CN105789354A - 一种宽光谱量子级联红外探测器 - Google Patents

一种宽光谱量子级联红外探测器 Download PDF

Info

Publication number
CN105789354A
CN105789354A CN201610236249.1A CN201610236249A CN105789354A CN 105789354 A CN105789354 A CN 105789354A CN 201610236249 A CN201610236249 A CN 201610236249A CN 105789354 A CN105789354 A CN 105789354A
Authority
CN
China
Prior art keywords
layer
thickness
quantum
quantum well
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610236249.1A
Other languages
English (en)
Inventor
周孝好
李梁
温洁
郑元辽
周玉伟
李宁
李志锋
甄红楼
陈平平
陆卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201610236249.1A priority Critical patent/CN105789354A/zh
Publication of CN105789354A publication Critical patent/CN105789354A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种宽光谱量子级联红外探测器,它由一化合物半导体材料衬底,在衬底上交替生长八个宽度不一势垒层和量子阱层,并以此为一个周期,重复生长多个周期的多量子阱组成。由于本发明采用了微带结构做吸收区,在低温状态下,在红外光的辐照下,它可以在量子阱区域形成比目前提出的量子级联探测器有更宽的光响应谱,从而更加适于宽光谱探测应用。

Description

一种宽光谱量子级联红外探测器
技术领域
本发明涉及一种红外探测器,具体指一种多量子阱红外探测器和量子级联探测器。
背景技术
在目前的量子型红外焦平面技术中,光敏元芯片都是由若干光导型的空间上电学与光学分立的探测器像元组成。相比于碲镉汞探测器,量子阱红外探测器具有材料生长和工艺成熟、大面积阵列均匀性好、成品率高、成本低的优点,但量子效率较低,以至于响应率较低,所以对于量子效率与响应率的优化尤为重要。
量子阱红外探测器的基本原理决定了器件的量子效率正比于吸收系数,为了提高器件的量子效率,或为了在相似的探测条件下较大地增大响应率,需要增大量子阱基态上的电子浓度,但电子浓度的增大又直接超线性地增大暗电流,直接导致器件的探测率下降。很大的暗电流的根本物理起因是激发态的能量位置处存在很高对光吸收无贡献的电子态密度,若能对这些冗余电子态进行有效利用,则对于量子阱红外探测器的性能改善具有实用价值。
目前人们提出了一种量子级联探测器结构,基于声子辅助隧穿机制,具有光伏特性。见参考文献L.Gendronet.al.“Quantumcascadephotodetector”,AppliedPhysicsLettersVol.85,DanielHofstetteret.al.“23GHzoperationofaroomtemperaturephotovoltaicquantumcascadedetectorat5.35μm”,AppliedPhysicsLettersVol.89.器件的响应率虽然不及光导型器件优越,但工作温度较高,微带技术可以结合到量子级联探测器中,使得光响应谱得到展宽,更适用于宽光谱探测应用。
发明内容
本发明的目的是提供一种宽光谱量子级联红外探测器的基本机理,利用微带原理,对经典的量子级联探测器的吸收区进行优化,设计出一种在结构上独特的量子级联探测器,扩展了光电吸收范围,使其光响应谱得到展宽。
本发明的设计方案如下:
宽光谱量子级联红外探测器包括衬底1、多量子阱2、上电极3、下电极4。
所述的红外探测器的结构为GaAs或InP衬底1上采用分子束外延或金属有机气相沉积薄膜生长技术依次生长下电极层、交替的势垒层和量子阱层、上电极层,形成一个GaAs/AlGaAs或InGaAs/InAlAs多量子阱2;再在上电极层上制备上电极3,下电极层上制备下电极4;
所述的多量子阱2结构为:
C1L1(AL2)nC2
C1为下电极层,与量子阱层采用相同材料,Si掺杂,浓度为1018/cm3,厚度为0.5μm到1μm;C2为上电极层,与量子阱层采用相同材料,Si掺杂,浓度为1018/cm3,厚度为0.1μm到0.3μm;L1为宽势垒层,厚度为40到60nm;L2为二个单一周期之间的势垒隔离层,厚度为2到3nm;
A为单一周期,即为多量子阱耦合结构的基本探测单元,其构成结构为:
QW1L1’QW2L2’QW3L3’QW4L4’QW5L5’QW6L6’QW7L7’QW8
其中:量子阱层QW1…QW8为宽度不一的量子阱层,其中QW1和QW2进行掺杂,量子阱层QW1…QW8厚度为2到8nm;势垒层L1’…L7’为宽度不一的势垒层,厚度为3到6nm;L2’QW3L3’QW4L4’QW5L5’QW6L6’QW7L7’QW8组成级联结构;
n为周期数,n为30-50个周期;
上电极3和下电极4结构为:自下而上依次100nm的AuGe层,20nm的Ni层,400nm的Au层,或者50nm的Ti层,400nm的Au层。上电极层3为二维光栅形状,其两个维度的周期均为2.5μm,孔为正方形,两个平面维度的宽度均为1.5μm,孔的深度为0.6μm。
探测器采用的化合物半导体材料为GaAs/AlGaAs或InGaAs/InAlAs体系,对应的,衬底采用GaAs或InP材料,量子阱层采用GaAs或InGaAs材料,势垒层采用AlGaAs或InAlAs材料,上下电极层采用GaAs或InGaAs材料。
本发明有如下积极效果和优点:
1.本发明由于采用了微带结构作吸收区,相比于常规量子级联探测器,增加了一个光电吸收区域,在双重光电吸收机区域用下,光响应谱得到有效展宽。
2.本发明将吸收区制备的更厚,能够更有效的吸收入射光,能够使得量子效率得到大幅提高。
3.本发明具有光伏效应,可直接将光信号转化成电压信号,并且光伏信号与结构周期数成正比,相比于光电导型器件,本发明更容易实现光电信号的准确输出与读取。
附图说明
为了便于说明,我们以GaAs/AlGaAs多量子阱材料为例,给出阐述本发明的示意图如下:
图1为本发明的单一周期宽光谱量子级联红外探测器光电响应原理图,最右侧量子阱为下一周期的第一个量子阱QW1
图2为本发明的宽光谱量子级联红外探测器结构示意图;
图3为图2的宽光谱量子级联红外探测器上电极层A局部放大剖视示意图。
具体实施方式
下面结合附图对本发明的单一周期宽光谱量子级联红外探测器光电响应原理作详细阐述:见图1,在无偏压状况下,由红外光在掺杂量子阱中将处于基态的电子激发到激发态上,形成探测器的光电子。由于吸收区由两个量子阱组成微带结构,使得吸收区中存在两套基态到激发态的跃迁,激发态与相邻的耦合量子阱基态发生声子辅助隧穿,从而将光电子转移到相邻的量子阱。
为了能将机理阐述更清晰,我们以GaAs/AlGaAs量子阱材料为实施例。
1.多量子阱芯片的制备
例一:
(1)多量子阱芯片的薄膜材料的生长:
采用分子数外延(MBE)在GaAs衬底1上按以下结构顺次生长,C1为GaAs:Si,浓度为1018/cm3,厚度为0.5μm;L1为Al0.33Ga0.67As,厚度为40nm;QW1为GaAs:Si,浓度为1017/cm3,厚度为6.8nm;L1’为Al0.33Ga0.67As,厚度为3nm;QW2为GaAs:Si,浓度为1017/cm3,厚度为6.8nm;L2’为Al0.33Ga0.67As,厚度为5.65nm;QW3为GaAs,厚度为2nm;L3’为Al0.33Ga0.67As,厚度为3.96nm;QW4为GaAs,厚度为2.3nm;L4’为Al0.33Ga0.67As,厚度为3.1nm;QW5为GaAs,厚度为2.8nm;L5’为Al0.33Ga0.67As,厚度为3.1nm;QW6为GaAs,厚度为3.4nm;L6’为Al0.33Ga0.67As,厚度为3.1nm;QW7为GaAs,厚度为3.8nm;L7’为Al0.33Ga0.67As,厚度为3.1nm;QW8为GaAs,厚度为4.8nm;然后以QW1到QW8为一个周期,且每二个周期之间用L2为Al0.33Ga0.67As,厚度为3.1nm做势垒隔离,重复生长30个周期,最后再生长L2为Al0.33Ga0.67As,厚度为3.1nm;C2为GaAs:Si,浓度为1018/cm3,厚度为100nm,形成一个多量子阱2.
宽度为6.8nm的GaAsQW1和QW2量子阱中基态与第一激发态均处于量子阱中形成受限的局域态,同时第一激发态与相邻的量子阱QW3中的基态能级相差小于一个纵光学声子的能量,可通过声子辅助隧穿进行弛豫,同时量子阱QW3,QW4,QW5,QW6,QW7,QW8依次的基态均与相邻量子阱的基态形成声子辅助隧穿状态。在器件中QW1,QW2,QW3,QW4,QW5,QW6,QW7,QW88个量子阱结构的组合形成一个基本探测单元,即形成一个原理器件。
(2)电极制备
上电极3直接做在最顶部的C2层上,下电极4通过腐蚀把部分C1层以上的材料全部去除,裸露出C1层,再在该层上制备下电极4,见图2。上下电极均用电子束蒸发100nm的AuGe层,20nm的Ni层,400nm的Au层制备而成。
(3)多量子阱芯片台面制备
在上电极层C2上通过腐蚀方法做成光栅,见图3,使入射的红外光能被充分的耦合到量子阱中去,产生量子阱QW1和QW2中的电子从基态向第一激发态跃迁。
例二:
(1)多量子阱芯片的薄膜材料的生长:
采用分子数外延(MBE)在GaAs衬底1上按以下结构顺次生长,C1为GaAs:Si,浓度为1018/cm3,厚度为0.7μm;L1为Al0.32Ga0.68As,厚度为50nm;QW1为GaAs:Si,浓度为1017/cm3,厚度为6.9nm;L1’为Al0.32Ga0.68As,厚度为4nm;QW2为GaAs:Si,浓度为1017/cm3,厚度为6.9nm;L2’为Al0.32Ga0.68As,厚度为5.8nm;QW3为GaAs,厚度为2.2nm;L3’为Al0.32Ga0.68As,厚度为4.1nm;QW4为GaAs,厚度为2.5nm;L4’为Al0.32Ga0.68As,厚度为3.3nm;QW5为GaAs,厚度为3nm;L5’为Al0.32Ga0.68As,厚度为3.3nm;QW6为GaAs,厚度为3.5nm;L6’为Al0.32Ga0.68As,厚度为3.3nm;QW7为GaAs,厚度为4.2nm;L7’为Al0.32Ga0.68As,厚度为3.3nm;QW8为GaAs,厚度为5.2nm;然后以QW1到QW8为一个周期,且每二个周期之间用L2为Al0.32Ga0.68As,厚度为2.5nm做势垒隔离,重复生长40个周期,最后再生长L2为Al0.32Ga0.68As,厚度为2.5nm;C2为GaAs:Si,浓度为1018/cm3,厚度为200nm,形成一个多量子阱2.
宽度为6.9nm的GaAsQW1和QW2量子阱中基态与第一激发态均处于量子阱中形成受限的局域态,同时第一激发态与相邻的量子阱QW3中的基态能级相差小于一个纵光学声子的能量,可通过声子辅助隧穿进行弛豫,同时量子阱QW3,QW4,QW5,QW6,QW7,QW8依次的基态均与相邻量子阱的基态形成声子辅助隧穿状态。在器件中QW1,QW2,QW3,QW4,QW5,QW6,QW7,QW88个量子阱结构的组合形成一个基本探测单元,即形成一个原理器件。
(2)电极制备
上电极3直接做在最顶部的C2层上,下电极4通过腐蚀把部分C1层以上的材料全部去除,裸露出C1层,再在该层上制备下电极4,见图2。上下电极均用电子束蒸发100nm的AuGe层,20nm的Ni层,400nm的Au层制备而成。
(3)多量子阱芯片台面制备
在上电极层C2上通过腐蚀方法做成光栅,见图3,使入射的红外光能被充分的耦合到量子阱中去,产生量子阱QW1和QW2中的电子从基态向第一激发态跃迁。
例三:
(1)多量子阱芯片的薄膜材料的生长:
采用分子数外延(MBE)在GaAs衬底1上按以下结构顺次生长,C1为GaAs:Si,浓度为1018/cm3,厚度为1μm;L1为Al0.31Ga0.69As,厚度为60nm;QW1为GaAs:Si,浓度为1017/cm3,厚度为7nm;L1’为Al0.31Ga0.69As,厚度为3.5nm;QW2为GaAs:Si,浓度为1017/cm3,厚度为7nm;L2’为Al0.31Ga0.69As,厚度为6nm;QW3为GaAs,厚度为2.4nm;L3’为Al0.31Ga0.69As,厚度为4.3nm;QW4为GaAs,厚度为2.7nm;L4’为Al0.31Ga0.69As,厚度为3.5nm;QW5为GaAs,厚度为3.2nm;L5’为Al0.31Ga0.69As,厚度为3.5nm;QW6为GaAs,厚度为3.7nm;L6’为Al0.31Ga0.69As,厚度为3.5nm;QW7为GaAs,厚度为4.4nm;L7’为Al0.31Ga0.69As,厚度为3.5nm;QW8为GaAs,厚度为5.4nm;然后以QW1到QW8为一个周期,且每二个周期之间用L2为Al0.31Ga0.69As,厚度为3nm做势垒隔离,重复生长50个周期,最后再生长L2为Al0.31Ga0.69As,厚度为3nm;C2为GaAs:Si,浓度为1018/cm3,厚度为300nm,形成一个多量子阱2.
宽度为7nm的GaAsQW1和QW2量子阱中基态与第一激发态均处于量子阱中形成受限的局域态,同时第一激发态与相邻的量子阱QW3中的基态能级相差小于一个纵光学声子的能量,可通过声子辅助隧穿进行弛豫,同时量子阱QW3,QW4,QW5,QW6,QW7,QW8依次的基态均与相邻量子阱的基态形成声子辅助隧穿状态。在器件中QW1,QW2,QW3,QW4,QW5,QW6,QW7,QW88个量子阱结构的组合形成一个基本探测单元,即形成一个原理器件。
(2)电极制备
上电极3直接做在最顶部的C2层上,下电极4通过腐蚀把部分C1层以上的材料全部去除,裸露出C1层,再在该层上制备下电极4,见图2。上下电极均用电子束蒸发100nm的AuGe层,20nm的Ni层,400nm的Au层制备而成。
(3)多量子阱芯片台面制备
在上电极层C2上通过腐蚀方法做成光栅,见图3,使入射的红外光能被充分的耦合到量子阱中去,产生量子阱QW1和QW2中的电子从基态向第一激发态跃迁。
2.器件的工作过程:
将多量子阱芯片放置在一个带有红外波段光学窗口的制冷杜瓦中。红外响应波段为8-10微米,芯片制冷到约80K。将偏置电压7设置为0V,形成短路状态,随后将红外光5照射在多量子阱芯片上,此时由于红外光的激发引起量子阱QW1和QW2中的电子受激进入第一激发态,第一激发态与相邻的耦合量子阱基态发生声子辅助隧穿,从而将光电子转移到相邻的量子阱,并且该电子很难反向输运到QW1和QW2量子阱中。这一过程的完成就形成了光电流信号6。相对于常规量子级联探测器,该结构增加了一个光电吸收区域,增强了器件量子效率,并展宽了光响应谱。

Claims (2)

1.一种宽光谱量子级联红外探测器,包括衬底(1)、多量子阱(2)上电极(3),下电极(4),其特征在于:
所述的红外探测器的结构为GaAs或InP衬底(1)上采用分子束外延或金属有机气相沉积薄膜生长技术依次生长下电极层、交替的势垒层和量子阱层、上电极层,形成一个GaAs/AlGaAs或InGaAs/InAlAs多量子阱(2);在上电极层上制备上电极(3),下电极层上制备下电极(4);
所述的多量子阱(2)结构为:
C1L1(AL2)nC2
C1为下电极层,与量子阱层采用相同材料,Si掺杂,浓度为1018/cm3,厚度为0.5μm到1μm;C2为上电极层,与量子阱层采用相同材料,Si掺杂,浓度为1018/cm3,厚度为0.1μm到0.3μm;L1为宽势垒层,厚度为40到60nm;L2为二个单一周期之间的势垒隔离层,厚度为2到3nm;
A为单一周期,即为多量子阱耦合结构的基本探测单元,其构成结构为:
QW1L1’QW2L2’QW3L3’QW4L4’QW5L5’QW6L6’QW7L7’QW8
其中:量子阱层QW1…QW8为宽度不一的量子阱层,其中QW1和QW2进行掺杂,量子阱层QW1…QW8厚度为2到8nm;势垒层L1’…L7’为宽度不一的势垒层,厚度为3到6nm;L2’QW3L3’QW4L4’QW5L5’QW6L6’QW7L7’QW8组成级联结构;
n为周期数,n为30-50个周期;
上电极(3)和下电极(4)结构为:自下而上依次100nm的AuGe层,20nm的Ni层,400nm的Au层,或者50nm的Ti层,400nm的Au层。
2.根据权利要求1所述的一种宽光谱量子级联红外探测器,其特征在于:所说的上电极层(3)为二维光栅形状,其两个维度的周期均为2.5μm,孔为正方形,两个平面维度的宽度均为1.5μm,孔的深度为0.6μm。
CN201610236249.1A 2016-04-15 2016-04-15 一种宽光谱量子级联红外探测器 Pending CN105789354A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610236249.1A CN105789354A (zh) 2016-04-15 2016-04-15 一种宽光谱量子级联红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610236249.1A CN105789354A (zh) 2016-04-15 2016-04-15 一种宽光谱量子级联红外探测器

Publications (1)

Publication Number Publication Date
CN105789354A true CN105789354A (zh) 2016-07-20

Family

ID=56397700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610236249.1A Pending CN105789354A (zh) 2016-04-15 2016-04-15 一种宽光谱量子级联红外探测器

Country Status (1)

Country Link
CN (1) CN105789354A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117712215A (zh) * 2023-12-12 2024-03-15 上海新微半导体有限公司 一种雪崩光电探测器及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1286397A (zh) * 2000-10-19 2001-03-07 中国科学院上海技术物理研究所 多量子阱红外级联光伏探测器
CN104183658A (zh) * 2014-08-15 2014-12-03 中国科学院上海技术物理研究所 一种势垒级联量子阱红外探测器
CN204230260U (zh) * 2014-08-15 2015-03-25 中国科学院上海技术物理研究所 势垒级联量子阱红外探测器
US20150123076A1 (en) * 2013-11-01 2015-05-07 Hamamatsu Photonics K.K. Quantum cascade detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1286397A (zh) * 2000-10-19 2001-03-07 中国科学院上海技术物理研究所 多量子阱红外级联光伏探测器
US20150123076A1 (en) * 2013-11-01 2015-05-07 Hamamatsu Photonics K.K. Quantum cascade detector
CN104183658A (zh) * 2014-08-15 2014-12-03 中国科学院上海技术物理研究所 一种势垒级联量子阱红外探测器
CN204230260U (zh) * 2014-08-15 2015-03-25 中国科学院上海技术物理研究所 势垒级联量子阱红外探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNQI LIU等: "High resistance AlGaAs/GaAs quantum cascade detectors grown by solid source molecular beam epitaxy operating above liquid nitrogen temperature", 《SEMICONDUCTOR SCIENCE AND TECHNOLOGY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117712215A (zh) * 2023-12-12 2024-03-15 上海新微半导体有限公司 一种雪崩光电探测器及其制作方法

Similar Documents

Publication Publication Date Title
US11231318B2 (en) Photoconductive detector device with plasmonic electrodes
Wang et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers
US10062794B2 (en) Resonant-cavity infrared photodetectors with fully-depleted absorbers
Sun et al. Recent advances in two‐dimensional heterostructures: From band alignment engineering to advanced optoelectronic applications
EP2084755B1 (en) Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier
US8395106B2 (en) Optical semiconductor device with quantum dots having configurational anisotropy
Jagadish et al. Advances in infrared photodetectors
Jolley et al. The role of intersubband optical transitions on the electrical properties of InGaAs/GaAs quantum dot solar cells
JP6100673B2 (ja) 量子カスケード検出器
Mensz et al. Design and implementation of bound-to-quasibound GaN/AlGaN photovoltaic quantum well infrared photodetectors operating in the short wavelength infrared range at room temperature
Negi et al. Theoretical analysis of resonant cavity p-type quantum dot infrared photodetector
Nagaraja et al. GaAs (1-x) Bi x: a promising material for optoelectronics applications
CN106340553B (zh) 电子输运通道为斜跃迁‑微带型的量子级联红外探测器
CN205723564U (zh) 宽光谱量子级联红外探测器
CN104183658A (zh) 一种势垒级联量子阱红外探测器
CN102629637B (zh) 一种含量子级联结构的波长上转换器件
CN204230260U (zh) 势垒级联量子阱红外探测器
CN105789354A (zh) 一种宽光谱量子级联红外探测器
Abiedh et al. Experimental and theoretical study of thermally activated carrier transfer in InAs/GaAs multilayer quantum dots
CN205810833U (zh) 势垒级联量子阱红外探测器
Karimi et al. Nanowire photodetectors with embedded quantum heterostructures for infrared detection
CN105957909A (zh) 一种势垒级联量子阱红外探测器
JP2012109462A (ja) 光検知素子及びその製造方法
Perera Quantum structures for multiband photon detection
Mohan et al. Photocurrent spectroscopy of site-controlled pyramidal quantum dots

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160720