CN105787166B - 一种铸锭中宏观偏析缩孔疏松的预测模拟方法 - Google Patents

一种铸锭中宏观偏析缩孔疏松的预测模拟方法 Download PDF

Info

Publication number
CN105787166B
CN105787166B CN201610099397.3A CN201610099397A CN105787166B CN 105787166 B CN105787166 B CN 105787166B CN 201610099397 A CN201610099397 A CN 201610099397A CN 105787166 B CN105787166 B CN 105787166B
Authority
CN
China
Prior art keywords
phase
crystal
liquid
equiaxed
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610099397.3A
Other languages
English (en)
Other versions
CN105787166A (zh
Inventor
李军
任凤丽
葛鸿浩
韩秀君
夏明许
胡侨丹
张卫
李建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201610099397.3A priority Critical patent/CN105787166B/zh
Publication of CN105787166A publication Critical patent/CN105787166A/zh
Application granted granted Critical
Publication of CN105787166B publication Critical patent/CN105787166B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Continuous Casting (AREA)

Abstract

本发明公开了一种铸锭中宏观偏析缩孔疏松的预测模拟方法,包括以下步骤:获取金属材料的热物性参数;计算求解所述金属材料凝固时所需的质量、动量、能量、溶质传输;设置计算边界条件,初始化计算条件,开始循环,耦合求解所述金属材料的液相、等轴晶中固相、柱状晶相的质量、动量、能量、溶质传输,同时求解空气相的动量方程、能量方程;跟踪所述空气相和所述液相的界面,根据凝固收缩量,求解出所述空气相的分布域;更新所述热物性参数,同时跟踪缩松判据,判断收敛条件;如果不满足进入下一个循环,如果满足进入下一个时间步计算;直至得到模拟结果。本发明适用于预测各种材料、吨位铸锭的宏观成分分布,对铸锭浇铸工艺优化具有参考作用。

Description

一种铸锭中宏观偏析缩孔疏松的预测模拟方法
技术领域
本发明涉及一种关于偏析的预测模拟方法,具体涉及一种铸锭中宏观偏析缩孔疏松的预测模拟方法,属于黑色金属材料制备领域。
背景技术
凝固过程中成分偏析是合金固有特性。因此,凝固后铸锭普遍存在成分不均匀现象,这种现象叫做宏观偏析;宏观偏析不仅和材料特性还与凝固过程中液体流动、等轴晶沉积、凝固收缩流动等原因有关;此外凝固过程中还存在收缩现象,这是由材料在固、液状态下的密度差异引起的。铸锭凝固过程是一个复杂的过程,如何高效准确地预测铸锭的成分、缩孔缩松分布一直是各国铸造工作者努力的方向。
目前国内外用于铸锭偏析预测的模拟方法中,存在以下主要问题:很少同时考虑液相、等轴晶、柱状晶和空气的相互作用;没有考虑凝固收缩时的流动对最终偏析的影响;几乎没有跟踪缩松形成。
发明内容
本发明的目的在于提供一种钢锭中的偏析预测、缩孔缩松预测;解决实际生产中凝固后成分、缩孔、疏松难以预测问题;模拟结果为实际生产提供有效的参考价值。本发明的技术方案如下:
一种钢锭中偏析的预测模拟方法,包括如下步骤:
(1)获取材料的热物性参数;
(2)计算求解所编写的凝固时所需的质量、动量、能量、溶质传输;
(3)设置计算边界条件,初始化计算条件,开始循环,耦合求解液相、等轴晶中固相和柱状晶相的质量、动量、能量、溶质的传输方程,同时求解空气相的动量及能量方程;
(4)跟踪空气相和液相的界面,根据凝固收缩量,求解出空气相分布域;
(5)更新材料物性参数,同时跟踪缩松判据,判断收敛条件,如果不满足进入下一个循环,如果满足进入下一个时间步计算;
(6)采用钢锭模实际生产钢锭;
(7)将模拟结果与实际生产结果进行对照,验证模拟结果的可靠性,然后用于后续铸锭的预测。
本发明的有益效果:
1、本发明采用四相模型,通过耦合求解凝固过程中金属液相、等轴晶相、柱状晶相以及气相之间的质量、能量、动量及溶质传输方程,预测铸锭凝固过程中的偏析、缩孔及疏松分布;
2、本发明使用温度梯度跟踪法确定柱状晶生长方向和生长区域,解决了柱状晶向等轴晶转变的预测难题;
3、本发明采用枝晶状而非球状等轴晶,解决了枝晶结构对预测等轴晶的生长及运动的难题;
4、本发明适用于预测各种材料、吨位铸锭的宏观成分分布,对铸锭浇铸工艺优化具有参考作用。
附图说明
图1是枝晶状等轴晶示意图;
图2是55吨钢模铸锭示意图;图中,1钢模;2铸锭;3空气;
图3是500s液相分布图;
图4是5000s液相分布图;
图5是10000s液相分布图;
图6是20000s液相分布图;
图7是500s缩孔形状图;
图8是5000s缩孔形状图;
图9是10000s缩孔形状图;
图10是20000s缩孔形状图;
图11是最终偏析值分布图;
图12是缩松分布图;
图13是中心线碳分布与实验值比较图。
具体实施方式
下面结合附图对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
一种钢锭中偏析的预测模拟方法,包括如下步骤:
(1)获取材料的热物性参数;
(2)计算求解所编写的凝固时所需的质量、动量、能量、溶质传输
(3)设置铸锭凝固的初始条件,包括初始温度,初始溶质含量,各相初始含量、速度;设置铸锭凝固的边界条件,包括铸锭与铸模的换热系数;
(4)开始迭代计算,计算每个单元的温度梯度,确定柱状晶、等轴晶的生长区域;
(5)通过fluent中的相耦合算法,耦合求解各相的质量、动量、能量、溶质的传输方程;
(6)跟踪固液界面预测凝固缩孔形成;
(7)跟踪缩松预测判据计算缩松量、更新热物性参数;
(8)判断是否收敛,如果满足条件进入下一个时间步长,如果不满足条件,从第(4)步开始重复迭代计算;
(9)计算结束,分析计算结果。
所述的钢锭中偏析预测方法的具体步骤如下:
1)等轴晶、柱状晶生长条件判定
只要相应的过冷度存在,等轴晶被允许在所有的单元中形核与长大;而柱状晶只从铸模壁开始生长,此后跟踪每个单元的温度梯度来判断柱状晶的生长方向,同时该单元的温度梯度满足一个阀值并且柱状晶前端沉积少于一定量的等轴晶时,柱状晶才能沿着热流反方向生长;
2)等轴晶、柱状晶生长速度及质量转换量计算
本发明所述的枝晶状等轴晶结构如图1所示,包络线所包围部分为一个枝晶,包含两部分:包络线内部固相fs,包络线内部液相等轴晶的生长包含两个部分:等轴晶的生长速度vRs,包络线的生长速度vtip。等轴晶枝生长速度计算如下:
等轴晶包络线的生长速度计算如下:
a=0.4567;b=1.195;k为溶质再分配系数;m相图中液相线斜率;为Γ为吉布斯-汤姆逊系数;
等轴晶包络线内部固相凝固速率计算如下:
Mls=vRs·Ss·ρs·fl
其中其中:fsi为等轴晶包络线内部固相率fsi=fs/fenv;λ2为二次枝晶间距;
等轴晶包络线的凝固速率计算如下:
其中:fc柱状晶体积分数;
其中:Φe等轴晶球形度,根据合金体系确定;
柱状晶生长速率计算如下:
ρc为柱状晶密度
柱状晶凝固速率为:
Mlc=vRc·Sc·ρc·fl
其中,并且有λ1为一次枝晶间距;
3)分别显性求解等轴晶(env)、等轴晶中固相(s)、柱状晶(c)、空气相(a)、金属液相(l)的质量、动量、能量及必要的溶质传输方程;使用质量守恒方程计算质量,使用动量守恒方程计算动量,使用能量守恒方程计算能量,使用成分守恒方程计算溶质传输。
质量守恒方程:
其中:Mls液相向等轴晶相的质量传输率,Mlc液相向柱状轴晶相的质量传输率;
动量守恒方程:
其中:P为压强;为应力-应变张量;
其中t为l,s,c三 相的下角标; Ata=6ftfa/dta;为l,s,c三相的速度;dta为t相与空气相的最小特征直径;μta为t相与空气 相的最小粘度;
能量守恒方程:
其中:kl,ks,kc分别是液相、等轴晶中固相、柱状晶相的热导率;Tl,Ts,Tc分别是液相、等轴晶中固相、柱状晶相温度;
成分守恒方程:
其中:
3)更新热物性参数、缩松判据及判断收敛
粘度求解更新:
其中:μl为液相粘度,
单元平均溶质跟踪计算:
缩松判据跟踪:
其中SPC为缩松判据;Cλ为材料属性常数;G为单元的温度梯度;为单元的冷却速度;ΔPcr为压力下降阀值,大气中浇铸时为101325帕斯卡;μl为液相粘度;β凝固收缩率;ΔTf液固相线温度差。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (8)

1.一种铸锭中宏观偏析缩孔疏松的预测模拟方法,其特征在于,包括以下步骤:
(1)获取金属材料的热物性参数;
(2)计算求解所述金属材料凝固时所需的质量、动量、能量、溶质传输;
(3)设置计算边界条件,初始化计算条件,开始循环,耦合求解所述金属材料的液相、等轴晶中固相、柱状晶相的质量、动量、能量、溶质传输,同时求解空气相的动量方程、能量方程;
(4)跟踪所述空气相和所述液相的界面,根据凝固收缩量,求解出所述空气相的分布域;
(5)更新所述热物性参数,同时跟踪缩松判据,判断收敛条件;如果不满足进入下一个循环,如果满足进入下一个时间步计算;直至得到模拟结果;
(6)采用钢锭模实际生产钢锭,记录实际生产结果;
(7)将所述模拟结果与所述实际生产结果进行对照,验证所述模拟结果的可靠性,然后用于后续铸锭的预测。
2.根据权利要求1所述的一种铸锭中宏观偏析缩孔疏松的预测模拟方法,其特征在于,根据以下质量守恒方程求解所述液相、所述等轴晶中固相、所述柱状晶相的质量:
其中:Mls为液相向等轴晶相的质量传输率,Mlc为液相向柱状轴晶相的质量传输率;上述质量守恒方程中下角标l代表液相,s代表等轴晶中固相,c代表柱状晶相;fl为液相体积分数,fs为等轴晶固相体积分数,fc为柱状晶体积分数;ρl为液相密度,ρc为柱状晶密度,ρs为等轴晶密度;为液相运动速度,为等轴晶运动速度。
3.根据权利要求1所述的一种铸锭中宏观偏析缩孔疏松的预测模拟方法,其特征在于,根据以下动量守恒方程求解所述液相、所述等轴晶中固相、所述柱状晶相的动量:
其中:P为压强;fa为空气相体积分数;为液相应力-应变张量;为柱状晶应力为应变张量,为等轴晶应力-应变张量;为液相运动速度,为柱状晶运动速度,为等轴晶运动速度,为空气相运动速度;ρa为空气相密度;
其中denv为等轴晶的直径;Φe为等轴晶球形度,根据合金体系确定;fenv为等轴晶体积分数;fsi为等轴晶包络线内部固相率;λ2为二次枝晶间距;
其中t为l,s,c三相的下角标;Ata=6ftfa/dta为l,s,c三相的速度;dta为t相与空气相的最小特征直径;μta为t相与空气相的最小粘度;μl为液相的黏度系数;λ1为一次枝晶间距。
4.根据权利要求1所述的一种铸锭中宏观偏析缩孔疏松的预测模拟方法,其特征在于,根据以下能量守恒方程求解所述液相、所述等轴晶中固相、所述柱状晶相的能量:
其中:kl,ks,kc,ka分别是液相、等轴晶中固相、柱状晶相、空气相的热导率;Tl,Ts,Tc,Ta分别是液相、等轴晶中固相、柱状晶相、空气相的温度;
5.根据权利要求1所述的一种铸锭中宏观偏析缩孔疏松的预测模拟方法,其特征在于,根据以下成分守恒方程求解所述液相、所述等轴晶中固相、所述柱状晶相的溶质传输:
其中:cl为液相溶质;cs为等轴晶溶质;cc为柱状晶溶质;
6.根据权利要求1所述的一种铸锭中宏观偏析缩孔疏松的预测模拟方法,其特征在于,所述热物性参数包括粘度,步骤(5)中利用下式求解粘度并更新:
其中:μs为等轴晶相粘度;μl为液相粘度,
7.根据权利要求1所述的一种铸锭中宏观偏析缩孔疏松的预测模拟方法,其特征在于,用下式进行单元平均溶质跟踪计算:
8.根据权利要求1所述的一种铸锭中宏观偏析缩孔疏松的预测模拟方法,其特征在于,用下式跟踪缩松判据:
其中SPC是指缩松判据;Cλ为材料属性常数;G为单元的温度梯度;为单元的冷却速度;ΔPcr为压力下降阀值,大气中浇铸时为101325帕斯卡;μl为液相粘度;β凝固收缩率;ΔTf液固相线温度差。
CN201610099397.3A 2016-02-23 2016-02-23 一种铸锭中宏观偏析缩孔疏松的预测模拟方法 Active CN105787166B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610099397.3A CN105787166B (zh) 2016-02-23 2016-02-23 一种铸锭中宏观偏析缩孔疏松的预测模拟方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610099397.3A CN105787166B (zh) 2016-02-23 2016-02-23 一种铸锭中宏观偏析缩孔疏松的预测模拟方法

Publications (2)

Publication Number Publication Date
CN105787166A CN105787166A (zh) 2016-07-20
CN105787166B true CN105787166B (zh) 2018-12-25

Family

ID=56403586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610099397.3A Active CN105787166B (zh) 2016-02-23 2016-02-23 一种铸锭中宏观偏析缩孔疏松的预测模拟方法

Country Status (1)

Country Link
CN (1) CN105787166B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014973B (zh) * 2017-03-30 2019-01-29 华中科技大学 一种基于动态压强的重力铸造缩孔缺陷检测方法
CN109063322B (zh) * 2018-07-27 2022-08-02 哈尔滨理工大学 一种铸件缩松缺陷数值预测的方法
CN111104763A (zh) * 2020-01-03 2020-05-05 北京科技大学 一种铝合金半连续铸件缺陷倾向预测方法及装置
CN111597746B (zh) * 2020-05-14 2023-05-23 浙江工业大学 一种激光熔覆过程中的元素分布预测模拟方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767189A (zh) * 2009-12-25 2010-07-07 中国科学院金属研究所 一种钢锭中固相移动的模拟方法
CN102289542A (zh) * 2011-07-12 2011-12-21 哈尔滨理工大学 一种铸件宏观偏析数值模拟的方法
CN104881588A (zh) * 2015-06-19 2015-09-02 哈尔滨理工大学 铸锭宏观偏析数值模拟方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767189A (zh) * 2009-12-25 2010-07-07 中国科学院金属研究所 一种钢锭中固相移动的模拟方法
CN102289542A (zh) * 2011-07-12 2011-12-21 哈尔滨理工大学 一种铸件宏观偏析数值模拟的方法
CN104881588A (zh) * 2015-06-19 2015-09-02 哈尔滨理工大学 铸锭宏观偏析数值模拟方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Al-Si合金凝固组织的数值模拟;陈光友;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》;20100215(第2期);第B022-30页 *
耐热稀土镁合金活塞金属型铸造过程模拟分析;陈长江 等;《特种铸造及有色合金》;20100630;第30卷(第6期);第517-519页 *
铸造凝固过程宏观偏析数值模拟研究;涂武涛 等;《大型铸锻件》;20140331(第2期);第1-3页 *
铸锭凝固过程数值模拟及可视化;史小辉;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》;20060915(第9期);第B022-65页 *

Also Published As

Publication number Publication date
CN105787166A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
CN105787166B (zh) 一种铸锭中宏观偏析缩孔疏松的预测模拟方法
CN109817284B (zh) 一种钢液中枝晶移动的预测方法
Spinelli et al. Influence of melt convection on the columnar to equiaxed transition and microstructure of downward unsteady-state directionally solidified Sn–Pb alloys
Siqueira et al. The columnar to equiaxed transition during solidification of Sn–Pb alloys
Ge et al. Four-phase dendritic model for the prediction of macrosegregation, shrinkage cavity, and porosity in a 55-ton ingot
Miller et al. Stability of dendrite growth during directional solidification in the presence of a non-axial thermal field
CN110245449B (zh) 一种镁合金铸造件成分不均匀性数值预测方法
CN101695747B (zh) 一种大方坯连铸动态轻压下压下区间的控制方法
CN107092754B (zh) 一种合金晶粒组织数值预测方法
Laukli et al. Grain size distribution in a complex AM60 magnesium alloy die casting
CN107909189B (zh) 一种模拟铝合金砂型铸造过程的缩孔缺陷预测方法
Pan et al. Three-dimensional microstructure simulation of Ni-based superalloy investment castings
CN106238695A (zh) 一种连铸过程结晶器内铸流凝固预测控制方法
CN114722626B (zh) 一种铸锭中宏观偏析及析出夹杂物的预测模拟方法
CN105354372B (zh) 一种钢锭中偏析的预测模拟方法
Li et al. Simulation of stray grain formation during unidirectional solidification of IN738LC superalloy
CN110970095A (zh) 一种涉及冶金领域钢液凝固过程中强制对流对AlN枝晶受力计算方法
Kapturkiewicz et al. Modeling the kinetics of solidification of cast iron with lamellar graphite
El‐Bealy et al. On the mechanism of natural convection and equiaxed structure during dendritic solidification processes
Mu et al. Experimental Examination of Method for Estimating Solid Fraction at Flow Cessation from Flow Velocity of Molten Al-Si-Mg Alloy
Zhao et al. Simulation of solidification process of steel ingot under different thermal boundary conditions
Chen et al. Validation and numerical simulation for shrinkage porosity of a X12 steel ingot
Kosynska EFFECT OF INITIAL MOLD TEMPERATURE ON THE CRYSTALLIZATION KINETICS OF Cu47Ni8Ti34Zr11 ALLOY
CN109885984B (zh) 一种球墨铸铁铸锭石墨球尺寸数值预测的方法
Assar The structure and soundness of Al–4.5 Cu ingots cast in open mould using different filling rates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant