CN105793722B - 用于稳态mr序列的实时自适应生理同步和门控 - Google Patents

用于稳态mr序列的实时自适应生理同步和门控 Download PDF

Info

Publication number
CN105793722B
CN105793722B CN201480065886.6A CN201480065886A CN105793722B CN 105793722 B CN105793722 B CN 105793722B CN 201480065886 A CN201480065886 A CN 201480065886A CN 105793722 B CN105793722 B CN 105793722B
Authority
CN
China
Prior art keywords
data
acquisition
test object
parameter
statistical analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480065886.6A
Other languages
English (en)
Other versions
CN105793722A (zh
Inventor
A·佩德内卡尔
R·穆图皮莱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN105793722A publication Critical patent/CN105793722A/zh
Application granted granted Critical
Publication of CN105793722B publication Critical patent/CN105793722B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/567Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution gated by physiological signals, i.e. synchronization of acquired MR data with periodical motion of an object of interest, e.g. monitoring or triggering system for cardiac or respiratory gating
    • G01R33/5673Gating or triggering based on a physiological signal other than an MR signal, e.g. ECG gating or motion monitoring using optical systems for monitoring the motion of a fiducial marker
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/546Interface between the MR system and the user, e.g. for controlling the operation of the MR system or for the design of pulse sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5613Generating steady state signals, e.g. low flip angle sequences [FLASH]
    • G01R33/5614Generating steady state signals, e.g. low flip angle sequences [FLASH] using a fully balanced steady-state free precession [bSSFP] pulse sequence, e.g. trueFISP
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/567Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution gated by physiological signals, i.e. synchronization of acquired MR data with periodical motion of an object of interest, e.g. monitoring or triggering system for cardiac or respiratory gating
    • G01R33/5676Gating or triggering based on an MR signal, e.g. involving one or more navigator echoes for motion monitoring and correction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Power Engineering (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明涉及一种采集自由呼吸稳态磁共振图像(MRI)的方法和一种用于生成测试对象(20)的MR图像的自由呼吸磁共振(MR)成像系统(10),其至少包括磁场单元、用于控制所述MR成像系统的功能的控制单元、图像处理单元以及能够接收定义MR脉冲序列的参数的用户接口,其中,所述MR成像系统还包括用于检测测试对象的生理活动的检测单元(36)以及数据处理单元(40),所述数据处理单元能够执行对所述生理活动数据的统计分析并且能够基于所述统计分析来自适应地制定所述MR脉冲序列的所述参数中的至少一个。这包括至少调节为所述MR脉冲序列的部分的RF假激励的至少开始点和/或持续时间。

Description

用于稳态MR序列的实时自适应生理同步和门控
技术领域
本发明涉及一种采集自由呼吸稳态磁共振图像(MRI)的方法和一种用于生成测试对象的MR图像的自由呼吸磁共振(MR)成像系统,所述系统至少包括用于控制MR成像系统的功能的控制单元和能够接收定义MR脉冲序列的参数的用户接口,其中,MR成像系统还包括用于检测测试对象的生理活动的检测单元和能够执行生理活动数据的统计分析和能够基于统计分析而自适应地制定MR脉冲序列的参数中的至少一个的数据处理单元。
背景技术
在过去几十年中,磁共振成像(MRI)已经证明除了别的以外在医学诊断的领域中是非常有价值的工具。考虑由于在不必破坏或损害感兴趣组织的情况下获得现实2或3维结构和功能信息的可能性的该技术得到对人身体的更好理解的独特的特征,这是尤其真实的。由于技术部分已经例如通过较高的磁场强度或较复杂的脉冲序列的实施而经历巨大的改进,因而已经达到在过去几年被认为是不可能的在时间和空间中的图像分辨率。然而,现今图像伪影的若干源也是已知的,其可以可能限制可达到的图像质量。一方面,图像伪影可能由机械设置引起并且可以包括主场不均匀性、梯度非线性、定时误差和RF干扰。另一方面,针对限制的图像质量的若干原因能够直接归因于测试对象的运动。此处,特别地,必须提到对象的呼吸、心脏搏动、血液和CSF流动、蠕动、吞咽和随意运动。这样的测试对象运动是有害的,因为通常制造图像必要的MRI数据采集的时间尺度(秒的量级)能够跨粗略地为超过运动发生的时间尺度的量级或者超过运动发生的时间尺度的时间范围。
克服这样的运动伪影的一个方式是对关于图像数据采集的特定边界条件的引入。例如,能够通过在暂停的屏住呼吸期间的数据采集来抵消呼吸运动。然而,对于空间分辨率、空间覆盖和时间分辨率的临床需要通常使总采集时间超过测试对象或患者的屏住呼吸容量。这提出通过将MR成像与生理信号同步或者通过足够迅速地采集MR数据以冻结运动,来减少MRI中的得到的运动伪影的需要。
MR成像可以通过前瞻性门控或者回顾性门控与生理信号同步。在前瞻性门控中,生理周期中的特定相位的检测起始RF激励并且起始针对预定义持续时间的数据采集。RF激励和数据采集仅在指定生理相位的下一次出现之后重新开始。相比之下,在回顾性门控中,关于在用户识别的生理相位期间采集的数据,以固定速率重复RF激励和数据采集。生理周期中的每次数据采集的所记录的定时被用于计算合成数据集并且图像被插入到固定生理相位。
在US 5251629A中公开了一种用于对对象的运动进行计数的方法。此处,描述了一种用于通过利用核磁共振检查具有生理运动的物理部分(例如随呼吸运动的腹部区域)的方法和装置。使存在于指示要被成像的切片的平面上的腹部区域的表面的该区的情况与剩余物理部分的表面的情况不同。在这种情况下,要被检查的人员感觉腹部区域处的异质状况并且有意识和无意识地抑制由于呼吸的腹部区域的运动,从而使胸部随呼吸运动。因此,要被检查的腹部区域保持静止,并且能够在短时间段内做出准确的检查。
而且,US 2008/0154121 A1描述了一种磁共振成像方法,其涉及一系列触发事件的检测和来自k空间的各自的段的磁共振信号的连续段的采集。例如基于所检测的一系列触发事件通过滑动平均(running average)来预测下一触发事件的出现。基于所预测的触发事件的出现来触发磁共振信号的至少一个个体段的采集。对采集的触发基于所预测的触发事件,例如,其中,采集的时刻和持续时间是基于对触发事件的预测来调节的。
根据US 2011/0152669 A1,提供了一种磁共振成像装置,其执行对象的心肌灌注成像。所述装置包括:成像单元,其通过与来自对象的生物信号同步对对象的心脏进行成像来采集图像数据;以及图像生成单元,其基于图像数据生成关于对象的心脏的图像,其中,成像单元在心脏的成像之前施加用于检测对象的身体运动的探查脉冲,并且在探查脉冲的施加之前施加空间非选择性饱和脉冲,以及用于翻转回关于探查脉冲施加到的区域的空间非选择性饱和脉冲的翻转角的局部选择性脉冲。
US 2008/0309333 A1描述了一种用于从对象采集MR数据的磁共振系统,所述MR系统包括:监测模块,其用于监测对象的运动的特性,运动的特性具有预定或动态调节的限制;以及脉冲定序器,其用于在施加脉冲序列以在运动的特性在限制内时从对象采集数据,所述脉冲序列包括至少一个脉冲波形,其中,所述脉冲定序器还被布置为当运动的特性超过限制时,调整至少一个脉冲波形的特性。
在US 5051903中,描述了一种用于减少NMR成像中的图像伪影的装置。所述装置将集合的元素与基本周期函数的值匹配,使得值呈现与元素的预定关系。通过以下来执行匹配:评价基本周期函数的值来自值的生长的数据库中的样本的相对概率并且通过使用所评价的相对概率将值分配给元素,从而最大化随后值可以被分配符合预定关系的剩余元素的概率。
在Fernandez B.等人的“Adaptive trigger delay using a predictive modelapplied to black blood fast spin echo cardiac imaging in systole”(Proceedingsof the International Society for Magnetic in Medicine,ISMRM,17th ScientificMeeting and Exhibition,Honolulu,Hawaii,USA,2009年4月18-24日,第4719页)中,描述了通过在先前心脏周期中的R波之前开始双翻转恢复来采集收缩末期相位中的黑血快速自旋回波。
然而,除上文所提到的方式之外,为了关心MRI中的运动,在特定稳态MR序列中必须满足特殊要求,这在心脏电影MR(CMR)的背景下是非常重要的。针对电影CMR的一个优选的序列,平衡式稳态自由进动(bSSFP)序列,其广泛地被用于评价全局(舒张期末容积、收缩期末容积和射血分数)和区域(室壁运动、室壁增厚)心室功能,这是由于其优越的血肌对比和较高的固有信噪(SNR)比。
常规bSSFP采集在其期间禁用数据采集的RF激励的预定义集合(假激励)。这些假激励朝向稳态驱动磁化,此后,数据采集开始。一旦达到稳态,RF脉冲的周期性施加中的任何中断将驱动磁化远离稳态并且RF激励的重新开始将引入暂态信号振荡。为了避免这一点,一旦稳态被建立,则在没有任何中断的情况下通过RF脉冲的规则的施加立即采集图像形成所要求的所有数据。
发明内容
存在对于另一改进的系统的需要,其能够减少诸如bSSFP的稳态MR序列中的屏住呼吸约束的负担,并且允许在不规则的间隔的中断的情况下与自由呼吸实验中的生理信号同步使用这些序列。
在该背景下,所述稳态约束将显著的负担放置于在源于将数据采集定时到预定义呼吸相位的或者在超过患者经由屏住呼吸暂停呼吸的能力的多个心脏周期上的期望的周期性中断的情况下的数据采集上。避免稳态的所述中断的对假RF脉冲的恒定施加还施加特定吸收率(SAR)负担并且不是用于相对长采集的可行方法。
因此,本发明的目的是提供一种用于生成测试对象的MR图像的改进的磁共振(MR)成像系统。
根据本发明,该目的通过用于生成测试对象的MR图像的磁共振(MR)成像系统解决,所述MR成像系统至少包括:
-控制单元,其用于控制所述MR成像系统的功能,
-用户接口,其能够接收定义MR脉冲序列的参数,
-检测单元,其用于检测所述测试对象的生理活动;以及
-数据处理单元,其能够执行对生理活动数据的统计分析并且能够基于所述统计分析自适应地制定所述MR脉冲序列的所述参数中的至少一个,包括对作为所述MR脉冲序列的部分的RF假激励的至少开始点和/或持续时间的调节。
由于检测单元与数据处理单元结合的发明组合,因此能够基于统计分析来制定针对未来扫描的所述MR脉冲序列。生理周期的所述统计分析提供例如用于触发其中所述测试对象的运动不可能的时段中的数据采集的输入。因此,不必要求来自所述测试对象的屏住呼吸。另外,与回顾性门控的所述标准方法相反,这样的系统能够提供实时主动地制定所述脉冲序列的要求。这样的系统不仅能够跟踪测试对象的所述生理活动而且此后使用针对不同扫描的组合的信息以形成图像。这样的系统能够主动地影响针对相同序列的另外的扫描的所述采集参数。因此,减少由所述测试对象的所述生理活动所引起的伪影的所述可能性,这实现较好的MR图像的采集。
出人意料地,已经发现,发明性系统能够提供用于不能利用现有技术屏住呼吸系统评估的若干应用的解决方案。例如,发明性系统例如能够用在儿科应用中,其中,安静的小孩不能执行屏住呼吸。当前屏住呼吸解决方案必须对多个采集进行平均,这继而遭受运动模糊、长扫描持续时间和高SAR影响。因此,通常利用比对于儿科群体中的较小的结构和快速的心率而言足够的更差的空间分辨率和时间分辨率获得标准屏住呼吸图像。所提出的磁共振系统能够在没有对象的自由呼吸期间的SNR、CNR、边缘清晰度、SAR以及扫描持续时间方面的折衷的情况下递送无伪影图像。这样的发现在其中所述测试对象遭受折衷的屏住呼吸能力的影响的所有情况下也是真实的。
而且,已经发现,以上自由呼吸系统能够允许高达6-12msec的较高的时间分辨率与相同空间分辨率,这实现对如峰射血率、峰充盈率、有效充盈率以及甚至等体积弛豫时间的暂态现象的评估。在日常临床实践中,通常时间分辨率被限制到30-50msec以以8-12R-R间隔保持屏住呼吸。
另外,自由呼吸系统在3D电影成像的情况下尤其有用。具有或没有对比施行的3D多相位等体积采集具有在多个取向上进行2D采集的潜力,因为能够在期望的取向上执行多平面重建。常规屏住呼吸电影采集不允许针对3D采集的足够的空间分辨率。另外,单拍3D使整个LV中的血液信号饱和,因此显著地减少新鲜血液信号。所提出的自由呼吸系统结合并行成像能够允许等体积3D电影采集。每个呼吸周期的中断的RF激励还确保与常规3D电影采集相比较改进的亮血信号。3D电影在儿科情况下是尤其有用的,其中,长轴尺寸较小并且对于评价先天性情况的多平面重建的需要是关键的。
发明性系统还具有能够被用于采集近端冠状动脉结构的若干优点。该数据对于研究冠状动脉动力学和相关机械应力/应变而言是有用的。电影帧还能够被用于执行回顾性重建,其中,来自静止时段的多个帧能够合并以达到较高的SNR。
除以上所提到的优点之外,发明性系统还允许两个图像采集。因此,能够利用例如bSSFP的非一致谱响应以利用不同的RF相位周期方案[还参见42:876-883,1999年]来抑制来自两个采集的脂肪。这在对脂肪浸润以及如致心律失常性右心室发育不良的情况下的所述运动的评价中可以是有用的。
发明性MR成像系统能够有利地基于现有MR系统的成像硬件,所述MR系统是在市场上可购得的。这样的系统能够提供如磁体、RF线圈、接收器、扫描器控制台、计算机等的MR的所有标准元件并且能够额外地根据本发明的要求被装备或修改。只要要求计算,就能够通过软件包的修改有利地使用标准MR系统的标准计算机系统。
在MR脉冲序列内定义所有必要的实验参数。该参数通常是所述感兴趣组织的函数并且可以包括最大扫描时间(MST)、稳态时间(TSS)、重复时间(TR)、回波时间(TE)以及翻转角(FA)。通常,参数存储在运行在光谱仪上的所述测量程序文件(MPF)中。
用于检测测试对象的所述生理活动的适合的检测单元可以包括本领域的技术人员已知的标准检测设备。这样的单元可以例如包括ECG、脉冲计、呼吸触发和/或RF监视器。本发明的意义上的测试对象可以例如是人类或动物。
能够执行统计分析的数据处理单元可以例如是包括统计软件包的标准计算机。这样的计算机可以已经是标准MR系统的部分并且可以通过特殊统计包来升级。统计分析可以包括平均的计算、移动平均、直方图分析、最大似然或最大熵估计或任何其他种类的统计分析,其能够将给定数据集减少到包括一个或多个统计参数的定义的数学模型。参数可以仅包括一个检测单元的数据点或者可以有利地包括两个或更多独立的检测单元的数据点以便包括针对图像的运动伪影的所有可能源。
根据本发明的优选实施例,所述系统还包括磁场单元和图像处理单元。
本发明的另一方面提供一种系统,其中,所述生理活动数据的所述统计分析至少包括对测试对象的呼吸周期和/或心脏周期的周期性的确定。已经发现,所述呼吸周期和/或所述心脏周期的所述周期性可以是用于自适应地制定所述MR序列的重要参数。所述呼吸周期和所述心脏周期是在自由呼吸实验期间测试对象的主要运动的原因。因此,两者周期的周期性的确定和基于这些周期性的未来扫描的所述序列参数的调整可以提供用于制定在时段中的所述数据采集的有用工具,其中,没有运动或所述测试对象的仅小的运动能够被预期。因此,减少了所述图像中的运动伪影的可能性。
而且,一种系统在本发明的所述范围内,其中,所述MR脉冲序列是平衡式稳态自由进动序列。尤其是在稳态MR序列的过程中,发明性系统可能能够减少运动伪影的可能性。在标准前瞻性门控流程中,MR信号可以前瞻性地被门控以还结合呼吸信号进行采集。典型的是快速采集速度以便冻结所述运动,利用用于最小暴露于运动的分割的横向遍历k空间和用于促进接近稳态的RF翻转角方案,采用对梯度回波的快速重复激励。在前瞻性门控实例中,利用其规律性由诸如呼吸或心脏搏动的生理过程支配的触发来中断所述MR信号采集过程。在其中RF脉冲的周期性非中断的施加对于维持磁化的稳态必要的快速重复的激励梯度回波MR序列(被称为稳态序列)中,这些中断能够导致返回到所述MR信号的假设的稳态的显著暂态振荡方法生理同步约束内的这样的中断由发明性系统解决,其在针对MR序列的所述稳态要求必须满足时是尤其有用的。
另外,在本发明的范围内公开了一种系统,其中,所述数据处理单元能够制定所述数据采集的开始和/或RF激励。例如,可以通过对所述测量程序文件(MPF)的改变或者通过由数据处理单元对程序定义文件(PDF)的修改,来执行这样的制定。所述系统能够确定最合适的时间点,其中,能够在没有影响的情况下或在所述生理活动的仅小的影响的情况下执行数据采集。因此,能够预测用于数据采集的最佳时间,并且在稳态实验的过程中,RF激励也必须要被调整。仅两者步骤(激励和采集)的制定可以确保无伪影图像的生成。
额外的发明性方面包括一种系统,其中,所述数据处理单元能够制定所述k空间采样。基于所述测试对象的所述生理活动和由所述数据处理单元提供的所述统计分析,能够自适应地调节(制定)k空间段的数量以便最大化扫描效率。由于已知周期性,因此能够利用针对当前生理周期的数据采集完全地填充可用的剩余时间。另外,能够以将在k空间的信息丰富的中心部分期间的运动的可能性的最小化的方式调节所述k空间采样。这可以通过例如前瞻性计划以在所预测的静止时段期间采集来自k空间的中心区域的数据并且在其他情况下采集针对k空间的周围区域(例如,接近预测的周期性事件)的数据。因此,可以通过这样的系统减少扫描和图像伪影。
而且,发明性系统可以包括验证单元,所述验证单元能够对着实时自适应心律失常拒绝准则验证所述MR数据。验证单元能够使所述扫描数据和所述生理活动周期相关。这由于所述发明性系统中的所述生理周期持续时间的所述实时跟踪而是可能的。因此,周期读数能够被用于检测数据采集期间的任何(未预测的)运动。结果,所述扫描数据能够在生理活动在数据采集期间未被检测到时被用于图像重建或者在心律失常发生的情况下被重新采集。因此,由于所述验证流程,图像伪影可以进一步被减少。
在本发明的范围内还公开了一种自适应稳态自由呼吸MR成像方法,所述方法包括以下步骤:
a)针对稳态MR序列的至少一个采集参数的定义进行用户输入,
b)监测测试对象进行生理活动,
c)对步骤b)中监测的数据进行统计分析,
d)对步骤a)的所述MR序列的至少一个采集参数进行调节,包括根据步骤c)的所述统计分析对RF假激励的至少开始点和/或持续时间进行调节,
e)根据步骤d)中定义的所述参数对所述测试对象的MR扫描进行采集,
f)重复步骤b)至e),直到整个k空间被采集。
这样的方法提供了一种前瞻性自适应实时方法,以克服针对例如心脏和呼吸门控的背景下的多相位采集和单相位采集两者的屏住呼吸稳态MF方法的现有限制。因此,这样的方法非常适于包括具有严重地折衷的屏住呼吸能力和/或中等心律失常的测试对象(例如安静和不合作的儿童和成人)的情况。尤其是,这样的方法可以非常适于稳态实验,如稳态自由进动(bSSFP)序列,如上文已经解释的。所提出的方法将显著地减少针对诸如bSSFP的序列的非中断周期性激励的稳态约束的负担,并且允许这些序列在不规则地间隔的中断的情况下与生理信号同步使用。因此,所提出的方法将额外地通过提供例如k空间遍历和实时心律失常拒绝准则的无缝调整以最小化由于运动和接近稳态的伪影的可能性,来改进所述用户规定诸如SSFP的这样的单个或多个中断的稳态序列的工作流程。最后,可购得的回顾性心脏门控重建算法可以执行变化的R-R间隔的所要求的非线性伸展以重建电影图像。
如现有技术中已知的,针对所述MR序列的定义的所述用户输入可以例如通过使用用户接口(ExamCard)的必要参数的输入来执行,除了别的以外,其允许所述用户指定用于完成数据采集的最大扫描时间(MST)。可以在扫描器控制台上的协议定义文件(PDF)的验证相位中起始总体方法。如果所规定的协议正使用生理同步和稳态MR序列,那么PDF将使用针对扫描器场强的规定序列的重复时间(TR)、回波时间(TE)以及翻转角(FA)计算所要求的稳态时间(TSS)。所述PDF能够从用户接口获取针对TSS的期望切片厚度或者使用针对数据采集的所规定的生理相位的查找表。与标准测量参数一起,PDF可以将TSS、TSS_切片_厚度和MST传递给所述测量程序文件(MPF),其运行在所述光谱仪上。
在发明性方法的优选实施例中,步骤c)中的所述统计分析至少包括对所述生理活动的周期性的确定。为了预测测试对象的生理改变的出现,不仅确定所述出现而且确定所述信号的所述周期性也是非常适合的。这可以通过生理周期的两个触发之间的所述时间差异的简单计算或者通过如多个触发事件的移动平均值或直方图分析的更复杂的方法来实现。这样的更详尽的方法是优选的,因为通常其允许好得多的预测,因为其基于更大数量的数据点。更多地,这样的更好的统计方法还能够包括所述触发事件之间的非线性间隔。适合的生理触发可以是心跳、呼吸/呼气和/或血流。
根据本发明,在步骤d)中,至少调节RF假激励的开始点和/或持续时间。对于稳态MR序列而言,通常使用在其期间禁用数据采集的RF激励的定义的集合(假激励)。这些假激励朝向稳态驱动磁化,此后,数据采集开始。在测试对象的生理活动的情况下,因此,除所述数据采集之外调节所述假激励的所述开始点和/或所述持续时间也是有帮助的。这可以帮助在中断出现之后保持针对不同扫描的相同稳态。因此,能够实现针对所有所述扫描的相同数据质量。
在本发明的优选特性中,公开了一种方法,其中,在步骤d)中,至少调节k空间段的数量。基于对感兴趣生理周期的所述统计分析,还有利地能够根据所述统计分析来调节所述k空间段的数量和位置。所述k空间的所述中心段可以有利地在所述生理周期的前瞻性预测的静止时段中被填充,其中,能够使用在其中所述测试对象的运动可能出现的生理事件附近采集的数据来填充所述k空间的较少的中心部分。可以通过调节每拍的k线的数量来使用类似策略。因此,能够实现较好的图像质量。对数据采集事件与所选择的k空间段之间的关系的这样的前瞻性评价还可以被称为k空间采样策略。
本发明的优选特性公开了一种方法,其中,步骤d)中的所述采集参数的调节还基于RF监视器的输入。除周期性生理触发事件的确定之外,额外地通过对RF监视器的使用监测所述测试对象也可以是有帮助的。因此,能够额外地监测所述测试对象的非周期性运动。这样的监视器数据还可以形成针对所述统计分析的基础或者能够例如额外地被用在例如验证例程的过程中。在该验证例程内,能够排除扫描,其中,所述测试对象的大非周期性运动出现。因此,能够获得较好的无伪影图像。
在本发明的另一实施例中,还能够将呼气相位和心脏R顶的所述预测用于对采集的确定。例如,能够以多相位方式将所述第一心脏R顶用作针对在k空间中的相位编码步骤段的所述采集的同步点。这在稳态之后实现,并且所述呼气相位已经开始。在中间第n(实时计算的)R顶的达到时,将终止RF激励。可购得的实时心律失常拒绝算法将接受或者拒绝每个心跳处的所述数据。在拒绝的情况下,将重新采集相同的相位编码段。
根据本发明的额外实施例包括一种方法,其中,在额外步骤中,对着心律失常拒绝准则验证步骤e)的MR扫描。总体而言,也能够使用现有机制和算法来跟踪生理信号并检测生理活动。作为范例,如果数据采集在呼吸信号的所述吸气点处继续,那么所述实时心律失常拒绝算法还将将检查所述吸气相位是否已经在所述数据采集期间发生。能够根据所跟踪的信号的实际结果标记所采集的扫描数据。例如,能够基于所述k空间中、所述心脏周期中的位置和所述吸气的所述程度来标记所述扫描为“接受的”、“拒绝的”或“边际的”。这包括标准验证尺度的增强。而且,标记所采集的数据以与所述重建算法通信的现有机制能够被增强以允许除“有效的”和“无效的”标签外的“边际的”。在所述采集中较早地遍历k空间的所述信息丰富中心将确保在达到所述MST之前仅留下边际数据。
在又一优选实施例中,所述自由呼吸MR脉冲序列是呼吸触发的心脏门控电影bSSFP序列。在这种情况下,所述发明性方法能够有利地被用于获得无伪影图像。在该方法内,所述用户能够利用心律失常拒绝、回顾性心脏门控和被用于每呼气相位的采集的心跳的数量来规定针对关于吸气或者呼气的触发的扫描。所述吸气触发能够从呼吸风箱获得,并且在呼气触发的情况下,其能够从风箱或者RF导航器获得。当用在跟踪模式中时,RF导航器将允许跨所述呼吸周期的运动补偿。
所述发明性方法的另一特性可以包括以下步骤:
A.前瞻性地计算患者的每个类型的生理周期的周期性的直方图并且在MR检查的过程期间自适应地更新生理相位持续时间的关系表。
B.通过考虑所述脉冲序列的信号行为、感兴趣组织的弛豫时间和操作者指定的脉冲序列参数(诸如TR/TE/翻转角),计算达到针对所规定的稳态MR脉冲序列(例如bSSFP)的稳态所要求的假RF激励的所述持续时间。
C.基于患者特异性生理或其他约束,自适应地调节采集参数。例如,基于针对采集的最大允许时间的用户输入、门控的类型和针对门控的期望生理相位(例如,吸气末和回顾性心脏和达到稳态(从步骤B)所要求的时间),确定可用于稳态的准备的最佳时间窗、切片厚度和/或稳态准备的切片概况、可用于使用来自步骤A的表的数据的采集的RF导航器和时间窗的施加。
D.使用来自步骤A至C的信息,所述方法将前瞻性地实时对所述数据采集进行调整:
1、如果在步骤C中被认为对于评估生理运动的程度可行,则采集RF导航器。
2、在步骤C中所确定的针对稳态准备的预定生理相位处起始预定切片厚度或概况的假RF激励。如果之前有RF导航器,则所述稳态准备相位的切片位置将前瞻性地被制定以补偿所述运动和新鲜自旋效应。
3、在针对在步骤B中预定的最大持续时间的假RF激励的施加之后,在步骤C中的针对数据采集的预定生理相位处起始数据采集。
4、自适应地调节k空间段的数量以最大化扫描效率从而完全地填充关于针对当前生理周期可用的剩余时间。
5、使用步骤A中所获得的生理信息设计将在k空间的信息丰富的中心部分期间最小化运动的所述可能性的k空间采样策略,例如前瞻性计划,以在其他情况下k空间的所预测的静止时段和周围区域期间采集来自k空间的中心区域的数据。
6、采集预定生理相位中的数据。如果采集RF导航器,那么将调节针对采集的激励以补偿所述运动。
7、在完成数据采集后,基于采集期间的生理相位和k空间中的相对位置来对着实时自适应心律失常拒绝准则验证所述数据。利用基于对所述算法的用户规定的约束的程度(例如为很好、可接受、边际或不可接受(并且重新采集))的标签,将所有采集的数据存储在所述数据库中。
8、基于步骤D(7)的结果,即接受或重新采集部分或完整数据,确定下一相位编码步骤。
E.重复步骤D,直到整个k空间被采集。如果针对所述采集的所述预定最大分配数据已经消逝,则停止所述序列,或者如果时间仍然是可用的,则重新采集被标记为边际的数据以进一步改进图像质量。
在本发明的范围内,还提供了一种计算机程序产品,其中,所述计算机程序产品包括用于执行根据本发明所述的方法的步骤的计算机可执行指令。这样的计算机程序产品可以被用于使用可够得的MR机器的标准硬件来实施所述方法。
在本发明的额外实施例中,所述计算机程序产品是更新程序产品。本发明的意义内的更新产品是一种计算机程序产品,其不提供用于运行和控制MR仪器的完全可执行软件代码,但是能够实施现有代码的所述框架内的另外的特征。这可以例如是现有心律失常拒绝例程的统计包或修改。
关于先前所描述的系统的额外优点和特征,其明确地涉及所述发明性方法的公开内容。另外,所述发明性方法的方面和特征还应当被认为对所述发明性系统适用和公开,并且反之亦然。而且,除非另外明确指示,否则所述权利要求和/或所述描述中所公开的至少两个特征的所有组合在本发明的范围内。
尽管在附图和前面的描述中已经详细图示和描述了本发明,但是这些图示和描述应被视为说明性或示范性的而非限制性的。通过研究附图、公开内容以及权利要求书,本领域技术人员在实践所要求保护的本发明时能够理解和实现对所公开的实施例的其他变型。在权利要求书中,“包括”一词不排除其他元件或步骤,并且词语“一”或“一个”不排除多个。单个元件或其他单元可以履行权利要求书中所记载的若干项目的功能。尽管在互不相同的从属权利要求中记载了特定措施,但是这并不指示不能有利地使用这些措施的组合。
附图说明
本发明的这些和其他方面将根据下文描述的实施例而显而易见并且参考下文描述的实施例得到阐述。然而,这样的实施例不必表示本发明的全部范围,并且因此对权利要求和本文的引用用于解释本发明的范围。
在附图中:
图1是根据本发明的磁共振成像系统的实施例的部分的示意性图示;
图2是发明方法的实施例的部分的示意性图示;并且
图3是自适应制定k空间采样策略的实施例的部分的示意性图示。
附图标记列表
10 磁共振成像系统
12 磁共振扫描器
14 主磁体
16 检查空间
18 中心轴
20 测试对象
22 磁梯度线圈系统
24 射频天线
26 射频屏蔽
28 控制单元
30 射频发射器单元
32 射频切换单元
34 图像处理单元
36 检测单元
38 电极
40 数据处理单元
42 存储器单元
44 处理器单元
46 软件模块
60 自适应制定数据
100 方法
110 用户输入
120 监测
130 统计分析和制定
140 采集
150 定义MR脉冲序列的参数
具体实施方式
图1示出了根据本发明的自由呼吸磁共振(MR)成像系统10的实施例的部分的示意性图示,所述自由呼吸磁共振成像系统用于对测试对象20的部分的磁共振图像的采集。具体而言,磁共振成像系统10被配置用于对自由呼吸实验中的磁共振图像的采集。磁共振成像系统10包括磁共振扫描器12,其具有被提供用于生成静态磁场的主磁体14。主磁体14具有中心膛,所述中心膛提供针对要被定位在其内的测试对象20(例如人类志愿者)的围绕中心轴18的检查空间16。出于清晰原因,在图1中已经省略用于支撑测试对象20的常规台。大致静态磁场定义与中心轴18平行对齐的检查空间16的轴向。而且,磁共振成像系统10包括磁梯度线圈系统22,所述磁梯度线圈系统被提供用于生成叠加到静态磁场的梯度磁场。磁梯度线圈系统22同轴地被布置在主磁体14的膛内,如本领域中已知的。
而且,磁共振成像系统10包括被设计为全身线圈的射频天线24,所述射频天线被提供用于在射频发射相位期间向检查空间16施加射频磁场以激励测试对象20的原子核。还提供射频天线24以在射频接收相位期间接收来自所激励的原子核的磁共振信号。在磁共振成像系统10的操作状态中,射频发射相位和射频接收相位将以连续的方式发生。射频天线24具有中心轴并且在操作状态中同轴地被布置在主磁体14的膛内,使得射频天线24的中心轴和磁共振成像系统10的中心轴18重合。如本领域中公知的,圆柱形金属射频屏蔽26同轴地被布置在磁梯度线圈系统22与射频天线24之间。应理解,负责信号和场生成和/或检测的所有提到的硬件部分可以是磁场单元的部分。
自由呼吸磁共振成像系统10还包括控制单元28,所述控制单元被提供用于控制磁共振扫描器12的功能。而且,磁共振成像系统10包括射频发射器单元30,所述射频发射器单元被连接到控制单元28并且由控制单元28控制。射频发射器单元30被提供以在射频发射相位期间经由射频切换单元32将磁共振射频的射频功率馈送到射频天线24。在射频接收相位期间,射频切换单元32将磁共振信号从射频天线24引导到驻留在控制单元28中的图像处理单元34。图像处理单元34被配置用于处理所采集的磁共振信号以根据所采集的磁共振信号来确定感兴趣对象20的部分的磁共振图像。该技术的许多不同变型对于本领域技术人员而言是公知的,并且因此不需要在本文中更详细地描述。
为了采集感兴趣对象20的例如心脏的磁共振图像,磁共振成像系统10还可以装备有检测单元36(例如,心电图设备)和数据处理单元40,所述检测单元36用于检测测试对象的生理活动,并且所述数据处理单元40能够执行对生理活动数据的统计分析。数据处理单元40还可以是MR仪器的标准计算机系统的硬件部分。
检测单元36被提供用于经由多个电极38获取测试对象20的心脏的心电图数据的测量结果。
检测单元36被耦合到数据处理单元40,所述数据处理单元被配置为能够执行对生理活动数据的统计分析并且能够基于统计分析自适应地制定MR脉冲序列的参数中的至少一个。
由数据处理单元40基于对由检测单元36测量的生理活动数据的统计分析来确定下一和之后采集时段的参数。数据处理单元40能够基于统计分析来自适应地制定MR脉冲序列的参数中的至少一个。将制定的参数60发射到控制单元28。出于该目的,数据处理单元40可以配备有存储器单元42、处理器单元44以及软件模块46,其中,自适应稳态自由呼吸MR成像方法的步骤被转换为在数据处理单元40的存储器单元42中实施并且可由数据处理单元40的处理器单元44执行的程序代码。而且,数据处理单元能够完全实施为标准MR计算机系统的硬件部分。
图2示出了发明性自适应稳态自由呼吸MR成像方法100的步骤的示意性图示。在步骤110中,用户可以定义稳态MR序列的一个或若干采集参数。这些参数可以被存储在参数表150中。在第二步骤120中,随时间监测测试对象的生理活动。适合的监测参数可以是呼吸或心跳。在130中,根据所采集的参数基于在120中监测的生理活动数据来执行统计分析。此处,特别地,可以确定(一个或多个)生理周期的周期性。根据130的统计分析,例如通过对RF激励开始时间和/或k空间采样策略进行调整来调节被存储在参数表150中的采集参数。可以重复步骤120、130、150、140,直到采集整个k空间。
图3示出了k空间采样策略的调整的结果的示意性图示。以这样的方式对k空间采样前瞻性地进行适配:在非常时段期间(其中,不预期测试对象的运动)对k空间的中心部分进行采样。在对象的期望运动附近所采样的数据可以被省略或者被用于填充k空间的非中心部分。

Claims (14)

1.一种用于生成测试对象(20)的磁共振(MR)图像的MR成像系统(10),所述MR成像系统(10)至少包括:
-控制单元,其用于控制所述MR成像系统的功能,
-用户接口,其能够接收定义MR脉冲序列的参数,
-检测单元(36),其用于检测所述测试对象的生理活动;以及
-数据处理单元(40),其能够执行对生理活动数据的统计分析并且能够基于所述统计分析来自适应地制定所述MR脉冲序列的所述参数中的至少一个,包括调节为所述MR脉冲序列的部分的RF假激励的至少开始点和/或持续时间。
2.根据权利要求1所述的系统,还包括磁场单元和图像处理单元。
3.根据权利要求1所述的系统,其中,对所述生理活动数据的所述统计分析至少包括对测试对象的呼吸周期和/或心脏周期的周期性的确定。
4.根据权利要求1所述的系统,其中,所述MR脉冲序列是平衡式稳态自由进动序列。
5.根据权利要求1所述的系统,其中,所述数据处理单元(40)能够制定RF激励和/或数据采集的开始。
6.根据权利要求1所述的系统,其中,所述数据处理单元(40)能够制定k空间采样。
7.根据前述权利要求中的任一项所述的系统,其中,所述系统还包括验证单元,所述验证单元能够对着实时自适应心律失常拒绝准则来验证所述MR数据。
8.一种自适应稳态自由呼吸MR成像方法(100),所述方法包括以下步骤:
a)针对稳态MR序列的至少一个采集参数的定义进行用户输入(110),
b)监测(120)测试对象的生理活动,
c)对步骤b)中监测的数据进行统计分析(130),
d)对步骤a)的所述MR序列的至少一个采集参数进行调节(130),包括根据步骤c)的所述统计分析对RF假激励的至少开始点和/或持续时间进行调节,
e)根据步骤d)中定义的参数对所述测试对象(20)进行MR扫描的采集(140),
f)重复步骤b)至步骤e),直到整个k空间被采集。
9.根据权利要求8所述的方法,其中,步骤c)中的所述统计分析至少包括对所述生理活动的周期性的确定。
10.根据权利要求8所述的方法,其中,步骤d),k空间段的至少数量被调节。
11.根据权利要求8-10中的任一项所述的方法,其中,对步骤d)中的所述采集参数的所述调节还基于RF监视器的输入。
12.根据权利要求8-10中的任一项所述的方法,其中,在额外步骤中,对着心律失常拒绝准则验证步骤e)的所述MR扫描。
13.一种包括计算机可执行指令的计算机程序产品,所述计算机可执行指令用于执行根据权利要求8-12中的任一项所述的方法的步骤。
14.根据权利要求13所述的计算机程序产品,其中,所述计算机程序产品是更新程序产品。
CN201480065886.6A 2013-12-02 2014-11-21 用于稳态mr序列的实时自适应生理同步和门控 Active CN105793722B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361910526P 2013-12-02 2013-12-02
US61/910,526 2013-12-02
EP14151372 2014-01-16
EP14151372.1 2014-01-16
PCT/EP2014/075285 WO2015082234A1 (en) 2013-12-02 2014-11-21 Real-time adaptive physiology synchronization and gating for steady state mr sequences

Publications (2)

Publication Number Publication Date
CN105793722A CN105793722A (zh) 2016-07-20
CN105793722B true CN105793722B (zh) 2019-06-28

Family

ID=49955945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480065886.6A Active CN105793722B (zh) 2013-12-02 2014-11-21 用于稳态mr序列的实时自适应生理同步和门控

Country Status (5)

Country Link
US (1) US10302732B2 (zh)
EP (1) EP3077837A1 (zh)
JP (1) JP6483691B2 (zh)
CN (1) CN105793722B (zh)
WO (1) WO2015082234A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014202015B4 (de) * 2014-02-05 2017-12-21 Siemens Healthcare Gmbh Magnetresonanzanlage mit Überprüfung der HF-Leistungsmessung mittels kalibriertem Prüfpuls
CN105997075B (zh) * 2016-04-28 2018-05-04 上海联影医疗科技有限公司 一种磁共振数据采集方法及磁共振成像系统
EP3554341B1 (en) * 2016-12-14 2023-08-30 Koninklijke Philips N.V. Retrospective gating of mri
EP3422037A1 (en) * 2017-06-27 2019-01-02 Koninklijke Philips N.V. Method and device for determining a motion field from k-space data
CN109001660B (zh) * 2018-06-12 2020-07-28 上海联影医疗科技有限公司 电影成像方法及磁共振成像系统
EP3709042A1 (en) 2019-03-14 2020-09-16 Koninklijke Philips N.V. Mr imaging using a 3d radial or spiral acquisition with soft motion gating
US10884085B2 (en) * 2019-04-01 2021-01-05 Siemens Healthcare Gmbh K-space data correction method for signal variation compensation
CN110647135B (zh) * 2019-09-25 2021-03-12 一汽解放青岛汽车有限公司 一种混合动力汽车can节点心跳的检测方法
EP3939494A1 (en) * 2020-07-14 2022-01-19 Koninklijke Philips N.V. Synchronisation system
CN112617797B (zh) * 2020-12-30 2023-08-08 上海联影医疗科技股份有限公司 应用于磁共振成像的生理信号检测方法以及电子装置
JP7461913B2 (ja) * 2021-08-03 2024-04-04 富士フイルムヘルスケア株式会社 磁気共鳴イメージング装置およびその制御方法
CN115267632A (zh) * 2022-05-12 2022-11-01 上海东软医疗科技有限公司 磁共振灌注成像方法、装置、计算机设备及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413513A2 (en) * 1989-08-14 1991-02-20 General Electric Company Associating values of periodic signal with elements of a set
US5251629A (en) * 1989-10-27 1993-10-12 Hitachi, Ltd. Inspection method and apparatus utilizing nuclear magnetic resonance
CN1950715A (zh) * 2004-04-27 2007-04-18 皇家飞利浦电子股份有限公司 磁共振成像
CN101415365A (zh) * 2005-12-21 2009-04-22 皇家飞利浦电子股份有限公司 磁共振成像和光谱学中的运动相关数据的采集
CN102413762A (zh) * 2009-04-28 2012-04-11 皇家飞利浦电子股份有限公司 具有运动补偿的介入式mr成像
CN103403568A (zh) * 2011-03-01 2013-11-20 皇家飞利浦有限公司 对磁共振成像脉冲序列协议分类的确定

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363844A (en) 1993-08-13 1994-11-15 Mayo Foundation For Medical Education And Research Breath-hold monitor for MR imaging
DE69930541D1 (de) * 1998-11-18 2006-05-11 Koninkl Philips Electronics Nv Verfahren und gerät der magnetischen resonanz
US6552538B2 (en) * 2001-04-11 2003-04-22 Koninklijke Philips Electronics, N.V. RF transmit calibration for open MRI systems
US7047060B1 (en) * 2001-11-26 2006-05-16 Koninklijke Philips Electronics N.V. Multiple preparatory excitations and readouts distributed over the cardiac cycle
US6798199B2 (en) 2003-02-06 2004-09-28 Siemens Medical Solutions Usa, Inc. Method for synchronizing magnetic resonance imaging data to body motion
JPWO2004080301A1 (ja) * 2003-03-14 2006-06-08 株式会社日立メディコ 磁気共鳴イメージング装置
JP5175420B2 (ja) * 2003-04-10 2013-04-03 株式会社東芝 Mri装置及びmrイメージング方法
EP1661513A4 (en) * 2003-09-05 2009-07-29 Hitachi Medical Corp METHOD AND DEVICE FOR MAGNETIC RESONANCE TOMOGRAPHY
US7367953B2 (en) 2003-11-26 2008-05-06 Ge Medical Systems Global Technology Company Method and system for determining a period of interest using multiple inputs
US7756565B2 (en) 2003-11-26 2010-07-13 General Electric Company Method and system for composite gating using multiple inputs
US7945305B2 (en) * 2005-04-14 2011-05-17 The Board Of Trustees Of The University Of Illinois Adaptive acquisition and reconstruction of dynamic MR images
US20070001674A1 (en) * 2005-06-29 2007-01-04 Purdy David E Object motion correction during MR imaging
EP1991887B1 (en) * 2006-02-17 2018-10-17 Regents of the University of Minnesota High field magnetic resonance
US9700220B2 (en) * 2006-04-25 2017-07-11 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP5366370B2 (ja) * 2006-09-06 2013-12-11 株式会社東芝 磁気共鳴イメージング装置
WO2008088612A1 (en) * 2006-12-20 2008-07-24 Bausch & Lomb Incorporated Method of stimulating the production of mucin in the eye of a patient
US8649846B2 (en) * 2007-07-11 2014-02-11 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP5361236B2 (ja) * 2008-03-31 2013-12-04 株式会社東芝 磁気共鳴イメージング装置および撮像条件設定方法
CN102143707B (zh) 2008-09-04 2014-04-16 株式会社东芝 磁共振成像装置
US8212561B2 (en) * 2008-10-20 2012-07-03 University Of Southern California Fast velocity measurements using balanced SSFP magnetic resonance imaging
DE102008060719B4 (de) * 2008-12-05 2018-09-20 Siemens Healthcare Gmbh Verfahren zur Steuerung des Aufnahmebetriebs einer Magnetresonanzeinrichtung bei der Aufnahme von Magnetresonanzdaten eines Patienten sowie zugehörige Magnetresonanzeinrichtung
JP5633896B2 (ja) * 2009-02-27 2014-12-03 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴イメージング装置
JP5371620B2 (ja) * 2009-08-07 2013-12-18 株式会社日立メディコ 核磁気共鳴イメージング装置
EP2501290B1 (en) * 2009-11-16 2015-02-25 Koninklijke Philips N.V. Scan plan field of view adjustor, determiner, and/or quality assessor
US8427153B2 (en) * 2010-01-15 2013-04-23 Beth Israel Deaconess Medical Center, Inc. Method for motion correction in magnetic resonance imaging using radio frequency coil arrays
US8432166B2 (en) * 2010-03-01 2013-04-30 The Board Of Trustees Of The Leland Stanford Junior University Balanced steady-state free-precession transient imaging using variable flip angles for a predefined signal profile
CN103403569B (zh) * 2010-12-22 2016-02-03 皇家飞利浦有限公司 使用校准扫描、线圈灵敏度图和导航器针对刚性运动补偿的并行mri方法
DE102011007574B4 (de) * 2011-04-18 2012-12-06 Universitätsklinikum Freiburg Verfahren zur quasi-kontinuierlichen dynamischen Bewegungskorrektur bei Messungen der Magnetresonanz
US10073156B2 (en) * 2012-07-02 2018-09-11 Syntheticmr Ab Methods and systems for improved magnetic resonance acquisition
US8942445B2 (en) * 2012-09-14 2015-01-27 General Electric Company Method and system for correction of lung density variation in positron emission tomography using magnetic resonance imaging
WO2014165979A1 (en) * 2013-04-11 2014-10-16 British Columbia Cancer Agency Branch Combined respiration and cardiac gating for radiotherapy using electrical impedance technology
US9684979B2 (en) * 2013-09-30 2017-06-20 Siemens Healthcare Gmbh MRI 3D cine imaging based on intersecting source and anchor slice data

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413513A2 (en) * 1989-08-14 1991-02-20 General Electric Company Associating values of periodic signal with elements of a set
US5251629A (en) * 1989-10-27 1993-10-12 Hitachi, Ltd. Inspection method and apparatus utilizing nuclear magnetic resonance
CN1950715A (zh) * 2004-04-27 2007-04-18 皇家飞利浦电子股份有限公司 磁共振成像
CN101415365A (zh) * 2005-12-21 2009-04-22 皇家飞利浦电子股份有限公司 磁共振成像和光谱学中的运动相关数据的采集
CN102413762A (zh) * 2009-04-28 2012-04-11 皇家飞利浦电子股份有限公司 具有运动补偿的介入式mr成像
CN103403568A (zh) * 2011-03-01 2013-11-20 皇家飞利浦有限公司 对磁共振成像脉冲序列协议分类的确定

Also Published As

Publication number Publication date
US10302732B2 (en) 2019-05-28
CN105793722A (zh) 2016-07-20
US20160377693A1 (en) 2016-12-29
JP6483691B2 (ja) 2019-03-13
EP3077837A1 (en) 2016-10-12
JP2016538928A (ja) 2016-12-15
WO2015082234A1 (en) 2015-06-11

Similar Documents

Publication Publication Date Title
CN105793722B (zh) 用于稳态mr序列的实时自适应生理同步和门控
Usman et al. Free breathing whole-heart 3D CINE MRI with self-gated Cartesian trajectory
CN110031786B (zh) 磁共振图像重建方法、磁共振成像方法、设备及介质
CN103168248B (zh) 使用生理监测的mr数据采集
US10247803B2 (en) Systems and methods for designing magnetic resonance imaging radio frequency pulses that are robust against physiological motion errors
US10677870B2 (en) System and method for optimized diffusion-weighted imaging
US20030036693A1 (en) Method to obtain the cardiac gating signal using a cardiac displacement sensor
CN108175409B (zh) 一种定量快速锁频磁共振成像方法
US20100222666A1 (en) Method and apparatus for breath-held mr data acquisition using interleaved acquisition
JP4934525B2 (ja) 核磁気共鳴装置
JP5536665B2 (ja) 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
US8909321B2 (en) Diagnostic imaging apparatus, magnetic resonance imaging apparatus, and X-ray CT apparatus
CN108109184A (zh) 依据生理信号确定磁共振图像数据的方法和系统
JP4133348B2 (ja) 核磁気共鳴を用いた検査装置
US20180217216A1 (en) Method and apparatus for acquiring magnetic resonance signal
US20170131377A1 (en) Magnetic resonance imaging apparatus and method
CN108742626B (zh) T1参数图成像方法及磁共振成像系统
KR20170054977A (ko) 자기 공명 영상 장치 및 그 방법
US20140303482A1 (en) Magnetic resonance imaging method for imaging components with short transverse relaxation times (t2) in a human or an animal heart
US20180100906A1 (en) Magnetic resonance imaging apparatus and method of operating the same
Preiswerk et al. Hybrid utrasound and MRI acquisitions for high-speed imaging of respiratory organ motion
JP5371620B2 (ja) 核磁気共鳴イメージング装置
KR102257963B1 (ko) 호흡 연동 신호의 히스토그램 누적 분포를 이용한 호흡 구간 검출 장치
US20150265165A1 (en) System and Method For Non-Contrast Magnetic Resonance Imaging of Pulmonary Blood Flow
Menza Accelerated, high spatial and temporal resolution phase contrast techniques for functional analysis of the myocardium

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant