CN105798323A - 球磨辅助界面制备大比表面积过渡金属-硼合金材料的方法 - Google Patents

球磨辅助界面制备大比表面积过渡金属-硼合金材料的方法 Download PDF

Info

Publication number
CN105798323A
CN105798323A CN201610155526.6A CN201610155526A CN105798323A CN 105798323 A CN105798323 A CN 105798323A CN 201610155526 A CN201610155526 A CN 201610155526A CN 105798323 A CN105798323 A CN 105798323A
Authority
CN
China
Prior art keywords
transition metal
ball milling
alloy material
boron alloy
assistant interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610155526.6A
Other languages
English (en)
Other versions
CN105798323B (zh
Inventor
王荣方
闫静静
廖锦云
李�浩
杨娟
王辉
季山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Nuolin New Technology Co ltd
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201610155526.6A priority Critical patent/CN105798323B/zh
Publication of CN105798323A publication Critical patent/CN105798323A/zh
Application granted granted Critical
Publication of CN105798323B publication Critical patent/CN105798323B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种球磨辅助界面制备大比表面积过渡金属‑硼合金材料的方法,是将与水不互溶的有机溶剂加入含有球磨珠的球磨罐中,再将过渡金属盐分散于球磨罐的有机溶剂中,并将强还原剂溶液滴加至上述体系形成两相液液界面;然后转动球磨机进行球磨辅助界面反应;反应产物依次用蒸馏水、无水乙醇洗涤,真空干燥即得。本发明通过球磨辅助界面反应,直接用还原剂溶液在常温下还原过渡金属盐及其过渡金属的复合金属盐,得到的过渡金属‑硼合金具有比表面积大、成本低、无遮蔽剂参与反应、活性高等优点,对化合物水解产氢、燃料电池、表面催化等多种领域的催化活性较高,因此是用于清洁能源的开发与制备的优良高性能催化剂。

Description

球磨辅助界面制备大比表面积过渡金属-硼合金材料的方法
技术领域
本发明属于功能材料技术领域,涉及一种大比表面积过渡金属合金材料的制备方法,尤其涉及一种球磨辅助界面法制备大比表面积过渡金属-硼合金材料的方法,主要用于催化NaBH4水解产氢。
背景技术
随着化石燃料的日益减少以及人类对环境保护意识的逐渐提高,开发新的能源已成为人类十分关注的问题。氢能是21世纪的主要清洁能源之一,储氢材料的研究引起了人们的关注。NaBH4具有良好的可逆性、相对较高的氢含量(10.8%)以及良好的热力学性质,被认为是一种极具有前景的储氢化合物。但NaBH4自身水解产氢速率慢,不能满足需要,因此采用催化剂促进产氢速率的提高显得尤为重要。
近些年,已有许多使用催化剂水解NaBH4产氢的研究。早期研究的水解NaBH4产氢的催化剂CoCl2、CoB、NiCl2、FeCl2、NiB等,催化活性均较低。研究发现,过渡金属-硼合金对于水解NaBH4产氢具有较高的催化活性。研究还表明,影响过渡金属-硼合金活性的重要参数之一是比表面积。因此,寻求一种大比表面积过渡金属-硼合金催化剂的制备方法具有十分重要的意义。
发明内容
本发明的目的是提供一种球磨辅助界面法制备大比表面积过渡金属-硼合金材料的方法。
本发明球磨辅助界面制备大比表面积过渡金属-硼合金材料的方法,是将与水不互溶的有机溶剂加入含有球磨珠的球磨罐中,再将过渡金属盐分散于球磨罐的有机溶剂中,并将强还原剂溶液滴加至上述体系形成两相液液界面;然后转动球磨机进行球磨辅助界面反应;反应产物依次用蒸馏水、无水乙醇洗涤,真空干燥,即得大比表面积过渡金属-硼合金材料。
所述有机溶剂为密度大于水的氯代烃,如氯仿、四氯化碳等。
所述球磨罐中的球磨珠的量为5~20个,直径为5~10 mm;所述球磨机的转速为250~750 rpm。
所述过渡金属盐为铁、钴、镍金属的氯化盐或硝酸盐;所述强还原剂为NaBH4,其与过渡金属盐的物质量比为4:1~8:1。
所述球磨辅助界面反应时间为1~6h。所述的真空干燥温度为40~60℃。
下面对本发明制备的过渡金属-硼合金材料的结构和性能作进一步分析说明。
图1为球磨辅助界面反应方法制备的大比表面积Me-B合金的N2-吸脱附曲线图(采用全自动比表面积及孔隙度分析仪,美国康塔公司)。经测试表明,球磨辅助界面还原制备的Me-B合金的比表面积为150~250m2·g-1,是普通方法还原制备的Me-B合金的7~10倍(普通方法还原制备的Me-B合金的比表面积仅为20~30 m2·g-1),为催化储氢化合物水解产氢具有高的活性提供了保证。
图2为球磨辅助界面法制备的大比表面积Me-B合金的孔径分布图(根据N2-脱附曲线通过BJH算法计算得到)。经测试表明,本发明球磨辅助界面还原制备的Me-B合金的孔径均处于介孔范围,并且孔径主要集中于7 nm左右,孔道相对较小,这对Me-B合金催化剂具有大比表面积提供了理论依据。
图3为球磨辅助界面还原制备的大比表面积Me-B合金的SEM图。从图3可以清楚的看到,该Me-B合金材料呈现疏松絮状结构,增大了Me-B合金的比表面积,从而有利于催化剂与催化底物的接触使其催化NaBH4水解产氢具有较高的催化活性。
图4为球磨辅助界面还原制备的大比表面积Me-B合金的X射线电子衍射图(XRD)。从图4可以清楚的看到,在2θ= 45.5°附近有一个较大的衍射峰,说明球磨辅助界面还原制备的Me-B合金是短程有序、长程无序的非晶态结构,没有明显的结构缺陷。与其具有大比表面积相辅相成。正是由于其非晶态结构及大比表面积使得催化NaBH4水解产氢具有较高的催化活性。
图5为球磨辅助界面还原制备的大比表面积Me-B合金与普通还原制备的Me-B合金对催化储氢化合物水解产氢量的对比图。从图中曲线的斜率看出,本发明球磨辅助界面还原制备的Me-B合金催化活性明显优于普通还原方法制备的Me-B合金。
综上所述,本发明通过球磨辅助界面反应,直接用还原剂溶液在常温下还原过渡金属盐及其过渡金属的复合金属盐,得到的过渡金属-硼合金材料Me-B具有比表面积大、成本低、无遮蔽剂参与反应、活性高等优点,对化合物水解产氢、燃料电池、表面催化等多种领域的催化活性较高,因此是用于清洁能源的开发与制备的优良高性能催化剂。
附图说明
图1为大比表面积Me-B合金的N2-吸脱附曲线图;
图2为大比表面积Me-B合金的孔径-孔容分布图;
图3为大比表面积Me-B合金的SEM图;
图4为大比表面积Me-B合金的XRD图;
图5为两种不同方法制备的Me-B合金催化储氢化合物产氢量对比图。
具体实施方式
下面通过具体实施例对本发明球磨辅助界面还原制备大比表面积Me-B的方法及对NaBH4水解产氢的催化活性作进一步说明。
实施例1
将4 mL CHCl3加入至含有20个直径为5 mm球磨珠的球磨罐中;再将0.6 mmolCoCl2·6H2O分散于有机相,再将4 mL 3.6mmol NaBH4溶液滴加至上述体系形成两相液液界面;随即将体系在转速750 rpm 进行球磨辅助界面反应2 h;反应产物用蒸馏水洗涤,无水乙醇洗涤,真空40~60 ℃干燥即得Me-B(Co-B)合金催化剂,其比表面积为224.7m2·g-1
通过催化NaBH4水解产氢测试发现,上述制备的Me-B(Co-B)合金催化NaBH4水解产氢的速率为16 mL·min-1,比用NaBH4直接还原制备的催化剂产氢速率提高了3 mL·min-1
实施例2
将40 mL CHCl3加入至含有15个直径为10 mm球磨珠的球磨罐中;再将0.5mmol FeCl3·6H2O分散于有机相,再40mL 2mmol NaBH4溶液滴加至上述体系形成两相液液界面;随即将体系在转速250 rpm 下进行球磨辅助界面反应1 h;反应液用蒸馏水洗涤,无水乙醇洗涤,真空40~60 ℃干燥,即得大比表面积Me-B(Fe-B)合金催化剂,其比表面积为160.8 m2·g-1
通过催化NaBH4水解产氢测试发现,上述制备的Me-B(Fe-B)合金催化NaBH4水解产氢速率为13 mL·min-1,比用NaBH4直接还原方法制备的催化剂产氢速率提高了5 mL·min-1
实施例3
将20 mL CCl4加入至球磨罐中,其中球磨罐含有的球磨珠的个数是直径为5 mm及10 mm的各10个;再将0.6mmolNi(NO3)2分散于有机相,再20 mL 4.2mmol NaBH4溶液滴加至上述体系形成两相液液界面;随即将体系在转速550 rpm 下进行球磨辅助界面反应1.5 h;反应液用蒸馏水洗涤,无水乙醇洗涤,真空40~60 ℃干燥,即得大比表面积Me-B(Ni-B)合金催化剂,其比表面积为208 m2·g-1
通过催化NaBH4水解产氢测试发现,上述制备的Me-B(Ni-B)合金催化NaBH4水解产氢速率为15 mL·min-1,比用NaBH4直接还原方法制备的催化剂产氢速率提高了6 mL·min-1
实施例4
将10 mL CHCl3加入至含有20个直径为10 mm球磨珠的球磨罐中;再将0.5 mmol CoSO4分散于有机相,再将10 mL 3mmol NaBH4溶液滴加至上述体系形成两相液液界面;随即将体系在转速750 rpm 下进行球磨辅助界面反应2 h;反应液用蒸馏水洗涤,无水乙醇洗涤,真空50~60 ℃干燥,即得大比表面积Me-B(Co-B)合金催化剂,其比表面积为196 m2·g-1
通过催化NaBH4水解产氢测试发现,上述制备的Me-B(Co-B)合金催化NaBH4水解产氢速率为16 mL·min-1,比用NaBH4直接还原方法制备的催化剂产氢速率提高了3 mL·min-1
实施例5
将2 mL CCl4加入至含有20个直径为10 mm球磨珠的球磨罐中;再将0.4 mmol NiSO4分散于有机相,再将2 mL 1.6 mmol NaBH4溶液滴加至上述体系形成两相液液界面;随即将体系在转速500 rpm 下进行球磨辅助界面反应1 h;反应液用蒸馏水洗涤,无水乙醇洗涤,真空40~60 ℃干燥,即得大比表面积Me-B(Ni-B)合金催化剂,其比表面积为189.7 m2·g-1
通过催化NaBH4水解产氢测试发现,上述制备的Me-B(Ni-B)合金催化NaBH4水解产氢速率为15 mL·min-1,比用NaBH4直接还原方法制备的催化剂产氢速率提高了6 mL·min-1
实施例6
将25 mL CHCl3有机溶剂加入至含有20个直径为5 mm球磨珠的球磨罐中;再将0.5mmol Fe(NO3)3分散于有机相,再将25 mL 3.5 mmol NaBH4溶液滴加至上述体系形成两相液液界面;随即将体系在转速350 rpm 下进行球磨辅助界面反应2 h;反应液用蒸馏水洗涤,无水乙醇洗涤,真空40~60 ℃干燥,即得大比表面积Me-B(Fe-B)合金催化剂,其比表面积为206.9 m2·g-1
通过催化NaBH4水解产氢测试发现,上述制备的Me-B(Fe-B)合金催化NaBH4水解产氢速率为12 mL·min-1,比用NaBH4直接还原方法制备的催化剂产氢速率提高了2 mL·min-1
实施例7
将15 mL CHCl3有机溶剂加入球磨罐中,其中球磨罐中含有的球磨珠的个数是直径为5 mm及10 mm的各10个;再将0.5mmol Fe(NO3)3分散于有机相,再将15 mL 2 mmol NaBH4溶液滴加至上述体系形成两相液液界面;随即将体系在转速500 rpm 下进行球磨辅助界面反应2 h;反应液用蒸馏水洗涤,无水乙醇洗涤,真空40~60℃干燥,即得大比表面积Me-B(Fe-B)合金催化剂。其比表面积为162.5 m2·g-1
通过催化NaBH4水解产氢测试发现,上述制备的Me-B(Fe-B)合金催化NaBH4水解产氢速率为15 mL·min-1,比用NaBH4直接还原方法制备的催化剂产氢速率提高了4 mL·min-1
实施例8
将35 mL CHCl3有机溶剂加入至含有20个直径为5 mm球磨珠的球磨罐中;再将0.5mmol Co(NO3)2分散于有机相,再将35 mL 4mmol NaBH4溶液滴加至上述体系形成两相液液界面;随即将体系在转速400 rpm 下进行球磨辅助界面反应2 h;反应液用蒸馏水洗涤,无水乙醇洗涤,真空40~60℃干燥,即得大比表面积Me-B(Co-B)合金催化剂。其比表面积为246.1 m2·g-1
通过催化NaBH4水解产氢测试发现,上述制备的Me-B(Co-B)合金催化NaBH4水解产氢速率为11 mL·min-1,比用NaBH4直接还原方法制备的催化剂产氢速率提高了3 mL·min-1

Claims (8)

1.球磨辅助界面制备大比表面积过渡金属-硼合金材料的方法,是将与水不互溶的有机溶剂加入含有球磨珠的球磨罐中,再将过渡金属盐分散于球磨罐的有机溶剂中,并将强还原剂溶液滴加至上述体系形成两相液液界面;然后转动球磨机进行球磨辅助界面反应;反应产物依次用蒸馏水、无水乙醇洗涤,真空干燥,即得大比表面积过渡金属-硼合金材料。
2.如权利要求1所述球磨辅助界面制备大比表面积过渡金属-硼合金材料的方法,其特征在于:所述有机溶剂为密度大于水的氯代烃。
3.如权利要求1所述球磨辅助界面制备大比表面积过渡金属-硼合金材料的方法,其特征在于:所述球磨罐中的球磨珠的量为5~20个,直径为5~10 mm。
4.如权利要求1所述球磨辅助界面制备大比表面积过渡金属-硼合金材料的方法,其特征在于:所述球磨机的转速为250~750 rpm。
5.如权利要求1所述球磨辅助界面制备大比表面积过渡金属-硼合金材料的方法,其特征在于:所述过渡金属盐为铁、钴、镍金属的氯化盐或硝酸盐。
6.如权利要求1所述球磨辅助界面制备大比表面积过渡金属-硼合金材料的方法,其特征在于:所述强还原剂为NaBH4,其与过渡金属盐的物质量比为4:1~8:1。
7.如权利要求1所述球磨辅助界面制备大比表面积过渡金属-硼合金材料的方法,其特征在于:所述球磨辅助界面反应时间为1~6h。
8.如权利要求1所述球磨辅助界面制备大比表面积过渡金属-硼合金材料的方法,其特征在于:所述的真空干燥温度为40~60℃。
CN201610155526.6A 2016-03-18 2016-03-18 球磨辅助界面制备大比表面积过渡金属‑硼合金材料的方法 Active CN105798323B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610155526.6A CN105798323B (zh) 2016-03-18 2016-03-18 球磨辅助界面制备大比表面积过渡金属‑硼合金材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610155526.6A CN105798323B (zh) 2016-03-18 2016-03-18 球磨辅助界面制备大比表面积过渡金属‑硼合金材料的方法

Publications (2)

Publication Number Publication Date
CN105798323A true CN105798323A (zh) 2016-07-27
CN105798323B CN105798323B (zh) 2018-04-06

Family

ID=56453318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610155526.6A Active CN105798323B (zh) 2016-03-18 2016-03-18 球磨辅助界面制备大比表面积过渡金属‑硼合金材料的方法

Country Status (1)

Country Link
CN (1) CN105798323B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179358A (zh) * 1996-10-15 1998-04-22 中国石油化工总公司 一种Ni-B非晶态合金催化剂、其制备方法及应用
CN1196975A (zh) * 1997-04-24 1998-10-28 中国石油化工总公司 含镍和硼的非晶态合金催化剂、其制备方法及应用
JP2005317373A (ja) * 2004-04-28 2005-11-10 Nissan Motor Co Ltd 燃料電池用触媒、および白金−イリジウム合金粒子の製造方法
CN1820850A (zh) * 2006-03-16 2006-08-23 上海师范大学 粒径尺寸均匀的非晶态合金催化剂及其制备方法
CN101157034A (zh) * 2007-11-13 2008-04-09 上海师范大学 一种非晶态合金催化剂及其制备方法和用途
CN102886527A (zh) * 2012-10-12 2013-01-23 东华大学 一种以油酸银为原料的油水界面法制备立方晶型纳米银材料的方法
US20130059217A1 (en) * 2011-09-07 2013-03-07 National Institute Of Advanced Industrial Science And Technolology Catalyst for generating hydrogen and method for generating hydrogen
CN103127936A (zh) * 2013-02-04 2013-06-05 中国科学院过程工程研究所 一种液相球磨部分还原法制备催化剂的方法及三元铜催化剂
CN103172124A (zh) * 2013-04-17 2013-06-26 新疆大学 一种固相化学反应制备氧化铁三维纳米结构的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179358A (zh) * 1996-10-15 1998-04-22 中国石油化工总公司 一种Ni-B非晶态合金催化剂、其制备方法及应用
CN1196975A (zh) * 1997-04-24 1998-10-28 中国石油化工总公司 含镍和硼的非晶态合金催化剂、其制备方法及应用
JP2005317373A (ja) * 2004-04-28 2005-11-10 Nissan Motor Co Ltd 燃料電池用触媒、および白金−イリジウム合金粒子の製造方法
CN1820850A (zh) * 2006-03-16 2006-08-23 上海师范大学 粒径尺寸均匀的非晶态合金催化剂及其制备方法
CN101157034A (zh) * 2007-11-13 2008-04-09 上海师范大学 一种非晶态合金催化剂及其制备方法和用途
US20130059217A1 (en) * 2011-09-07 2013-03-07 National Institute Of Advanced Industrial Science And Technolology Catalyst for generating hydrogen and method for generating hydrogen
CN102886527A (zh) * 2012-10-12 2013-01-23 东华大学 一种以油酸银为原料的油水界面法制备立方晶型纳米银材料的方法
CN103127936A (zh) * 2013-02-04 2013-06-05 中国科学院过程工程研究所 一种液相球磨部分还原法制备催化剂的方法及三元铜催化剂
CN103172124A (zh) * 2013-04-17 2013-06-26 新疆大学 一种固相化学反应制备氧化铁三维纳米结构的方法

Also Published As

Publication number Publication date
CN105798323B (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
Xie et al. Defect chemistry in heterogeneous catalysis: recognition, understanding, and utilization
Zhang et al. Atomically dispersed hierarchically ordered porous Fe–N–C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-Air battery
Yu et al. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting
Chu et al. Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction
Zhang et al. Efficient hydrogen generation from the NaBH4 hydrolysis by cobalt-based catalysts: positive roles of sulfur-containing salts
Liu et al. Recent advances in noble metal catalysts for hydrogen production from ammonia borane
Wang et al. FeMo3S4 for efficient nitrogen reduction reaction
Liao et al. Interfacial charge transfer induced dual-active-sites of heterostructured Cu0. 8Ni0. 2WO4 nanoparticles in ammonia borane methanolysis for fast hydrogen production
Lu et al. Cu0. 6Ni0. 4Co2O4 nanowires, a novel noble-metal-free catalyst with ultrahigh catalytic activity towards the hydrolysis of ammonia borane for hydrogen production
Dou et al. Shaggy-like Ru-clusters decorated core-shell metal-organic framework-derived CoOx@ NPC as high-efficiency catalyst for NaBH4 hydrolysis
Wang et al. Hydrogen production from ammonia borane hydrolysis catalyzed by non-noble metal-based materials: a review
Mu et al. Alkaline hydrogen oxidation reaction catalysts: insight into catalytic mechanisms, classification, activity regulation and challenges
Liao et al. CuO-Co3O4 composite nanoplatelets for hydrolyzing ammonia borane
Li et al. A review of the research status of CO 2 photocatalytic conversion technology based on bibliometrics
Xu et al. A co-operative protection strategy to synthesize highly active and durable Fe/N co–doped carbon towards oxygen reduction reaction in Zn–air batteries
Xu et al. Designing strategies and enhancing mechanism for multicomponent high-entropy catalysts
Feng et al. Modulating the acidic properties of mesoporous Mox–Ni0. 8Cu0. 2O nanowires for enhanced catalytic performance toward the methanolysis of ammonia borane for hydrogen production
Xu et al. A review of hydrogen production kinetics from the hydrolysis of NaBH4 solution catalyzed by Co-based catalysts
Wang et al. Tuning morphology and electronic structure of amorphous NiFeB nanosheets for enhanced electrocatalytic N2 reduction
Zhao et al. Development of carbon‐based electrocatalysts for ambient nitrogen reduction reaction: challenges and perspectives
Lu et al. Coexisting Fe single atoms and nanoparticles on hierarchically porous carbon for high-efficiency oxygen reduction reaction and Zn-air batteries
Ren et al. Ni–Mo2C nanocomposites as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane
CN102614880A (zh) 一种碳载非晶态金属镍的制备和应用
Liu et al. Electrocatalytic upcycling of nitrogenous wastes into green ammonia: advances and perspectives on materials innovation
Zhu et al. FeCo alloy encased in nitrogen-doped carbon for efficient formaldehyde removal: Preparation, electronic structure, and d-band center tailoring

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191225

Address after: No.58 Xinfu Road, Xinjie community, yonganzhou Town, Gaogang District, Taizhou City, Jiangsu Province

Patentee after: Chen Weidi

Address before: 730070 Anning Road, Anning District, Gansu, Lanzhou, China, No. 967

Patentee before: Northwest Normal University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201104

Address after: Room 706, building 6, No. 999, Wanshou South Road, Chengnan street, Rugao City, Nantong City, Jiangsu Province

Patentee after: Nantong Nuolin metal new material technology Co.,Ltd.

Address before: No.58 Xinfu Road, Xinjie community, yonganzhou Town, Gaogang District, Taizhou City, Jiangsu Province

Patentee before: Chen Weidi

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Room 706, building 6, 999 Wanshou South Road, Chengnan street, Rugao City, Nantong City, Jiangsu Province, 226500

Patentee after: Nantong Nuolin New Technology Co.,Ltd.

Address before: Room 706, building 6, 999 Wanshou South Road, Chengnan street, Rugao City, Nantong City, Jiangsu Province, 226500

Patentee before: Nantong Nuolin metal new material technology Co.,Ltd.