CN105772906A - 一种氮弧原位冶金预铺设氮化物实现钢表面增氮的方法 - Google Patents

一种氮弧原位冶金预铺设氮化物实现钢表面增氮的方法 Download PDF

Info

Publication number
CN105772906A
CN105772906A CN201610008871.7A CN201610008871A CN105772906A CN 105772906 A CN105772906 A CN 105772906A CN 201610008871 A CN201610008871 A CN 201610008871A CN 105772906 A CN105772906 A CN 105772906A
Authority
CN
China
Prior art keywords
nitrogen
steel
nitride
arc
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610008871.7A
Other languages
English (en)
Other versions
CN105772906B (zh
Inventor
周琦
孔见
王克鸿
周春东
朱军
彭勇
孙宏宇
蔡雅君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Shuoshi Welding Science & Technology Co Ltd
Original Assignee
Jiangsu Shuoshi Welding Science & Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Shuoshi Welding Science & Technology Co Ltd filed Critical Jiangsu Shuoshi Welding Science & Technology Co Ltd
Priority to CN201610008871.7A priority Critical patent/CN105772906B/zh
Publication of CN105772906A publication Critical patent/CN105772906A/zh
Application granted granted Critical
Publication of CN105772906B publication Critical patent/CN105772906B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/042Built-up welding on planar surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

本发明涉及材料表面处理领域,具体为一种采用氮弧原位冶金预铺设氮化物实现钢表面增氮的方法,将混合好的氮化物合金粉末铺设在待处理的钢母材表面上,然后用氮弧加热熔化氮化物合金粉末与部分母材,通过电弧的电磁搅拌和焊枪的摆动对熔池进行搅拌,使氮化物合金粉末中的合金元素与熔化的母材充分熔炼混合,熔池冷却凝固即可在钢表面形成高氮钢层。本发明制备高氮钢层的厚度根据需要能达到几毫米甚至厘米级。该高氮钢层可获得超高氮含量,远远大于常规表面增氮处理所能获得的最大含氮量。

Description

一种氮弧原位冶金预铺设氮化物实现钢表面增氮的方法
技术领域
本发明涉及材料表面处理技术,具体为一种利用氮弧原位冶金预铺设氮化物实现钢表面增氮的方法,适用于低碳钢、低合金钢、不锈钢等表面的高强耐蚀化处理。
背景技术
常用表面的增氮方法有气体渗氮和离子渗氮。
气体渗氮可采用一般渗氮法(即等温渗氮)或多段(二段、三段)渗氮法。前者是在整个渗氮过程中渗氮温度和氨气分解率保持不变。温度一般在480~520℃之间,氨气分解率为15~30%,保温时间近80小时。这种工艺适用于渗层浅、畸变要求严、硬度要求高的零件,但处理时间过长。多段渗氮是在整个渗氮过程中按不同阶段分别采用不同温度、不同氨分解率、不同时间进行渗氮和扩散。整个渗氮时间可以缩短到近50小时,能获得较深的渗层,但这样渗氮温度较高,畸变较大。
离子渗氮是利用辉光放电原理进行的。与一般的气体渗氮相比,离子渗氮其特点是:①可适当缩短渗氮周期;②渗氮层脆性小;③可节约能源和氨的消耗量;④对不需要渗氮的部分可屏蔽起来,实现局部渗氮;⑤离子轰击有净化表面作用,能去除工件表面钝化膜,可使不锈钢、耐热钢工件直接渗氮;⑥渗层厚度和组织可以控制。但是其设备控制复杂,炉温的均匀性不好。
综上可知,常用的这两种渗氮方法,渗氮前需要预备热处理调质和预备热处理去应力处理,同时渗氮零件的表面粗糙度Ra应小于1.6um等等限制。渗氮处理工艺的周期长、渗氮层薄、温度控制要求严、对零件的表面预处理要求严格、设备控制复杂。两种气体渗氮方法都需要在密闭的环境中进行,且耗时长,渗氮层薄、增氮量低、增氮层成分不可调。
其他表面处理技术,如传统热喷涂、喷焊以及堆焊也可用于材料表面的增氮处理。表面热喷涂增氮法属于氮化物陶瓷喷涂技术,并不是冶金结合,同时热喷涂法对基材表面的预处理要求比较高,需要进行粗化处理,且对喷涂粉的颗粒直径要求比较高。传统的喷焊技术可以使粉末或焊丝,能够与母材形成冶金结合,但是喷焊层的稀释率高,一般约5%~10%,且需要预热处理,喷焊材料的熔点要求比基体熔点低,同时,在喷焊过程中,喷焊的高氮层的成分不可调。堆焊一般用焊丝,堆焊层成分只能是焊丝成分,堆焊层成分不可设计,即用堆焊方法对钢表面进行增氮处理,所获得的增氮层的成分不可设计。
中国专利(201310398151.2)公开了一种使用高速氧燃料热喷涂和等离子渗氮用于模具补整和修复的方法及系统。所获得的增氮层成分不可设计、厚度薄,且对合金粉末颗粒直径要求严格。中国专利(201110309131.4)涉及一种基于零件再制造修复的反应氮弧熔覆耐磨涂层制备工艺。将调制的浆料涂覆在零件表面烘干后,用氮弧熔敷,浆料中不含氮元素,仅靠氮弧增氮效果不明显,且烘干需要时间,若没有完全烘干可能会引起氢致裂纹。而本发明直接将氮化物合金粉末铺设在待处理的钢表面上,采用氮弧原位冶金,不需要增加烘干工艺,且采用了氮化物和氮弧联合增氮技术,增氮效果明显且耗时短。中国专利(201310650075.X)公开了一种用等离子弧加氮冶炼含氮金属材料的方法,具体为通过真空净化充高压氮气条件用等离子弧加氮熔炼钢坯,而本发明不需要加真空,且增氮量远远超过用等离子弧加氮冶炼含氮金属材料的方法。
发明内容
本发明的目的在于提供了一种氮弧原位冶金预铺设氮化物实现钢表面增氮的方法及其装置,
本发明一种氮弧原位冶金预铺设氮化物实现钢表面增氮的方法及其装置的技术方案为:
一种氮弧原位冶金预铺设氮化物实现钢表面增氮的方法,其包括步骤如下:
步骤1,通过目标高氮钢层的目标合金成分,确定铁元素含量WFe%;选择低碳钢作为母材;
根据高氮钢层的目标合金成分,确定所需的作为铺粉原料的合金粉末中合金元素i的含量Wif%比,经修正关系式Wif修正%≈Wif%×(1+μi+ξ)修正后得到粉末中合金元素i含量的修正值Wif修正%,并配制合金粉末;其中μi为烧损系数,μi=0.2%~5%,ξ为散射飞溅损失系数,ξ=2%~8%;送粉原料的合金粉末中的合金元素不为铁;
步骤2,根据目标高氮钢层中除铁元素之外的合金元素i的含量Wi%与铁元素含量的关系式得到所有合金元素与铁元素的成分比α:β;确定单位面积上合金粉末质量m合金粉末与单位面积上熔入熔池的钢母材质量m铁基材比为α:β;
步骤3,根据m合金粉末:m铁基材=α:β,可得高氮钢层熔合比确定熔入高氮钢层的铁基材的厚度h=B×Ψ,B为目标高氮钢层的厚度;确定合金粉末层厚度Hf,其满足K为合金粉末层熔化凝固成固体块的厚度减少系数,K=0.4-0.9;
步骤4,启动焊接装置,采用焊接电流I和焊接速率v,采用厚度为h的低碳钢母材,厚度为Hf的合金粉末,进行堆焊,最终获得目标厚度的高氮钢层。
进一步的,焊接电流选择I为80A~200A;
焊接速率v,选择v为3mm/min~16mm/min;采用10%Ar+90%N2混合气作为焊接保护气,气流速率为10L/min~35L/min。
为使上述方法能够顺利进行,避免保护气吹散钢表面预铺置的氮化物合金粉末,本发明对非熔化极气体保护焊枪喷嘴结构进行了改进设计。
一非熔化极气体保护焊枪;所述的非熔化极气体保护焊枪喷嘴为半面缺口式结构,所述的缺口背对焊接方向;
所述的非熔化极气体保护焊枪的喷嘴内壁连有限流隔板;所述的限流隔板3由两块上底边重合的梯形板拼合。
所述的喷嘴出口半径r为5-8mm。
所述的梯形板上底为2-5mm,下底为8-10mm。
所述的梯形板上底边距喷嘴距离为30-50mm,梯形板下底距喷嘴口距离为4-8mm。
本发明与现有技术相比具有以下显著优点:
1、本发明提供的方法可以在短时间内实现钢表面增氮并高氮钢化,获得的增氮层厚度可达几毫米甚至厘米级,且增氮层成分可设计;
2、通过外加铁粉和钢基材联合添加铁元素时,调节合金粉末中铁粉的含量可以控制钢基体熔入高氮钢层的厚度。即钢基体熔入高氮钢层的厚度可调;
3、采用带限流隔板的半面缺口式喷嘴,可有效控制保护气流向,避免预铺置的合金粉末被吹散;
4、本发明提供的方法不仅实现了钢表面增氮效果,还可以添加其他有益合金元素,实现钢表面高氮钢化,所获得的增氮层具有良好的高强耐蚀性能。获得的增氮层与钢基体之间是冶金结合,结合强度高。
附图说明
图1为氮弧原位冶金预铺置氮化物实现钢表面增氮的方法的装置结构示意图;
图2(a)为半面缺口式焊接喷嘴的正视截面图;
图2(b)为半面缺口式焊接喷嘴的左视截面图;
图3为焊缝截面图。
其中,1为非熔化极气体保护焊枪,2为非熔化极气体保护焊枪的喷嘴,3为限流隔板。
具体实施方式
下面结合附图和具体实施例对本发明所述的氮弧原位冶金预铺设氮化物实现钢表面增氮的装置和方法作进一步描述。
一非熔化极气体保护焊枪1;所述的非熔化极气体保护焊枪喷嘴为半面缺口式结构,所述的缺口背对焊接方向;
非熔化极气体保护焊枪1的喷嘴2内壁连有限流隔板3;所述的限流隔板3由两块上底边重合的梯形板拼合。
喷嘴2出口半径r为5mm。
梯形板上底为4mm,下底为10mm。
梯形板上底边距喷嘴距离为40mm梯形板下底距喷嘴口距离为5mm。
实施例1
下面结合附图和具体实施例对本发明所述的一种采用氮弧和氮化物复合原位冶金实现钢表面增氮的方法进一步描述。
利用如图1所示的装置,采用氮弧和氮化物原位冶金实现钢表面增氮的方法,在Q235B钢表面获得厚度为2mm的高氮钢层。高氮钢层的目标成分如表1所示。
表1目标高氮钢层的化学成分要求(%)
化学成分 N Mn Cr Mo Si C Fe
标准规范 0.8-2.4 12-18 18-23 1.0-2.5 ≤1 ≤0.1 余量
本发明采用氮弧为氮气氛电弧,包括电弧和等离子弧;先将混合好的氮化物合金粉末铺设在待处理的钢母材表面上,然后用氮弧加热熔炼氮化物合金粉末与部分母材,通过电弧的电磁搅拌和焊枪的摆动对熔池进行搅拌,使氮化物合金粉末中的合金元素与熔化的母材充分熔炼混合,熔池冷却凝固即可在钢表面形成高氮钢层。通过调节氮化物合金粉末中各元素的成分比和添粉量,可获得不同氮含量、不同厚度的高氮钢层。
其增氮原理说明:一方面,氮化物合金粉末与部分钢母材在氮弧中加热熔化,氮弧中的氮进入熔池,提高了熔池中的氮含量,同时氮弧中氮分压较高,可以控制熔池中已熔入氮的逸出;另一方面,氮化物合金粉末中含有大量的氮元素,在氮弧加热过程中也熔入了熔池中,进一步提高了熔池中的含氮量。同时,氮化物合金粉末中配有含有如(Cr、Mn、Mo等)的合金元素,以确保所形成的高氮钢层中氮元素以原子形式存在。
采用本发明所述的采用氮弧和氮化物原位冶金实现钢表面增氮的方法,其具体步骤为:
步骤1,通过目标高氮钢层的目标合金成分,确定铁元素含量WFe%;选择低碳钢作为母材;
根据目标高氮钢制品的目标合金成分,确定所需的作为铺粉原料的氮化物合金粉末中合金元素i的含量Wif%比,经修正关系式Wif修正%≈Wif%×(1+μi+ξ)修正后得到粉末中合金元素i含量的修正值Wif修正%,并配制氮化物合金粉末;其中μi为烧损系数,μi=0.2%~5%,ξ为散射飞溅损失系数,ξ=2%~8%;
氮化物合金粉末原料包括:氮化铬粉末、氮化锰粉末、铬粉、金属锰粉、钼粉等。当粉末按CrN:MnN:Cr:Mn:Mo=4:4:18.85:11.8:1.5时,满足高氮钢层目标成分含量比。根据修正关系式Wif修正%≈Wif%×(1+μi+ξ),修正得到原料粉末的配方为:CrN:MnN:Cr:Mn:Mo=4:4:19:12:1.5时,与钢基材配合熔炼可以使Q235B钢表面获得高氮钢层,且高氮钢层的成分为N:1.66%,Mn:15%,Cr:22%,Mo:1.5%,余量为铁。
步骤2,根据目标高氮钢中除铁元素之外的合金元素i的含量Wi%与铁元素含量的关系式得到所有合金元素与铁元素的成分比α:β≈2:3;确定送入熔池的合金粉末质量m合金粉末与铁粉的质量m铁粉比为2:3。
步骤3,根据m合金粉末:m铁基材=2:3,可得熔合比确定熔入高氮钢层的铁基材的厚度h=B×Ψ≈1.2mm;经多次实验测量计算得出对于同种成分来说,K取值相同,可确定确定合金粉末层厚度在Q235B钢表面上均匀铺置2.5mm厚的氮化物合金粉末。
步骤4,选取合适的焊接电流I,I一般取80A~200A;选取合适的焊接速度v,v一般取3mm/min~16mm/min;选择10%Ar+N2混合气作为焊接保护气,一般取10L/min~35L/min;启动本发明的焊接装置进行工艺参数调试,调节焊接电流和焊接速度,使熔入高氮钢层的母材钢基材厚度为h,获得最佳工艺参数I0为120A和v0为8mm/min。
步骤5,启动本发明的焊接装置,以焊接电流I0=120A和焊接速率v0=8mm/min为焊接参数原位冶金钢表面的氮化物合金粉末,摆动焊枪使电弧搅拌熔池,最终在母材表面上获得厚度为2mm的高氮钢层。

Claims (9)

1.一种氮弧原位冶金预铺设氮化物实现钢表面增氮的方法,其特征在于,包括步骤如下:
步骤1,根据目标高氮钢层中的合金成分,得到合金元素i与铁元素的成分比α:β;确定单位面积上熔入熔池的作为铺粉原料的合金粉末质量m合金粉末与单位面积上熔入熔池的母材质量m铁基材比为α:β;
步骤2,根据m合金粉末:m铁基材=α:β,得出高氮钢层的熔合比
步骤3,根据公式h=B×Ψ,确定熔入高氮钢层的铁基材的厚度h,其中,B为目标高氮钢层的厚度,Ψ为高氮钢层的熔合比;
根据公式确定合金粉末层厚度Hf,其中,K为合金粉末层熔化凝固成固体块的厚度减少系数;
步骤4,启动焊接装置,采用焊接电流I和焊接速率v,以厚度为h的铁基材为母材,对厚度为Hf的氮化物合金粉末进行的堆焊,获得目标厚度的高氮钢层。
2.如权利要求1所述的氮弧原位冶金预铺设氮化物实现钢表面增氮的方法,其特征在于,所述的焊接电流I为80A~200A。
3.如权利要求1所述的氮弧原位冶金预铺设氮化物实现钢表面增氮的方法,其特征在于,焊接速率v为3mm/min~16mm/min。
4.如权利要求1所述的氮弧原位冶金预铺设氮化物实现钢表面增氮的方法,焊接过程中采用10%Ar+9010%N2混合气作为焊接保护气,其气流速率为10L/min~35L/min。
5.如权利要求1所述的氮弧原位冶金预铺设氮化物实现钢表面增氮的方法,其特征在于,步骤1中,选择低碳钢作为母材。
6.如权利要求1所述的氮弧原位冶金预铺设氮化物实现钢表面增氮的方法,其特征在于,所述的作为铺粉原料的合金粉末,根据目标高氮钢层中的合金元素i的含量Wif%比确定。
7.如权利要求1所述的氮弧原位冶金预铺设氮化物实现钢表面增氮的方法,其特征在于,其特征在于,所述的合金元素i的含量Wif%,经修正关系式Wif修正%≈Wif%×(1+μi+ξ)修正;其中Wif修正%为修正值,μi为烧损系数,μi=0.2%~5%,ξ为散射飞溅损失系数,ξ=2%~8%。
8.如权利要求1所述的氮弧原位冶金预铺设氮化物实现钢表面增氮的方法,其特征在于,其特征在于,步骤3中,K=0.4-0.9。
9.如权利要求1所述的氮弧原位冶金预铺设氮化物实现钢表面增氮的方法,其特征在于所述的合金元素i不含铁元素。
CN201610008871.7A 2016-01-06 2016-01-06 一种氮弧原位冶金预铺设氮化物实现钢表面增氮的方法 Active CN105772906B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610008871.7A CN105772906B (zh) 2016-01-06 2016-01-06 一种氮弧原位冶金预铺设氮化物实现钢表面增氮的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610008871.7A CN105772906B (zh) 2016-01-06 2016-01-06 一种氮弧原位冶金预铺设氮化物实现钢表面增氮的方法

Publications (2)

Publication Number Publication Date
CN105772906A true CN105772906A (zh) 2016-07-20
CN105772906B CN105772906B (zh) 2018-05-01

Family

ID=56390428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610008871.7A Active CN105772906B (zh) 2016-01-06 2016-01-06 一种氮弧原位冶金预铺设氮化物实现钢表面增氮的方法

Country Status (1)

Country Link
CN (1) CN105772906B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284988A (ja) * 1994-04-20 1995-10-31 Nippon Steel Corp 高窒素オーステナイト・ステンレス鋼用被覆アーク溶接棒
CN101590558A (zh) * 2009-07-03 2009-12-02 河北农业大学 反应氮弧堆焊碳氮化钛增强钛基复合涂层制备方法
CN103042338A (zh) * 2011-10-12 2013-04-17 河北农业大学 一种基于零件再制造修复的反应氮弧熔覆耐磨涂层制备工艺
CN103949751A (zh) * 2014-04-25 2014-07-30 佳木斯大学 一种氮强化铁基耐磨涂层的堆焊方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284988A (ja) * 1994-04-20 1995-10-31 Nippon Steel Corp 高窒素オーステナイト・ステンレス鋼用被覆アーク溶接棒
CN101590558A (zh) * 2009-07-03 2009-12-02 河北农业大学 反应氮弧堆焊碳氮化钛增强钛基复合涂层制备方法
CN103042338A (zh) * 2011-10-12 2013-04-17 河北农业大学 一种基于零件再制造修复的反应氮弧熔覆耐磨涂层制备工艺
CN103949751A (zh) * 2014-04-25 2014-07-30 佳木斯大学 一种氮强化铁基耐磨涂层的堆焊方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李劲松: "钨极氮弧堆焊TiCN/金属复合涂层研究", 《中国优秀硕士学位论文全文数据库(电子期刊)工程科技I辑》 *

Also Published As

Publication number Publication date
CN105772906B (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
US6843866B2 (en) Process for producing wear-resistant surface layers
US9982332B2 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
US20130045334A1 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
CN111065486A (zh) 激光焊接一个或多个可模压淬火钢钢板的方法和装置
CN111549340A (zh) 一种高硬度激光熔覆用合金粉末及无缺陷熔覆层制备方法
CN105522253B (zh) 一种氮弧原位冶金预铺设氮化物实现钢表面增氮的装置
CN112941503A (zh) 一种提高h13钢硬度的方法
CN110587078A (zh) 一种多元活化氮弧焊接过程中的固氮装置及方法
JP5454132B2 (ja) 表層溶融処理方法および表層改質鋼鋳片、加工製品
CN205362955U (zh) 一种氮弧原位冶金预铺设氮化物实现钢表面增氮的装置
CN205368498U (zh) 一种采用氮弧和氮化物原位冶金实现钢表面增氮的装置
CN105772906A (zh) 一种氮弧原位冶金预铺设氮化物实现钢表面增氮的方法
CN112626423A (zh) 一种提高稀土高强钢焊接性能的生产工艺
Baek et al. A Study on Micro-Structure and Wear Behavior of AISI M4 and CPM15V Deposited by Laser Melting
KR940008938B1 (ko) 표면개질 금속부재의 제조방법
CN105525289B (zh) 一种采用氮弧和氮化物原位冶金实现钢表面增氮的装置
JP7432842B2 (ja) 部分複合化鉄鋼材及びその製造方法
WO2014105239A1 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
CN105728979A (zh) 焊丝及其制备、应用该焊丝强化热作模具材料表面的方法
JPH06256858A (ja) 熱延鋼板の冷却方法
JP4325326B2 (ja) 高張力鋼板の製造方法
CN105603355B (zh) 一种采用氮弧和氮化物原位冶金实现钢表面增氮的方法
CN107723414A (zh) 一种钒铁冶炼脱硫方法
CN113684426B (zh) 一种高钨钢及其制备方法
JPH09201688A (ja) 溶接部の強度に優れた溶接鋼管の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant