CN105787457A - Evaluation method for improving vegetation classified remote sensing precision through integration of MODIS satellite and DEM - Google Patents

Evaluation method for improving vegetation classified remote sensing precision through integration of MODIS satellite and DEM Download PDF

Info

Publication number
CN105787457A
CN105787457A CN201610130097.7A CN201610130097A CN105787457A CN 105787457 A CN105787457 A CN 105787457A CN 201610130097 A CN201610130097 A CN 201610130097A CN 105787457 A CN105787457 A CN 105787457A
Authority
CN
China
Prior art keywords
modis
vegetation
dem
remote sensing
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610130097.7A
Other languages
Chinese (zh)
Inventor
程乾
陈奕霏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Gongshang University
Original Assignee
Zhejiang Gongshang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Gongshang University filed Critical Zhejiang Gongshang University
Priority to CN201610130097.7A priority Critical patent/CN105787457A/en
Publication of CN105787457A publication Critical patent/CN105787457A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/188Vegetation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种MODIS卫星集成DEM提高植被分类遥感精度的估算方法,其特征包括以下步骤:步骤一,通过选取对应MODIS植被指数波段,建立归一化植被指数(NDVI)和增强植被指数(EVI);步骤二,分别利用MODIS‑NDVI指数和MODIS‑EVI指数计算得到所需植被信息;步骤三,采用离散点移动拟合距离加权平均插值的方法计算每个网格点内插高程,获得实验区的数字高程模型(DEM);步骤四:在地形高程数字化图件基础上,从数字高程模型(DEM)中提取地面坡度信息;步骤五:利用数字高程模型(DEM)中提取地面坡度信息、两个时相MODIS前两个波段及MODIS植被指数复合,结合最大似然为主的像元识别分类的基本方法,进行植被分类遥感识别。本发明的方法精度高,可行性强,能够实时、无损的对复杂地形区域植被信息进行提取。

The invention discloses a method for estimating the remote sensing precision of vegetation classification by MODIS satellite integrated DEM, which is characterized by the following steps: step 1, by selecting the corresponding MODIS vegetation index band, establishing a normalized difference vegetation index (NDVI) and an enhanced vegetation index ( EVI); Step 2, using the MODIS-NDVI index and MODIS-EVI index to calculate the required vegetation information respectively; Step 3, using the method of discrete point moving fitting distance weighted average interpolation to calculate the interpolation height of each grid point, and obtain The digital elevation model (DEM) of the experimental area; step 4: extract ground slope information from the digital elevation model (DEM) on the basis of the terrain elevation digital map; step 5: extract ground slope information from the digital elevation model (DEM) Combining the first two bands of MODIS with two time phases and MODIS vegetation index, combined with the basic method of pixel identification and classification based on maximum likelihood, the remote sensing identification of vegetation classification is carried out. The method of the invention has high precision and strong feasibility, and can extract vegetation information in complex terrain areas in a real-time and non-destructive manner.

Description

一种MODIS卫星集成DEM提高植被分类遥感精度的估算方法An Estimation Method for Improving Vegetation Classification Remote Sensing Accuracy by MODIS Satellite Integrated DEM

技术领域technical field

本发明涉及一种MODIS卫星集成DEM提高植被分类遥感精度的估算方法。The invention relates to an estimation method for improving vegetation classification remote sensing accuracy by integrating DEM with MODIS satellites.

背景技术Background technique

在最近十几年中,国内外的研究人员对如何利用多种地理辅助数据,以地学知识为基础,从影像中提取相关的信息进行了大量研究,例如:借助土地利用现状图,将水稻可能种植区域的影像信息先提取出来,然后进行分类,大大减少了分类目标,提高了分类精度。阎静等人利用神经网络方法既可以提供多源数据输入,又不受数据分布假设限制的特点,从NOAA图像提取NDVI和昼夜温差值,将其重采样,然后加入对水稻生长区域有重要影响的土壤类型、土地利用类型及高程分布等信息,获取较为理想的湖北省双季早稻种植面积;提取盐碱土信息时,依据盐碱土的形成条件和地貌特征,以及地貌区与盐碱化程度的相关关系,确定识别盐碱土的区域参数,提高分类精度;将专家系统的方法应用于草场资源的遥感调查,使用了MSS4、5、7三个波段进行生物量计算和色度空间变换,并使用地理辅助数据,多源信息的复合可大大提高样本间的可分离度(杜明义等,2002),分类精度比单纯使用遥感数据和最大似然法有一定提高。In the past ten years, researchers at home and abroad have done a lot of research on how to use a variety of geographic auxiliary data and extract relevant information from images based on geoscience knowledge. The image information of the planting area is extracted first, and then classified, which greatly reduces the classification targets and improves the classification accuracy. Yan Jing et al. used the neural network method to provide multi-source data input and is not limited by data distribution assumptions. They extracted NDVI and diurnal temperature difference values from NOAA images, resampled them, and then added them to the areas that have important effects on rice growth. The ideal soil type, land use type, and elevation distribution information were used to obtain the ideal planting area of double-cropping early rice in Hubei Province; when extracting saline-alkali soil information, it was based on the formation conditions and landform characteristics of saline-alkali soil, as well as the relationship between landform area and salinization degree Correlation, determine the regional parameters for identifying saline-alkali soil, and improve the classification accuracy; apply the method of expert system to the remote sensing survey of grassland resources, use the three bands of MSS4, 5, and 7 for biomass calculation and chromaticity space transformation, and use The combination of geographic auxiliary data and multi-source information can greatly improve the separability of samples (Du Mingyi et al., 2002), and the classification accuracy is higher than that of simply using remote sensing data and maximum likelihood method.

本发明申请的参考文献:References for the application of the present invention:

[1]阎静,王汶,李湘阁.利用神经网络方法提取水稻种植面积—以湖北省双季早稻为例[J].遥感学报,2001(03)。[1] Yan Jing, Wang Wen, Li Xiangge. Using Neural Network Method to Extract Rice Planting Area—Taking Hubei Province Double Cropping Early Rice as an Example[J]. Remote Sensing Journal, 2001(03).

[2]马驰.松辽平原土地盐碱化检测机理及方法研究[D].吉林大学.2011。[2] Ma Chi. Research on Mechanism and Method of Land Salinization Detection in Songliao Plain [D]. Jilin University. 2011.

[3]张友水,冯学智.基于GIS的BP神经网络遥感影像分类研究[J]。南京大学学报.2003(06)。[3] Zhang Youshui, Feng Xuezhi. Research on remote sensing image classification based on GIS BP neural network [J]. Journal of Nanjing University. 2003(06).

[4]竞霞,王锦地,王纪华,黄文江.基于分区和多时相遥感数据的山区植被分类研究[J].遥感技术与应用.2008(04)。[4] Jingxia, Wang Jindi, Wang Jihua, Huang Wenjiang. Research on vegetation classification in mountainous areas based on regional and multi-temporal remote sensing data [J]. Remote Sensing Technology and Application. 2008 (04).

[5]陈建裕,詹远增,毛志华,陆丽珍.基于多源多时相遥感数据的海岛土地覆盖高分辨率重建[A].第十七届中国遥感大会摘要集[C].2010。[5] Chen Jianyu, Zhan Yuanzeng, Mao Zhihua, Lu Lizhen. High resolution reconstruction of island land cover based on multi-source and multi-temporal remote sensing data [A]. Abstracts of the 17th China Remote Sensing Conference [C]. 2010.

[6]朱长柏.基于RS与GIS技术的土地利用覆盖调查--以佛山市禅城区为例[J].科技信息.2008(18)。[6] Zhu Changbai. Land Use and Coverage Survey Based on RS and GIS Technology--A Case Study of Chancheng District, Foshan City [J]. Science and Technology Information. 2008(18).

[7]彭代亮.基于统计与MODIS数据的水稻估产方法研究[D].浙江大学.2009。[7] Peng Dailiang. Research on Rice Yield Estimation Method Based on Statistics and MODIS Data [D]. Zhejiang University. 2009.

发明内容Contents of the invention

本发明的目的是提供一种运用MODIS卫星集成DEM提高植被分类遥感精度的估算方法,精度高,可行性强,能够实时、无损的对复杂地形区域植被信息进行提取。The purpose of the present invention is to provide an estimation method using MODIS satellite integrated DEM to improve the precision of vegetation classification remote sensing, which has high precision and strong feasibility, and can extract vegetation information in complex terrain areas in a real-time and non-destructive manner.

为实现上述目的,本发明可采取下述技术方案:To achieve the above object, the present invention can take the following technical solutions:

一种MODIS卫星集成DEM提高植被分类遥感精度的估算方法,包括以下步骤:A MODIS satellite integrated DEM estimation method for improving vegetation classification remote sensing accuracy, comprising the following steps:

步骤一:采集地理信息与遥感数据Step 1: Collect geographic information and remote sensing data

通过选取对应MODIS植被指数波段1、2和3,建立归一化植被指数(NDVI)和增强植被指数(EVI);By selecting the corresponding MODIS vegetation index bands 1, 2 and 3, the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) were established;

步骤二:计算获得植被信息Step 2: Calculate and obtain vegetation information

分别利用MODIS-NDVI指数和MODIS-EVI指数计算得到所需植被信息;Use the MODIS-NDVI index and MODIS-EVI index to calculate the required vegetation information respectively;

步骤三:建立数字高程模型(DEM)Step 3: Create a digital elevation model (DEM)

采用离散点移动拟合距离加权平均插值的方法计算每个网格点内插高程,获得实验区的数字高程模型(DEM);The interpolation elevation of each grid point is calculated by using the distance-weighted average interpolation method of discrete point moving fitting, and the digital elevation model (DEM) of the experimental area is obtained;

步骤四:提取地面坡度信息Step 4: Extract ground slope information

在地形高程数字化图件基础上,从数字高程模型(DEM)中提取地面坡度信息;On the basis of the terrain elevation digitized map, the ground slope information is extracted from the digital elevation model (DEM);

步骤五:利用数字高程模型(DEM)提取地面坡度信息,再结合两个时相MODIS前两个波段及MODIS植被指数,利用最大似然为主的像元识别分类的基本方法,进行植被分类遥感识别。Step 5: Use the digital elevation model (DEM) to extract ground slope information, then combine the first two bands of MODIS with two time phases and the vegetation index of MODIS, and use the basic method of pixel identification and classification based on maximum likelihood to perform remote sensing of vegetation classification identify.

步骤一所述的采集地理信息与遥感数据所选取的波段范围应满足表1;MODIS数据应经过太阳高度角订正、投影变换和辐射校正,再在GIS支持下进行严格配准,配准误差应均小于0.5个像元。The range of bands selected for the collection of geographic information and remote sensing data described in step 1 should satisfy Table 1; the MODIS data should be corrected by sun altitude angle, projection transformation and radiation correction, and then strictly registered with the support of GIS. The registration error should be are less than 0.5 pixels.

表1 不同的植被指数和所应用的波段Table 1 Different vegetation indices and applied bands

步骤二所述的计算获得植被信息,具体公式为:The calculation described in step 2 obtains vegetation information, and the specific formula is:

MODIS-NDVI计算公式如下:The calculation formula of MODIS-NDVI is as follows:

NN DD. VV II == NN II RR -- RR NN II RR ++ RR -- -- -- (( 11 ))

式中:NIR和R分别为近红外和红光波段;In the formula: NIR and R are near-infrared and red light bands respectively;

MODIS-EVI计算公式如下:The calculation formula of MODIS-EVI is as follows:

EE. VV II == ρρ NN II RR -- ρρ RR EE. DD. ρρ NN II RR ++ CC 11 ρρ RR EE. DD. -- CC 22 ρρ BB LL Uu EE. ++ LL (( 11 ++ LL )) -- -- -- (( 22 ))

其中,ρNIR、ρRED和ρBLUE分别是对应MODIS卫星近红外第二波段、红光第一波段和蓝光第三波段的光谱反射率值,L是背景调整项,C1和C2是拟合系数,L=1,C1=6,和C2=7.5。Among them, ρ NIR , ρ RED and ρ BLUE are the spectral reflectance values corresponding to the second near-infrared band, the first red band and the third blue band of the MODIS satellite, L is the background adjustment item, and C 1 and C 2 are the simulated Combined coefficients, L=1, C 1 =6, and C 2 =7.5.

步骤三所述的建立数字高程模型(DEM),采用离散点移动拟合距离加权平均插值的方法计算每个网格点的内插高程,将DEM看成一个或多个函数的和,利用这个或这些函数推导出地形因子,具体公式为:The establishment of digital elevation model (DEM) described in step 3 adopts the method of discrete point moving fitting distance weighted average interpolation to calculate the interpolation elevation of each grid point, regards DEM as the sum of one or more functions, utilizes this Or these functions derive the terrain factor, the specific formula is:

设点p(xp,yp)为待内插的网格点,以p点为中心按45方位间隔引八条方向线。这八条方向线与p点最接近的等高线交点的距离分别为d1,d2,......d8。这些点的高程为Z1,Z2.....Z8。如果d2=0,(l=1,2,3,.....,8),则p点位于某一等高线上,该点的高程Zp即为所求的网格高程;否则p点不在等高线上,为待内插的网格点;当d≠0时,设所求的网格的高程为Zi,j,则Set point p(x p , y p ) as the grid point to be interpolated, and draw eight direction lines at intervals of 45 azimuths with point p as the center. The distances between these eight direction lines and the closest contour line intersections to point p are d 1 , d 2 ,...d 8 . The elevations of these points are Z 1 , Z 2 . . . Z 8 . If d 2 =0, (l=1,2,3,...,8), then point p is located on a certain contour line, and the elevation Z p of this point is the grid elevation sought; Otherwise, point p is not on the contour line, and it is the grid point to be interpolated; when d≠0, set the elevation of the grid to be obtained as Z i,j , then

ZZ ii ,, jj == ΣΣ ii == 11 88 (( ZZ ll dd ll )) ΣΣ ii == 11 88 (( 11 // dd ll )) dd ll ≠≠ 00 (( ll == 11 ,, 22 ,, 33 ,, .......... ,, 88 )) -- -- -- (( 33 ))

其中,dl=|xl-xp|(l=1,2);dl=|yl-yp|(l=3,4); Among them, d l =|x l -x p |(l=1,2); d l =|y l -y p |(l=3,4);

步骤四所述的提取地面坡度信息其步骤为:The steps of extracting ground slope information described in step 4 are:

步骤五:将国家基础地理信息中心的1:250000万比例尺(格式是EOO)的浙江省等高线数据读入到ARC/INFO软件,等高线间距是50米,采用步骤三的方法生成100米*100米格网数据;Step 5: Read the 1:2,500,000 scale (format is EOO) contour line data of Zhejiang Province from the National Basic Geographic Information Center into the ARC/INFO software. m*100m grid data;

步骤六:经重采样得到250米*250米网格的DEM,生成的栅格图像以数据集存放,它的格式和位置信息与卫星遥感资料相匹配;Step 6: Obtain a DEM with a grid of 250m*250m after resampling, and store the generated raster image in a data set, whose format and location information match the satellite remote sensing data;

步骤七:在地形高程数字化图件的基础上,得到数字高程模型(DEM),并从数字高程模型(DEM)中产生地面坡度因子(栅格大小250米*250米)。Step 7: On the basis of the topographic elevation digital map, obtain the digital elevation model (DEM), and generate the ground slope factor (grid size 250m*250m) from the digital elevation model (DEM).

与现有技术相比本发明的有益效果是:采用上述技术方案,Compared with the prior art, the beneficial effects of the present invention are: adopting the above-mentioned technical scheme,

1、利用地形坡度信息、多时相遥感数据和MODIS所提供大量多时相的数据产品,针对研究对象,充分挖掘地理信息数据进行研究;1. Using terrain slope information, multi-temporal remote sensing data and a large number of multi-temporal data products provided by MODIS, fully mine geographic information data for research on the research object;

2、采用DEM产生的坡度信息和两个时相MODIS影像数据及植被指数复合提取面积,地理信息和遥感数据多源信息复合相对于单纯利用单景影像数据可以明显提高面积估算的精度。2. Using the slope information generated by DEM and the two time-phase MODIS image data and vegetation index to extract the area, the combination of geographic information and remote sensing data multi-source information can significantly improve the accuracy of area estimation compared with the single-scene image data.

附图说明Description of drawings

图1为研究区DEM影像图;Figure 1 is the DEM image map of the study area;

图2为研究区地面坡度影像图;Figure 2 is the image map of the ground slope in the study area;

图3为样本间散度分析图(MODIS前三个波段及NDVI);Figure 3 is the diagram of the divergence analysis between samples (the first three bands of MODIS and NDVI);

图4为样本间散度分析图(MODIS两个时相前三个波段、NDVI、EVI和坡度)。Figure 4 is the diagram of the divergence analysis between samples (the first three bands in the two phases of MODIS, NDVI, EVI and slope).

具体实施方式detailed description

本发明是一种运用MODIS数据集成DEM提高植被分类遥感精度的估算方法,包括以下步骤:The present invention is an estimation method for improving vegetation classification remote sensing precision by using MODIS data integration DEM, comprising the following steps:

采集地理信息与遥感数据的步骤:Steps to collect geographic information and remote sensing data:

通过选取对应MODIS植被指数波段1、2和3,建立归一化植被指数(Normalized Vegetation Indices,简称NDVI)和增强植被指数(Enhance Vegetation Indices,简称EVI);By selecting the corresponding MODIS vegetation index bands 1, 2 and 3, the normalized vegetation index (Normalized Vegetation Indices, referred to as NDVI) and enhanced vegetation index (Enhance Vegetation Indices, referred to as EVI) are established;

所述的采集地理信息与遥感数据所选取的不同植被指数和所应用的波段应满足表1:The different vegetation indexes and bands selected for the collection of geographical information and remote sensing data should meet the requirements of Table 1:

表1不同的植被指数和所应用的波段Table 1 Different vegetation indices and applied bands

MODIS数据应经过太阳高度角订正、投影变换和辐射校正,再在GIS支持下进行严格的配准,配准误差应均小于0.5个像元。MODIS data should undergo sun altitude correction, projection transformation and radiation correction, and then be strictly registered with the support of GIS, and the registration error should be less than 0.5 pixels.

分别利用NDVI指数和MODIS-EVI指数计算得到所需植被信息,Use the NDVI index and MODIS-EVI index to calculate the required vegetation information respectively,

MODIS-NDVI指数可用计算公式(1),MODIS-NDVI index can be calculated using formula (1),

NN DD. VV II == NN II RR -- RR NN II RR ++ RR -- -- -- (( 11 ))

式中NIR和R分别为近红外和红光波段;In the formula, NIR and R are near-infrared and red light bands, respectively;

MODIS-EVI指数可用计算公式(2),MODIS-EVI index can be calculated with formula (2),

EE. VV II == ρρ NN II RR -- ρρ RR EE. DD. ρρ NN II RR ++ CC 11 ρρ RR EE. DD. -- CC 22 ρρ BB LL Uu EE. ++ LL (( 11 ++ LL )) -- -- -- (( 22 ))

式中ρNIR、ρRED和ρBLUE分别是对应MODIS近红外2波段、红光1波段和蓝光3波段的光谱反射率值,L是背景调整项,C1和C2是拟合系数,L=1,C1=6,和C2=7.5。where ρ NIR , ρ RED and ρ BLUE are the spectral reflectance values corresponding to MODIS near-infrared 2 band, red 1 band and blue 3 band respectively, L is the background adjustment item, C 1 and C 2 are the fitting coefficients, L =1, C 1 =6, and C 2 =7.5.

建立数字高程模型(DEM)的步骤:Steps to create a digital elevation model (DEM):

采用离散点移动拟合距离加权平均插值的方法计算每个网格点内插高程,获得实验区的数字高程模型(DEM),具体公式为:The interpolation elevation of each grid point is calculated by using the distance-weighted average interpolation method of discrete point moving fitting, and the digital elevation model (DEM) of the experimental area is obtained. The specific formula is:

设点p(xp,yp)为待内插的网格点,以p点为中心按45方位间隔引八条方向线。这八条方向线与p点最接近的等高线交点的距离分别为d1,d2,......d8。这些点的高程为Z1,Z2.....Z8。如果d2=0,(l=1,2,3,.....,8),则p点位于某一等高线上,该点的高程Zp即为所求的网格高程;否则p点不在等高线上,为待内插的网格点。当d≠0时,设所求的网格的高程为Zi,j,则Set point p(x p , y p ) as the grid point to be interpolated, and draw eight direction lines at intervals of 45 azimuths with point p as the center. The distances between these eight direction lines and the closest contour line intersections to point p are d 1 , d 2 ,...d 8 . The elevations of these points are Z 1 , Z 2 . . . Z 8 . If d 2 =0, (l=1,2,3,...,8), then point p is located on a certain contour line, and the elevation Z p of this point is the grid elevation sought; Otherwise, point p is not on the contour line and is the grid point to be interpolated. When d≠0, set the elevation of the grid to be Z i,j , then

ZZ ii ,, jj == ΣΣ ii == 11 88 (( ZZ ll dd ll )) ΣΣ ii == 11 88 (( 11 // dd ll )) dd ll ≠≠ 00 (( ll == 11 ,, 22 ,, 33 ,, .......... ,, 88 )) -- -- -- (( 33 ))

其中,dl=|xl-xp|(l=1,2);dl=|yl-yp|(l=3,4); Among them, d l =|x l -x p |(l=1,2); d l =|y l -y p |(l=3,4);

由上述公式计算出每个网格点的高程,最后得到整个试验区的DEM。The elevation of each grid point is calculated by the above formula, and finally the DEM of the entire test area is obtained.

提取地面坡度信息的步骤:Steps to extract ground slope information:

在地形高程数字化图件基础上,从数字高程模型(DEM)中提取地面坡度信息,其步骤为:On the basis of the terrain elevation digital map, the ground slope information is extracted from the digital elevation model (DEM), and the steps are as follows:

将国家基础地理信息中心的1:250000万比例尺(格式是EOO)的浙江省等高线数据读入到ARC/INFO软件,等高线间距50米,采用上述建立数字高程模型(DEM)的方法生成100米*100米格网数据;Read the 1:2,500,000-scale (format EOO) contour line data of Zhejiang Province from the National Basic Geographic Information Center into the ARC/INFO software, the contour line spacing is 50 meters, and use the above-mentioned method to establish a digital elevation model (DEM) Generate 100m*100m grid data;

经重采样得到250米*250米网格的DEM,生成的栅格图像以数据集存放,它的格式和位置信息与卫星遥感资料相匹配;After resampling, the DEM of 250m*250m grid is obtained, and the generated raster image is stored as a data set, and its format and location information match the satellite remote sensing data;

在地形高程数字化图件的基础上,得到数字高程模型(DEM),并从数字高程模型(DEM)中产生地面坡度因子(栅格大小250米*250米),如图1、2所示。On the basis of the topographic elevation digital map, a digital elevation model (DEM) is obtained, and the ground slope factor (grid size 250m*250m) is generated from the digital elevation model (DEM), as shown in Figures 1 and 2.

分类提取植被信息的步骤:Steps to classify and extract vegetation information:

利用数字高程模型(DEM)提取地面坡度信息,再结合两个时相MODIS前两个波段及MODIS植被指数复合,利用最大似然为主的像元识别分类的基本方法,进行植被分类遥感识别;对比没有考虑DEM数据,只是单景MODIS影像进行分类。Using digital elevation model (DEM) to extract ground slope information, combined with the first two bands of MODIS in two time phases and MODIS vegetation index composite, using the basic method of pixel identification and classification based on maximum likelihood to carry out remote sensing identification of vegetation classification; The comparison does not consider the DEM data, but only single-view MODIS images for classification.

在相同条件下,在只有一景MODIS影像分类,分类精度比较低53.3%;利用数字高程模型(DEM)提取地面坡度信息,再结合两个时相MODIS前两个波段及MODIS植被指数复合分类精度提高到79.8%。这说明地面坡度和多时相影像数据的引入对改善面积信息提取精度和分类质量有明显的效果。Under the same conditions, when there is only one MODIS image classification, the classification accuracy is 53.3% lower; using the digital elevation model (DEM) to extract ground slope information, and then combining the first two bands of MODIS with two time phases and the composite classification accuracy of MODIS vegetation index increased to 79.8%. This shows that the introduction of ground slope and multi-temporal image data has a significant effect on improving the accuracy of area information extraction and classification quality.

Claims (5)

1. the integrated DEM of MODIS satellite improves an evaluation method for vegetation classification remote sensing precision, and its feature includes Following steps:
Step one: gather geography information and remotely-sensed data
By choosing corresponding MODIS vegetation index wave band 1,2 and 3, set up normalized differential vegetation index (NDVI) and Strengthen vegetation index (EVI);
Step 2: calculate and obtain vegetation information
It is utilized respectively MODIS-NDVI index and MODIS-EVI index is calculated required vegetation information;
Step 3: set up digital elevation model (DEM)
The method using discrete point to move the distance weighted average interpolation of matching calculates each mesh point interpolation elevation, obtains Obtain the digital elevation model (DEM) of test block;
Step 4: extract ground line gradient information
On the basis of landform altitude digitalized maps, from digital elevation model (DEM), extract ground line gradient information;
Step 5: utilize digital elevation model (DEM) to extract ground line gradient information, in conjunction with two phases MODIS The first two wave band and MODIS vegetation index, the basic skills utilizing maximum likelihood to be main pixel identification classification,
Carry out vegetation classification remote sensing recognition.
Utilization MODIS data the most according to claim 1 improve the evaluation method of vegetation classification remote sensing precision, It is characterized in that, the collection geography information described in step one should meet table 1 with the wavelength band selected by remotely-sensed data; MODIS data should be corrected through sun altitude, projective transformation and radiant correction, then carries out strict under GIS supports Registration, registration error should be respectively less than 0.5 pixel.
The different vegetation index of table 1 and the wave band applied
The utilization integrated DEM of MODIS satellite the most according to claim 1 improves vegetation classification remote sensing precision Evaluation method, it is characterised in that the calculating described in step 2 obtains vegetation information, and concrete formula is:
MODIS-NDVI computing formula is as follows:
N D V I = N I R - R N I R + R - - - ( 1 )
In formula: NIR and R is respectively near-infrared and red spectral band;
MODIS-EVI computing formula is as follows:
E V I = ρ N I R - ρ R E D ρ N I R + C 1 ρ R E D - C 2 ρ B L U E + L ( 1 + L ) - - - ( 2 )
Wherein, ρNIR、ρREDAnd ρBLUEIt is corresponding MODIS satellite near-infrared second band, ruddiness first respectively Wave band and the spectral reflectance values of blue light the 3rd wave band, L is that background adjusts item, C1And C2It is fitting coefficient, L= 1,C1=6, and C2=7.5.
Utilization MODIS data the most according to claim 1 improve the evaluation method of vegetation classification remote sensing precision, It is characterized in that, described in step 3, set up digital elevation model (DEM), use discrete point to move matching distance and add The method of weight average interpolation calculates the interpolation elevation of each mesh point, and DEM regards as the sum of one or more function, Utilizing this or these function to derive terrain factor, concrete formula is:
Set up an office p (xp,yp) it is mesh point to be interpolated, centered by p point, draw eight direction lines by 45 azimuthal spacings, These eight direction lines are respectively d with the distance of p point immediate contour intersection point1,d2,......d8, the elevation of these points For Z1,Z2.....Z8.If d2=0, (l=1,2,3 ... .., 8), then p point is positioned on a certain contour, the elevation Z of this pointp It is required gridded elevation;Otherwise p point is not on contour, for mesh point to be interpolated.When d ≠ 0, if The elevation of required grid is Zi,j, then
Z i , j = Σ i = 1 8 ( Z l d l ) Σ i = 1 8 ( 1 / d l ) d l ≠ 0 , ( l = 1 , 2 , 3 , ... .. , 8 ) - - - ( 3 )
Wherein, dl=| xl-xp| (l=1,2);dl=| yl-yp| (l=3,4);
Utilization MODIS data the most according to claim 1 improve the evaluation method of vegetation classification remote sensing precision, It is characterized in that, the extraction ground line gradient information described in step 4 the steps include:
Step 5: by 1:250000 ten thousand engineer's scale (form is EOO) of National Foundation Geography Information Center Zhejiang Province's contour line data is read into ARC/INFO software, and contour interval is 50 meters, uses the side of step 3 Method generates 100 meters of * 100 meters of Grid squares;
Step 6: obtain the DEM of 250 meters of * 250 meters of grids through resampling, the grating image of generation is deposited with data set Putting, its form and positional information match with Value of Remote Sensing Data;
Step 7: on the basis of landform altitude digitalized maps, obtains digital elevation model (DEM), and from numeral Elevation model (DEM) produces the ground line gradient factor (grid size 250 meters * 250 meters).
CN201610130097.7A 2016-03-08 2016-03-08 Evaluation method for improving vegetation classified remote sensing precision through integration of MODIS satellite and DEM Pending CN105787457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610130097.7A CN105787457A (en) 2016-03-08 2016-03-08 Evaluation method for improving vegetation classified remote sensing precision through integration of MODIS satellite and DEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610130097.7A CN105787457A (en) 2016-03-08 2016-03-08 Evaluation method for improving vegetation classified remote sensing precision through integration of MODIS satellite and DEM

Publications (1)

Publication Number Publication Date
CN105787457A true CN105787457A (en) 2016-07-20

Family

ID=56388249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610130097.7A Pending CN105787457A (en) 2016-03-08 2016-03-08 Evaluation method for improving vegetation classified remote sensing precision through integration of MODIS satellite and DEM

Country Status (1)

Country Link
CN (1) CN105787457A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106649466A (en) * 2016-09-27 2017-05-10 西安电子科技大学 Method for obtaining geometrical parameters of typical terrains in digital map
CN108846352A (en) * 2018-06-08 2018-11-20 广东电网有限责任公司 A kind of vegetation classification and recognition methods
CN109163701A (en) * 2018-08-02 2019-01-08 成都信息工程大学 Measurement method, measuring system and the computer readable storage medium on landforms boundary
CN110379113A (en) * 2019-06-28 2019-10-25 北京中科锐景科技有限公司 A method of based on satellite remote sensing date Forest Fire Alarm
CN111242224A (en) * 2020-01-16 2020-06-05 贵州省草业研究所 A Multi-source Remote Sensing Data Classification Method Based on UAV Extraction and Classification of Sample Points
CN111666914A (en) * 2020-06-15 2020-09-15 中国科学院地理科学与资源研究所 Cultivated land identification method, system, equipment and storage medium based on distance between curves
CN111985422A (en) * 2020-08-25 2020-11-24 兰州交通大学 Method and device for estimating slope of cultivated land based on remote sensing
WO2021079210A1 (en) * 2019-10-21 2021-04-29 International Business Machines Corpofiation Predicting and correcting vegetation state
CN113313671A (en) * 2021-04-30 2021-08-27 武汉光谷信息技术股份有限公司 Rice yield estimation method combining satellite images and MODIS data
CN113435010A (en) * 2021-05-26 2021-09-24 中国再保险(集团)股份有限公司 Large-scale refined terrain digital simulation method and device
US11204896B2 (en) 2017-08-18 2021-12-21 International Business Machines Corporation Scalable space-time density data fusion
CN114063616A (en) * 2021-11-11 2022-02-18 深圳市城市公共安全技术研究院有限公司 Method and device for planning forest area path based on three-dimensional laser scanning detection
CN114283335A (en) * 2021-12-27 2022-04-05 河南大学 Historical period remote sensing identification precision verification preparation method
US11360970B2 (en) 2018-11-13 2022-06-14 International Business Machines Corporation Efficient querying using overview layers of geospatial-temporal data in a data analytics platform
CN114863053A (en) * 2022-07-06 2022-08-05 中交第四航务工程勘察设计院有限公司 Method and device for improving precision of digital elevation model
US11594004B2 (en) 2019-12-26 2023-02-28 International Business Machines Corporation Distributed vector-raster fusion
CN117095134A (en) * 2023-10-18 2023-11-21 中科星图深海科技有限公司 Three-dimensional marine environment data interpolation processing method
CN118505786A (en) * 2024-06-24 2024-08-16 黑龙江省农业科学院农业遥感与信息研究所 Remote sensing acquisition method and device for irregular area of crop planting
CN118898757A (en) * 2024-07-03 2024-11-05 中国人民解放军陆军勤务学院 A sample data migration enhancement method and system based on remote sensing image spatiotemporal feature correlation fusion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858971A (en) * 2010-06-02 2010-10-13 浙江大学 A Remote Sensing Estimation Method of Rice Yield Based on MODIS Data
CN103063311A (en) * 2012-12-24 2013-04-24 珠江水利委员会珠江水利科学研究院 Nudity bed rock information extraction method based on soil index
CN103196839A (en) * 2013-03-20 2013-07-10 浙江工商大学 Method for predicting cover degree of eel grasses by using quick-bird satellite NDVI (normalized difference vegetation indexes)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858971A (en) * 2010-06-02 2010-10-13 浙江大学 A Remote Sensing Estimation Method of Rice Yield Based on MODIS Data
CN103063311A (en) * 2012-12-24 2013-04-24 珠江水利委员会珠江水利科学研究院 Nudity bed rock information extraction method based on soil index
CN103196839A (en) * 2013-03-20 2013-07-10 浙江工商大学 Method for predicting cover degree of eel grasses by using quick-bird satellite NDVI (normalized difference vegetation indexes)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
程乾 等: "数字高程模型和多时相MODIS数据复合的水稻种植面积遥感估算方法研究", 《农业工程学报》 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106649466A (en) * 2016-09-27 2017-05-10 西安电子科技大学 Method for obtaining geometrical parameters of typical terrains in digital map
CN106649466B (en) * 2016-09-27 2019-09-13 西安电子科技大学 Method for Acquiring Geometric Parameters of Typical Terrain in Digital Map
US11210268B2 (en) 2017-08-18 2021-12-28 International Business Machines Corporation Scalable space-time density data fusion
US11204896B2 (en) 2017-08-18 2021-12-21 International Business Machines Corporation Scalable space-time density data fusion
CN108846352B (en) * 2018-06-08 2020-07-14 广东电网有限责任公司 Vegetation classification and identification method
CN108846352A (en) * 2018-06-08 2018-11-20 广东电网有限责任公司 A kind of vegetation classification and recognition methods
CN109163701A (en) * 2018-08-02 2019-01-08 成都信息工程大学 Measurement method, measuring system and the computer readable storage medium on landforms boundary
US11360970B2 (en) 2018-11-13 2022-06-14 International Business Machines Corporation Efficient querying using overview layers of geospatial-temporal data in a data analytics platform
CN110379113A (en) * 2019-06-28 2019-10-25 北京中科锐景科技有限公司 A method of based on satellite remote sensing date Forest Fire Alarm
GB2602929B (en) * 2019-10-21 2024-01-03 Ibm Predicting and correcting vegetation state
WO2021079210A1 (en) * 2019-10-21 2021-04-29 International Business Machines Corpofiation Predicting and correcting vegetation state
US11436712B2 (en) 2019-10-21 2022-09-06 International Business Machines Corporation Predicting and correcting vegetation state
GB2602929A (en) * 2019-10-21 2022-07-20 Ibm Predicting and correcting vegetation state
US11594004B2 (en) 2019-12-26 2023-02-28 International Business Machines Corporation Distributed vector-raster fusion
CN111242224A (en) * 2020-01-16 2020-06-05 贵州省草业研究所 A Multi-source Remote Sensing Data Classification Method Based on UAV Extraction and Classification of Sample Points
CN111666914A (en) * 2020-06-15 2020-09-15 中国科学院地理科学与资源研究所 Cultivated land identification method, system, equipment and storage medium based on distance between curves
CN111666914B (en) * 2020-06-15 2022-05-10 中国科学院地理科学与资源研究所 Cultivated land identification method, system, equipment and storage medium based on distance between curves
CN111985422B (en) * 2020-08-25 2024-04-23 兰州交通大学 Cultivated land Tian Mianpo degree estimation method and estimation device based on remote sensing
CN111985422A (en) * 2020-08-25 2020-11-24 兰州交通大学 Method and device for estimating slope of cultivated land based on remote sensing
CN113313671A (en) * 2021-04-30 2021-08-27 武汉光谷信息技术股份有限公司 Rice yield estimation method combining satellite images and MODIS data
CN113435010B (en) * 2021-05-26 2023-09-12 中国再保险(集团)股份有限公司 Digital simulation method and device for large-scale fine terrain
CN113435010A (en) * 2021-05-26 2021-09-24 中国再保险(集团)股份有限公司 Large-scale refined terrain digital simulation method and device
CN114063616A (en) * 2021-11-11 2022-02-18 深圳市城市公共安全技术研究院有限公司 Method and device for planning forest area path based on three-dimensional laser scanning detection
CN114063616B (en) * 2021-11-11 2024-03-01 深圳市城市公共安全技术研究院有限公司 Method and device for planning forest path based on three-dimensional laser scanning detection
CN114283335A (en) * 2021-12-27 2022-04-05 河南大学 Historical period remote sensing identification precision verification preparation method
CN114863053A (en) * 2022-07-06 2022-08-05 中交第四航务工程勘察设计院有限公司 Method and device for improving precision of digital elevation model
CN117095134A (en) * 2023-10-18 2023-11-21 中科星图深海科技有限公司 Three-dimensional marine environment data interpolation processing method
CN117095134B (en) * 2023-10-18 2023-12-22 中科星图深海科技有限公司 Three-dimensional marine environment data interpolation processing method
CN118505786A (en) * 2024-06-24 2024-08-16 黑龙江省农业科学院农业遥感与信息研究所 Remote sensing acquisition method and device for irregular area of crop planting
CN118898757A (en) * 2024-07-03 2024-11-05 中国人民解放军陆军勤务学院 A sample data migration enhancement method and system based on remote sensing image spatiotemporal feature correlation fusion
CN118898757B (en) * 2024-07-03 2025-01-28 中国人民解放军陆军勤务学院 A sample data migration enhancement method and system based on remote sensing image spatiotemporal feature correlation fusion

Similar Documents

Publication Publication Date Title
CN105787457A (en) Evaluation method for improving vegetation classified remote sensing precision through integration of MODIS satellite and DEM
CN114076738B (en) Method for estimating soil salinity of residual straw farmland by using remote sensing construction index
CN114037911B (en) Large-scale forest height remote sensing inversion method considering ecological zoning
CN114781011B (en) High-precision calculation method and system for pixel-level global forest carbon reserves
CN109919875B (en) A feature-assisted residential area extraction and classification method based on high time-frequency remote sensing images
CN104462660B (en) A kind of field Transmission Line in Winter ice covering thickness distribution core method
Henderson et al. Validation of urban boundaries derived from global night-time satellite imagery
CN102539336B (en) Method and system for estimating inhalable particles based on HJ-1 satellite
CN108459318A (en) Potential landslide EARLY RECOGNITION method based on remote sensing technology
CN102288954A (en) Remote sensing estimation method for vegetation coverage of grassland
CN103047970B (en) A Method of Determining the Damage Boundary of Subsidence Cultivated Land
CN105046648A (en) Method for constructing high temporal-spatial remote sensing data
CN103440490B (en) Urban Impervious Surface Extraction Method Based on Spatial-Temporal Similarity Analysis of SAR Images
CN102194225A (en) Automatic registering method for coarse-to-fine space-borne synthetic aperture radar image
CN114202535B (en) Crop planting area extraction method and device
CN102175209A (en) Effective sampling method for crop cultivated area measurement under support of historical remote sensing product data
CN109977991A (en) Forest resourceies acquisition method based on high definition satellite remote sensing
CN109100719A (en) Combine plotting method with the topographic map of optical image based on satellite-borne SAR image
CN107180448A (en) A kind of mining area DEM change detecting methods based on earth's surface invariant features
CN106326544A (en) Remote-sensing image topographic map making method based on public data
CN116561509A (en) Urban vegetation overground biomass accurate inversion method and system considering vegetation types
CN113139994B (en) High-resolution optical remote sensing satellite image building height monitoring method based on angular points
CN108345713B (en) A dynamic analysis method of soil erosion in county area-small watershed-runoff area
CN116522090A (en) A Soil Moisture Downscaling Method Considering Vegetation Memory and Fine-scale Vegetation Index
Paradella et al. Automatic DEM Generation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160720