaneous removal of Pb (II) and BPA from water
Zhang et al. Sorption enhancement of lead ions from water by surface charged polystyrene-supported nano-zirconium oxide composites
Bonetto et al. Removal of methyl violet 2B dye from aqueous solution using a magnetic composite as an adsorbent
Liu et al. Amidoxime-functionalized metal-organic frameworks UiO-66 for U (VI) adsorption from aqueous solution
Wang et al. Efficient dye removal using fixed-bed process based on porous montmorillonite nanosheet/poly (acrylamide-co-acrylic acid)/sodium alginate hydrogel beads
Boddu et al. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent
CN103285837B (zh) 对不同重金属离子具有高度选择性吸附材料的制备方法
CN108201878B (zh) 一种碳点改性金属有机骨架吸附材料的制备方法及水体污染物治理应用
Wang et al. Preparation of pectin/poly (m-phenylenediamine) microsphere and its application for Pb2+ removal
Njuguna et al. Smart and regeneratable Xanthan gum hydrogel adsorbents for selective removal of cationic dyes
CN102079823A (zh) 一种乙二胺改性壳聚糖复合磁性微球的制备方法及其用途
BR112019003192B1 (pt) Extração de íon metálico a partir de salmouras
BR112019009018A2 (pt) esferas de polímero de impressão molecular para extração de lítio, mercúrio e escândio
CN108970589B (zh) 一种水滑石基复合凝胶球及其制备方法和应用
Chai et al. In-suit ion-imprinted bio-sorbent with superior adsorption performance for gallium (III) capture
Yan et al. Preparation of metal organic frameworks modified chitosan composite with high capacity for Hg (II) adsorption
CN105837721B (zh) 一种大孔正二丁酰亚胺吸附树脂及其制备方法
Liu et al. Tentacle-type poly (hydroxamic acid)-modified macroporous cellulose beads: Synthesis, characterization, and application for heavy metal ions adsorption
Wang et al. Functional PAN-based monoliths with hierarchical structure for heavy metal removal
Jiang et al. Selective capture of lanthanum and lead cations over biomass-derived ion-imprinted biomacromolecule adsorbents
CN102863579B (zh) 一种巴比妥酸螯合树脂及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191210

Address after: 063000 No.75, caoxiqin East Road, Fengrun District, Tangshan City, Hebei Province

Patentee after: Hebei Sanshi Pharmaceutical Co.,Ltd.

Address before: 518110 808, 8 / F, building B, business center, gangzhilong Science Park, No. 6, Qinglong Road, Qinghua community, Longhua street, Longhua District, Shenzhen City, Guangdong Province

Patentee before: Shenzhen Pengbo Information Technology Co.,Ltd.

Effective date of registration: 20191210

Address after: 518110 808, 8 / F, building B, business center, gangzhilong Science Park, No. 6, Qinglong Road, Qinghua community, Longhua street, Longhua District, Shenzhen City, Guangdong Province

Patentee after: Shenzhen Pengbo Information Technology Co.,Ltd.

Address before: 416000 Hunan, Xiangxi Tujia and Miao Autonomous Prefecture, Jishou City People's road, No. 120

Patentee before: Jishou University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211029

Address after: No.75, East CaoXueqin Road, Fengrun District, Tangshan City, Hebei Province 063000

Patentee after: Hebei Huizheng Biotechnology Co.,Ltd.

Address before: No.75, East CaoXueqin Road, Fengrun District, Tangshan City, Hebei Province 063000

Patentee before: Hebei Sanshi Pharmaceutical Co.,Ltd.