CN105779942A - 采用活性气体诱导Cd或Zn制备二维纳米结构的方法 - Google Patents

采用活性气体诱导Cd或Zn制备二维纳米结构的方法 Download PDF

Info

Publication number
CN105779942A
CN105779942A CN201610124079.8A CN201610124079A CN105779942A CN 105779942 A CN105779942 A CN 105779942A CN 201610124079 A CN201610124079 A CN 201610124079A CN 105779942 A CN105779942 A CN 105779942A
Authority
CN
China
Prior art keywords
active gases
dimensional nanostructure
preparation
warm area
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610124079.8A
Other languages
English (en)
Inventor
杜希文
凌涛
鲁逸人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610124079.8A priority Critical patent/CN105779942A/zh
Publication of CN105779942A publication Critical patent/CN105779942A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种活性气体诱导Cd或Zn二维纳米结构的制备方法,利用管式炉在温区1蒸发Cd或Zn源,Cd或Zn原子被载气输送到温区2,Cd或Zn原子在活性气体诱导下在生长基底上形成二维纳米结构,且活性气体吸附于Cd或Zn二维纳米结构外,防止其被空气氧化。所述载气为N2、Ar、He气中的一种或几种,所述活性气体为H2、CO、NH3、SO2、CO2、CS2、H2O中的一种或几种。当制备Cd二维纳米结构时,将温区(1)升温至200~400℃,当制备Zn二维纳米结构时,将温区(1)升温至400℃;然后将温区(2)升温至100‑200℃,保持1~2h。本发明操作简便、重复性好,在透明导电电极、催化等领域具有良好的应用前景。

Description

采用活性气体诱导Cd或Zn制备二维纳米结构的方法
技术领域
本发明是关于纳米材料的,特别涉及一种活性气体诱导活泼金属Cd或Zn二维纳米结构纳米片的制备方法。
背景技术
二维纳米结构是一类新型的材料,拥有较小的厚度和较大的平面尺寸。以石墨烯和二硫化钼为代表的二维纳米结构,因其具有重要的理论价值和广阔的应用前景,成为近年来的研究热点。最近,金属纳米片异军突起,呈现出特殊的物理化学特性,在工业催化、生物医学、磁记录和透明导电电极等重要领域具有广阔的应用前景,受到学术界和产业界的极大关注。
相比石墨烯、二硫化钼等典型层状二维材料,金属键没有方向性,金属原子易于沿密排方向堆积形成三维结构,缺乏二维各向异性生长的驱动力,很难形成稳定的二维结构。另外,二维金属纳米结构表面暴露的大量未成键饱和的金属原子非常容易被环境氧化。金属纳米二维结构的可控制备仍然是学术界和产业界面临的巨大挑战。
活泼金属(Zn、Cd)纳米结构容易氧化,难于通过化学法合成、在空气中不能稳定存在,因此对这类材料的研究起步相对较。文献“KhanWS,CaoCB,MahmoodT,AhmadM,ButtFK,AliZ,UsmanZ,WangFPandulAinQ.Mater.Lett.2011,65(12),1896-1899.”文献“GaoPX,LaoCS,DingYandWangZL.Adv.Funct.Mater.2006,16(1),53-62.”利用热分解CdO得到了Cd的纳米片。Gao等人用ZnO和C粉作为原料得到了锌纳米片。现有方法尚没有采用活性气体调控Cd或Zn二维纳米结构,且平面尺寸较小,不适于应用于透明导电电极等领域。
发明内容
本发明的目的,是克服现有技术的Cd或Zn二维纳米结构的平面尺寸较小、不适于应用透明导电电极等领域的缺陷,提供一种活性气体诱导金属二维纳米结构的制备方法,该方法利用活性气体诱导金属原子沿二维方向取向生长,活性气体吸附于Cd和Zn二维纳米片表面,防止其被空气氧化。
本发明通过如下技术方案予以实现。
⑴本发明提供了一种操作简便、重复性好的制备Cd或Zn二维纳米结构的方法;
⑵本发明方法采用活性气体诱导Cd或Zn二维纳米结构生长,且活性气体吸附于Cd或Zn二维纳米结构外,使纳米片不易被氧化;
⑶本发明制备的Cd或Zn二维纳米结构在透明导电电极、催化等领域具有良好的应用前景。
附图说明
图1是本发明制备方法示意图;
图2是实施例1制备的Cd二维纳米片的扫描电镜图片;
图3是实施例1制备的Zn二维纳米片的扫描电镜图片。
具体实施方式
下面结合实施例和附图对本发明作进一步说明。
图1是本发明制备方法示意图,本发明利用管式炉在温区1蒸发Cd或Zn源,Cd或Zn原子被载气输送到温区2,Cd或Zn原子在活性气体诱导下在生长基底上形成二维纳米结构,且活性气体吸附于Cd或Zn二维纳米结构外,防止其被空气氧化。温区1和温区2可以分别控制其温度和保温时间。
实施例1
一种活性气体诱导Cd二维纳米结构的制备方法,制备方法示意图如图1所示,具体方法步骤如下:将Cd的蒸发源Cd粉放置于管式炉温区1,将FTO基底放置于温区2,将反应炉抽真空至0.2Torr。向管式炉通入N2和SO2,控制N2气流量为200sccm,SO2流量为5sccm,管式炉压力为4Torr,将温区1升温至280℃,将温区2升温至120℃,保持1h,制得Cd二维纳米结构。
图2是实施例1制备的Cd二维纳米片的扫描电镜图片;可以看出制备的二维结构很薄且结构均匀;
图3是实施例1制备的Zn二维纳米片的扫描电镜图片,从低倍镜图片可以看出,该结构生长区域较大。
实施例2
一种活性气体诱导Cd二维纳米结构的制备方法,制备方法示意图如图1所示,将Cd的蒸发源Cd粉放置于管式炉温区1,将基底放置于温区2,将反应炉抽真空至0.3Torr。向管式炉通入N2和SO2,控制N2流量为200sccm,SO2流量为30sccm,管式炉压力为6Torr,将温区1升温至300℃,将温区2升温至120℃,保持1.5h,制得Cd二维纳米结构。
实施例3
一种活性气体诱导Cd二维纳米结构的制备方法,制备方法示意图如图1所示,将Cd的蒸发源Cd粉放置于管式炉温区1,将基底放置于温区2,将反应炉抽真空至0.5Torr。向管式炉通入N2和SO2,控制N2流量为200sccm,SO2流量为60sccm,管式炉压力为6Torr,将温区1升温至400℃,将温区2升温至120℃,保持2h,制得Cd二维纳米结构。
实施例4
一种活性气体诱导Zn二维纳米结构的制备方法,制备方法类似示意图如图1所示,将Zn的蒸发源Zn粉放置于管式炉温区1,将基底放置于温区2,将反应炉抽真空至0.5Torr。向管式炉通入Ar和CS2,控制Ar流量为100sccm,CS2流量为50sccm,管式炉压力为6Torr,将温区1升温至400℃,将温区2升温至120℃,保持2h,制得Zn二维纳米结构。
实施例5
一种活性气体诱导Zn二维纳米结构的制备方法,制备方法类似示意图如图1所示,将Zn的蒸发源Zn粉放置于管式炉温区1,将基底放置于温区2,将反应炉抽真空至0.5Torr。向管式炉通入Ar和CS2,控制Ar流量为100sccm,CS2流量为12sccm,管式炉压力为5Torr,将温区1升温至350℃,将温区2升温至150℃,保持2h,制得Zn二维纳米结构。
本发明所列各种工艺参数的上下限取值、及区间值与各种基底、载气和活性气体都能够实现本发明,在此不一一进行举例说明。

Claims (5)

1.一种活性气体诱导Cd或Zn二维纳米结构的制备方法,利用活性气体诱导Cd或Zn金属原子沿二维方向取向生长,活性气体吸附于Cd或Zn二维纳米片表面,防止其被空气氧化。
该活性气体诱导Cd或Zn二维纳米结构的制备方法,具有如下步骤:
(1)将Cd和Zn的蒸发源放置于管式炉温区(1),将生长基底放置于温区(2),将反应炉抽真空至0.1~0.5Torr;
(2)向管式炉通入载气和活性气体,控制载气流量为100~200sccm,控制活性气体流量为20~60sccm,控制调节阀使得管式炉压力为3~4Torr;
当制备Cd二维纳米结构时,将温区(1)升温至200~400℃,将温区(2)升温至100-200℃,保持1~2h;
当制备Zn二维纳米结构时,将温区(1)升温至400℃,将温区(2)升温至100-200℃,保持1~2h。
2.根据权利要求1所述的活性气体诱导Cd或Zn二维纳米结构的制备方法,其特征在于,所述步骤(1)的Cd蒸发源为Cd粉,Zn蒸发源为Zn粉。
3.根据权利要求1所述的活性气体诱导Cd或Zn二维纳米结构的制备方法,其特征在于,所述步骤(1)的生长基底为导电玻璃FTO、导电玻璃ITO、Si片或金属衬底中的一种。
4.根据权利要求1所述的活性气体诱导Cd或Zn二维纳米结构的制备方法,其特征在于,所述步骤(2)的载气为N2、Ar、He气中的一种或几种。
5.根据权利要求1所述的活性气体诱导Cd或Zn二维纳米结构的制备方法,其特征在于,所述步骤(2)的活性气体为H2、CO、NH3、SO2、CO2、CS2、H2O中的一种或几种。
CN201610124079.8A 2016-03-04 2016-03-04 采用活性气体诱导Cd或Zn制备二维纳米结构的方法 Pending CN105779942A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610124079.8A CN105779942A (zh) 2016-03-04 2016-03-04 采用活性气体诱导Cd或Zn制备二维纳米结构的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610124079.8A CN105779942A (zh) 2016-03-04 2016-03-04 采用活性气体诱导Cd或Zn制备二维纳米结构的方法

Publications (1)

Publication Number Publication Date
CN105779942A true CN105779942A (zh) 2016-07-20

Family

ID=56386962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610124079.8A Pending CN105779942A (zh) 2016-03-04 2016-03-04 采用活性气体诱导Cd或Zn制备二维纳米结构的方法

Country Status (1)

Country Link
CN (1) CN105779942A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108404933A (zh) * 2018-01-24 2018-08-17 天津大学 一种二维ZnS/ZnO/ZnS纳米片光催化剂及其制备方法
CN109825800A (zh) * 2019-01-03 2019-05-31 南京大学 一种高分子保护砷烯纳米片的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429644A (zh) * 2008-03-21 2009-05-13 中国科学院上海硅酸盐研究所 金属或金属氧化物纳米颗粒的制备方法
CN102820311A (zh) * 2012-09-25 2012-12-12 大连理工大学 一种制作偏振敏感光电探测器的方法
CN102923647A (zh) * 2012-11-22 2013-02-13 武汉大学 间距与形貌可调控的金属纳米颗粒有序阵列的制备方法
CN103205715A (zh) * 2013-04-01 2013-07-17 谢振华 一种低熔点金属的气化镀膜方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429644A (zh) * 2008-03-21 2009-05-13 中国科学院上海硅酸盐研究所 金属或金属氧化物纳米颗粒的制备方法
CN102820311A (zh) * 2012-09-25 2012-12-12 大连理工大学 一种制作偏振敏感光电探测器的方法
CN102923647A (zh) * 2012-11-22 2013-02-13 武汉大学 间距与形貌可调控的金属纳米颗粒有序阵列的制备方法
CN103205715A (zh) * 2013-04-01 2013-07-17 谢振华 一种低熔点金属的气化镀膜方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108404933A (zh) * 2018-01-24 2018-08-17 天津大学 一种二维ZnS/ZnO/ZnS纳米片光催化剂及其制备方法
CN109825800A (zh) * 2019-01-03 2019-05-31 南京大学 一种高分子保护砷烯纳米片的方法

Similar Documents

Publication Publication Date Title
Pauporté et al. Low-temperature preparation of Ag-doped ZnO nanowire arrays, DFT study, and application to light-emitting diode
CN102358938B (zh) 一种低温大面积可控合成具有优良场发射特性的单晶wo2和wo3纳米线阵列的方法
Zoolfakar et al. Nanostructured copper oxides as ethanol vapour sensors
Premkumar et al. Optical and field-emission properties of ZnO nanostructures deposited using high-pressure pulsed laser deposition
Park et al. Enhanced field emission properties from well-aligned zinc oxide nanoneedles grown on the Au∕ Ti∕ n-Si substrate
Mani et al. Facile synthesis of ZnO nanostructures by spray pyrolysis technique and its application as highly selective H2S sensor
Chen et al. Transparent metal oxide nanowire transistors
Kim et al. Fabrication and characterization of Ga-doped ZnO nanowire gas sensor for the detection of CO
Aziz et al. Seed/catalyst-free vertical growth of high-density electrodeposited zinc oxide nanostructures on a single-layer graphene
Aghagoli et al. Synthesis and study of the structure, magnetic, optical and methane gas sensing properties of cobalt doped zinc oxide microstructures
CN111620325B (zh) 一种制备石墨烯纳米带阵列的方法
Zhao et al. Interfacial self-assembly of monolayer Mg-doped NiO honeycomb structured thin film with enhanced performance for gas sensing
CN103966662A (zh) 一种在硅电极上定位横向生长氧化锌纳米线的方法
Zheng et al. CVD growth of large-area and high-quality HfS2 nanoforest on diverse substrates
CN105779942A (zh) 采用活性气体诱导Cd或Zn制备二维纳米结构的方法
Zhao et al. A facile one-step synthesis of p-CuO/n-ZnO nanowire heterojunctions by thermal oxidation route
Chae et al. Atomic-layer-deposited SnO film using novel Sn (dmamb) 2 precursor for p-channel thin film transistor
CN103160929B (zh) 一种单晶ain纳米锥和纳米片的制备方法
Xu et al. Enhanced gas sensing properties for ethanol of Ag@ ZnSnO 3 nano-composites
CN103864460A (zh) 一种有序氧化钨纳米线阵列结构的制备方法
CN105800566A (zh) 交替注入反应物生长单层和多层过渡金属硫化物的方法
Rajendra Prasad et al. Investigation on structural, morphological, optical and ammonia sensing properties indium doped nano crystalline ZnO thin films synthesized by spray pyrolysis technique
CN104805409A (zh) 采用磁控溅射-掩模辅助沉积制备Ag纳米线阵列电极的方法
CN102226294B (zh) 一种优化硅基GaN场发射特性的晶体结构调制方法
Yao et al. Field emission properties and reliability of ZnO nanorod, nanopagoda, and nanotip current emitters

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160720

WD01 Invention patent application deemed withdrawn after publication