CN105755440A - 一种耐海水腐蚀的硬质涂层及其制备方法 - Google Patents

一种耐海水腐蚀的硬质涂层及其制备方法 Download PDF

Info

Publication number
CN105755440A
CN105755440A CN201610248075.0A CN201610248075A CN105755440A CN 105755440 A CN105755440 A CN 105755440A CN 201610248075 A CN201610248075 A CN 201610248075A CN 105755440 A CN105755440 A CN 105755440A
Authority
CN
China
Prior art keywords
hard coating
coating
seawater corrosion
substrate
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610248075.0A
Other languages
English (en)
Other versions
CN105755440B (zh
Inventor
黄峰
徐相英
李朋
谷文翠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201610248075.0A priority Critical patent/CN105755440B/zh
Publication of CN105755440A publication Critical patent/CN105755440A/zh
Application granted granted Critical
Publication of CN105755440B publication Critical patent/CN105755440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/067Borides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种耐海水腐蚀的硬质涂层,组成为Ti100?xBx,其中,x=50~60,x为原子比率;所述硬质涂层为非晶结构,涂层致密,密度为4.6~5.1g/cm3。本发明还公开了该硬质涂层的制备方法,采用磁控溅射法,通过对工艺参数的精确调控,获得了具有上述特殊结构的硬质涂层。该硬质涂层具有极佳的耐海水腐蚀性,还具有较佳的韧性及硬度,可以用来增强海洋装备中各受力部件表面的耐腐能力,并延长各部件的使用寿命。

Description

一种耐海水腐蚀的硬质涂层及其制备方法
技术领域
本发明涉及陶瓷涂层领域,具体涉及一种耐海水腐蚀的硬质涂层及其制备方法。
背景技术
海洋约覆盖了71%的地球表面,航海和海洋产业已经成为当今世界经济发展的重要支柱,如海洋运输占全球贸易运力的90%,各种海洋油气钻井平台,新能源海上风力发电等。但海水的腐蚀常使各种基础设施和工业设备破坏和报废。据统计,各国每年由于腐蚀造成的损失约为各国GDP的3%~5%,每年因腐蚀而产生的损失高达2.6~5万亿元。尤其海洋装备中各受力部件因应力和海水双重作用下造成的腐蚀更为严重。陶瓷由于具有高的化学稳定性,耐海水、耐酸碱、耐大气腐蚀性能极好以及良好的机械性能,将其涂覆在工件表面形成陶瓷涂层,一方面可隔绝腐蚀性介质直接渗透、扩散到工件表面,增强工件表面的耐腐性,另一方面可强化工件表面,提高工件表面海水环境下的耐磨、耐刮擦能力。该类涂层典型的代表有Al2O3、ZrO2、CrN、TiN等。
目前,制备陶瓷涂层的方法有热喷涂,物理气相沉积(PVD),化学气相沉积(CVD),激光熔融覆等众多方法。其中物理气相沉积中的磁控溅射法由于其工艺简单,不需要较高的沉积温度,且制备的涂层附着力强,是目前制备陶瓷涂层比较常见的方法。但利用该方法制备的涂层大多为柱状晶生长结构,柱状晶之间或多或少的存在一些贯穿性空隙,腐蚀介质会通过这些贯穿性空隙到达基体,随着时间的延长最终因腐蚀基体而导致涂层失效。英国谢菲尔大学Sugumaran小组通过减少TiN柱状晶之间的贯穿性空隙,显著提高了涂层的耐腐蚀能力{Effectofthedegreeofhighpowerimpulsemagnetronsputtering(HIPIMS)utilisationonthecorrosionpropertiesofTiNfilms,Sugumaran,Purandareetal,SocietyofVacuumCoaters-56thAnnualTechnicalConferenceProceedings,2013,423-432}。目前,现有技术公开报道减少或消除这些贯穿性空隙的方法大致分为以下几种:
一、通过增加涂层的厚度来减少这些贯穿性空隙存在的几率,提高涂层的耐腐蚀能力。印度Menghani研究小组发现增加ZrN涂层的厚度,涂层耐NH2SO4腐蚀的能力增强{CorrosionandwearbehaviorofZrNthinfilms,Menghani,Totlanietal,ProceedingsoftheWorldCongressonEngineering,2010,1-4}。
二、通过制备多层或叠层结构,利用界面来消除贯穿性空隙的存在,提高涂层的耐腐蚀能力。中国科学院宁波材料技术与工程研究所的冒守栋博士通过制备了Al/Al2O3叠层结构,显著提高了涂层的耐腐能力{CorrosionbehaviourofsinteredNdFeBcoatedwithAl/Al2O3multilayersbymagnetronsputtering,Mao,YangetalAppliedSurfaceScience,2011,3980-3984}。
三、通过制备非晶的陶瓷结构来消除柱状晶结构,从而减少或消除贯穿性空隙,提高涂层的耐腐能力。
但研究发现,当陶瓷涂层形成非晶结构后,涂层的硬度和韧性都会降低,硬度降低导致涂层耐刮擦能力不足;韧性降低导致涂层耐冲击能力减弱,冲击过程中涂层一旦产生裂纹,裂纹就会贯穿到底,影响涂层的耐腐性能。
发明内容
本发明通过磁控溅射法制备出一种具有非晶结构且耐海水腐蚀的硬质涂层,该硬质涂层还具有较佳的韧性及硬度,可以用来增强海洋装备中各受力部件表面的耐腐能力,并延长各部件的使用寿命。
本发明公开了一种耐海水腐蚀的硬质涂层,所述硬质涂层的组成为Ti100-xBx,其中,x=50~60,x为原子比率;
所述硬质涂层为非晶结构,涂层致密,密度为4.6~5.1g/cm3
该硬质涂层从其截面形貌上看,涂层不存在柱状晶且没有微空隙存在,涂层均匀致密。进一步优选,密度为4.8~5.0g/cm3
作为优选,所述硬质涂层的表面平整,表面粗糙度Ra≤25nm;进一步优选,表面粗糙度Ra≤10nm。
作为优选,所述硬质涂层的塑性指数为0.45~0.63,硬度为25~30GPa。
作为优选,所述硬质涂层的电阻率为2×10-4~5×10-3Ω.cm。
作为优选,所述硬质涂层的厚度为1~10μm。
本发明还公开了上述的耐海水腐蚀硬质涂层的制备方法,为气相沉积法,进一步地选择物理气相磁控溅射法沉积,步骤如下:
(1)基体清洗;
(2)连接电源,将靶材与中频脉冲电源和/或射频电源相连;
(3)涂层沉积,当腔室真空度小于10-5Pa,冲入Ar气并调节溅射气压为0.3~0.7Pa,之后调整靶材的功率密度4.5W/cm2~5.5W/cm2,开启样品挡板,对基体的至少一个主表面进行沉积,得到所述的Ti1-xBx涂层。
作为优选,步骤(1)中,所述的基体清洗为常规化学清洗和/或等离子体辉光刻蚀清洗:
化学清洗:将基体或工件依次放入浓度为30%~60%去污粉溶液,饱和Na2CO3溶液、丙酮、无水乙醇、去离子水中各超声清洗10~20min,然后在温度为80℃~100℃的干燥箱里鼓风干燥1~2h,或采用纯度为99.99%的高纯N2吹干。
等离子体辉光刻蚀清洗:将化学清洗后的基板放入真空室中可旋转的样品台上。当真空低于10-3Pa以后,通入Ar气并维持气压在0.5Pa~2Pa,然后开启电源并同时给基板施加负偏压,利用氩气产生的等离子体对基底刻蚀10~20min,使得基底表面附着的水分子、气体分子或者微尘颗粒被完全轰击掉。
作为优选,步骤(3)中,所述的靶材为一系列不同组分的Ti100-xBx靶材,其中x=50~60。
作为优选,步骤(3)中,在沉积过程中,对基体进行了加热,温度为30(室温)~350℃。
作为优选,步骤(3)中,在沉积过程中,对基体施加了负偏压和/或接地处理。
采用了中频电源和/或射频电源进行启辉时,同样的靶功率密度下,产生的等离子能量和数量明显强于传统的直流电源起辉。通过调节二者的比例,能较好的控制等离子的数量和能量(能量范围40eV~200eV)。这些等离子在成膜时会对基底进行适量的轰击。通过控制电源输出来控制等离子体轰击的数量和能量,从而使该硬质钛硼涂层的柱状晶被打断,涂层变得极为致密。
进一步优选,所述硬质涂层的沉积过程中,基体加热200℃~350℃,对基体施加的负偏压为-10~-20V,同时控制溅射气压为0.3~0.7Pa,功率密度4.5W/cm2~5.0W/cm2,可以制备得到涂层致密、耐腐蚀性能优异的、具有非晶结构的硬质涂层。
对该硬质涂层进行结构表征及耐海水腐蚀性能测试,具体说明如下:
涂层结构的表征:利用FEIQuantaTM250FEG的EDS功能测量涂层的成分组成,其配置EDAXSi(Li)探头,通过ZAF校准,每个样品选定一个面积不小于40mm2区域,测量其成分的平均值。
涂层密度测量:采用在规则的基体上沉积3~5μm厚的涂层,通过计算涂层的体积和称量涂层的质量,根据密度计算公式质量除以体积计算而得到。
采用德国BrukerD8AdvanceX射线衍射仪(XRD),利用CuKα射线入射,θ/θ模式,X射线管控制在40kV和40mA,测量各涂层的晶体结构,利用镍滤波装置过滤掉Kβ射线,设置探测角2θ为20°~70°,步长设定为0.01°。
采用日立-S4800扫描电镜(SEM,发射枪电压4KV)对该耐海水腐蚀涂层的截面形貌特征进行观察;利用FEITecnai透射电子显微镜(TEM)在更小的尺度下对该涂层的截面形貌特征进行更高分辨率的观察。
涂层的硬度测量在MTSNANOG200纳米压痕仪上进行。其中硬度测试采用Berkovich金刚石压头,为了消除基片效应和表面粗糙度的影响,最大压入深度设为150nm(约为膜厚的1/10),载荷随压入深度而改变,每个样品测量10个矩阵点后取平均值。根据得到的塑性形变和弹性形变,利用公式(1)计算塑性指数。
δ H = ϵ p ϵ = 1 - ϵ e ϵ - - - ( 1 )
其中,δH为塑性指数,εp为塑性形变,εe为弹性形变,ε=εpe。塑性指数越高,表明涂层变形能力越强,间接表明涂层韧性较好。
利用电化学工作站(Modulab,Solartron,USA)对涂层的耐海水腐蚀行为进行测试。测试模式为三电极体系标准极化曲线测试,腐蚀介质为3.5wt%NaCl溶液,参比电极为饱和甘汞电极,测试面积为1cm2,测试电位范围为-1.0~1.0V,电位扫描速率为1mV.s-1
采用美国翁开尔公司Q-FOGCCT1100设备对该涂层的耐盐雾能力进行测试,其中盐雾浓度为5wt%,温度为35℃,湿度为60%。
与现有技术相比,本发明具有如下优点:
(1)本发明公开了一种具有非晶结构的耐海水腐蚀的硬质陶瓷涂层,该涂层结构致密,硬度可达30GPa,塑性指数.5;
(2)该涂层具有极佳的耐海水腐蚀性,在质量分数为3.5%NaCl溶液中,极化测试腐蚀电流4.45×10-10A/cm2,较304不锈钢的耐海水腐蚀能力提高了1000倍;
(3)该涂层制备艺简单,便于工业化生产,可以增强海洋装备中各受力部件表面的耐腐能力。
附图说明
图1为本发明耐海水腐蚀硬质涂层的XRD谱图,其中(a)为实施例1,(b)为对比例;
图2为本发明耐海水腐蚀硬质涂层不同尺度下的显微照片图,(a)对比例的SEM图,(b)实施例1的SEM图,(c)实施例1的TEM图,(d)实施例1的高分辨TEM图;
图3为实施例1制备的耐海水腐蚀硬质涂层的纳米压痕加载卸载曲线图;
图4为本发明耐海水腐蚀硬质涂层在3.5wt%NaCl溶液中的极化曲线图(a)实施例1,(b)对比例,(c)304不锈钢。
具体实施方式
对比例
选用抛光后的304不锈钢为基体,首先对其进行清洗,依次放入浓度为40%去污粉溶液,饱和Na2CO3溶液、丙酮、无水乙醇、去离子水中各超声清洗15min,然后在温度为100℃的干燥箱里鼓风干燥2h。将清洗好的基体,装入真空室中可旋转的样品台上,利用等离子体辉光对其刻蚀清洗10min。当腔室真空度小于1×10-5Pa,冲入Ar气并调节溅射气压为0.5Pa,选用组成为Ti35B65的靶材,调整靶材的功率密度为3.7W/cm2,之后开启挡板,对基体的主表面进行沉积100min,得到组成为Ti100-xBx,X=65的硬质涂层。涂层厚度1.5μm。如图1(b)XRD图谱所示该涂层为六方晶体结构。涂层较为致密,密度为4.6g/cm3。涂层的电阻率为5×10-3Ω.cm;表面粗糙度为Ra≦25nm。图2(a)涂层SEM截面形貌观察,涂层存在明显的柱状晶。经公式(1)计算塑性指数为0.63,涂层硬度为25GPa。耐腐测试结果如附图4(b)所示,腐蚀电流密度到1.55×10-7A/cm2,较附图4(c)所示的304不锈钢的腐蚀电流密度1.99×10-6A/cm2降低了1个数量级;盐雾测试表明,耐700h盐雾涂层出现了明显的腐蚀坑道。
实施例1
选用抛光后的304不锈钢为基体,首先对其进行清洗,依次放入浓度为60%去污粉溶液,饱和Na2CO3溶液、丙酮、无水乙醇、去离子水中各超声清洗20min,然后在温度为100℃的干燥箱里鼓风干燥2h。将清洗好的基体,装入真空室中可旋转的样品台上,利用等离子体辉光对其刻蚀清洗15min。当腔室真空度小于1×10-5Pa,冲入Ar气并调节溅射气压为0.7Pa,选用组成为Ti45B55的靶材,调整靶材的功率密度为4.5W/cm2,并对基体施加-20V的偏压和加热200℃,之后开启挡板,对基体的主表面进行沉积200min,得到组成为Ti100-xBx,X=55的硬质涂层。涂层厚度4μm。如图1(a)XRD图谱所示,该涂层为非晶结构。涂层非常致密,密度为5.1g/cm3。涂层的电阻率为2×10-4Ω.cm;表面粗糙度为Ra≦10nm。图2(b)涂层SEM截面形貌观察,涂层不存在柱状晶。进一步在更小的尺度下观察,如图2(c)TEM所示,该涂层沿生长方向非常致密,不存在微空隙,其高分辨TEM图2(d)所示该涂层分布非常均匀。从图3所示的该涂层的加载卸载曲线上可以看出,该涂层具有较好的塑性变形能力,经公式(1)计算塑性指数为0.48,涂层硬度为30GPa。耐腐测试如附图4(a)所示,腐蚀电流密度到4.45×10-10A/cm2,较对比例制备涂层的腐蚀电流密度降低了3个数量级;盐雾测试表明,耐1200h盐雾涂层表明仍然光亮,未出现明显的腐蚀坑道。
实施例2
选用抛光后的304不锈钢为基体,首先对其进行清洗,依次放入浓度为30%去污粉溶液,饱和Na2CO3溶液、丙酮、无水乙醇、去离子水中各超声清洗10min,然后在温度为100℃的干燥箱里鼓风干燥2h。将清洗好的基体,装入真空室中可旋转的样品台上,利用等离子体辉光对其刻蚀清洗20min。当腔室真空度小于1×10-5Pa,冲入Ar气并调节溅射气压为0.3Pa,选用组成为Ti50B50的靶材,调整靶材的功率密度为5.5W/cm2,并对基体进行了接地处理和加热100℃,之后开启挡板,对基体的主表面进行沉积120min,得到的组成为Ti100-xBx硬质涂层,X=50。涂层厚度2μm。该涂层为非晶结构。涂层致密,密度为4.8g/cm3。涂层的电阻率为8.5×10-4Ω.cm;表面粗糙度为Ra≦25nm。涂层不存在柱状晶。经公式(1)计算塑性指数为0.43,涂层硬度为25GPa。耐腐测试表明,腐蚀电流密度到5.83×10-8A/cm2,较对比例制备涂层的腐蚀电流密度降低了1个数量级;盐雾测试表明,耐1000h盐雾涂层出现了腐蚀坑道。
实施例3
选用抛光后的304不锈钢为基体,首先对其进行清洗,依次放入浓度为30%去污粉溶液,饱和Na2CO3溶液、丙酮、无水乙醇、去离子水中各超声清洗15min,然后在温度为100℃的干燥箱里鼓风干燥2h。将清洗好的基体,装入真空室中可旋转的样品台上,利用等离子体辉光对其刻蚀清洗20min。当腔室真空度小于1×10-5Pa,冲入Ar气并调节溅射气压为0.3Pa,选用组成为Ti42B58的靶材,调整靶材的功率密度为5.0W/cm2,并对基体进行了-10V的偏压和加热150℃,之后开启挡板,对基体的主表面进行沉积300min,得到组成为Ti100-xBx,X=58的硬质涂层。涂层厚度5μm。表面粗糙度为Ra≦13nm。该涂层为非晶结构。涂层致密,密度为5.1g/cm3。涂层的电阻率为3.3×10-3Ω.cm;涂层不存在柱状晶。经公式(1)计算塑性指数为0.55,涂层硬度为28GPa。耐腐测试表明,腐蚀电流密度到5.83×10-9A/cm2,较对比例制备涂层的腐蚀电流密度降低了2个数量级;盐雾测试表明,耐1000h盐雾涂层未出现明显的腐蚀坑道。
实施例4
选用抛光后的304不锈钢为基体,首先对其进行清洗,依次放入浓度为30%去污粉溶液,饱和Na2CO3溶液、丙酮、无水乙醇、去离子水中各超声清洗15min,然后在温度为100℃的干燥箱里鼓风干燥2h。将清洗好的基体,装入真空室中可旋转的样品台上,利用等离子体辉光对其刻蚀清洗20min。当腔室真空度小于1×10-5Pa,冲入Ar气并调节溅射气压为0.3Pa,选用组成为Ti40B60的靶材,调整靶材的功率密度为4.8W/cm2,并对基体进行了-20V的偏压和加热350℃,之后开启挡板,对基体的主表面进行沉积500min,得到组成为Ti100-xBx,X=60的硬质涂层。涂层厚度10μm。表面粗糙度为Ra≦17nm。该涂层为非晶结构。涂层非常致密,密度为5.0g/cm3。涂层的电阻率为4.6×10-4Ω.cm;涂层不存在柱状晶。经公式(1)计算塑性指数为0.45,涂层硬度为30GPa。耐腐测试表明,腐蚀电流密度到5.83×10-10A/cm2,较对比例制备涂层的腐蚀电流密度降低了3个数量级;盐雾测试表明,耐1200h盐雾涂层未出现明显的腐蚀坑道。

Claims (9)

1.一种耐海水腐蚀的硬质涂层,其特征在于,所述硬质涂层的组成为Ti100-xBx,其中,x=50~60,x为原子比率;
所述硬质涂层为非晶结构,涂层致密,密度为4.6~5.1g/cm3
2.根据权利要求1所述的耐海水腐蚀的硬质涂层,其特征在于,所述硬质涂层的表面粗糙度Ra≤25nm。
3.根据权利要求1所述的耐海水腐蚀的硬质涂层,其特征在于,所述硬质涂层的塑性指数为0.45~0.63,硬度为25~30GPa。
4.根据权利要求1所述的耐海水腐蚀的硬质涂层,其特征在于,所述硬质涂层的电阻率为2×10-4~5×10-3Ω.cm。
5.根据权利要求1所述的耐海水腐蚀的硬质涂层,其特征在于,所述硬质涂层的厚度为1~10μm。
6.一种根据权利要求1~5任一权利要求所述的耐海水腐蚀的硬质涂层的制备方法,其特征在于,采用气相法沉积。
7.根据权利要求6所述的耐海水腐蚀的硬质涂层的制备方法,其特征在于,采用物理气相磁控溅射法沉积,步骤如下:
(1)基体清洗;
(2)连接电源,将靶材与中频脉冲电源和/或射频电源相连;
(3)涂层沉积,当腔室真空度小于10-5Pa,冲入Ar气并调节溅射气压为0.3~0.7Pa,之后调整靶材的功率密度为4.5W/cm2~5.5W/cm2,开启样品挡板,对基体至少一个主表面进行沉积,得到所述的Ti1-xBx涂层。
8.根据权利要求7所述的耐海水腐蚀的硬质涂层的制备方法,其特征在于,步骤(1)中,所述的基体清洗为常规化学清洗和/或等离子体辉光刻蚀清洗。
9.根据权利要求7所述的耐海水腐蚀的硬质涂层的制备方法,其特征在于,步骤(3)中,所述的靶材为Ti100-xBx靶材,其中x=50~60。
CN201610248075.0A 2016-04-19 2016-04-19 一种耐海水腐蚀的硬质涂层及其制备方法 Active CN105755440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610248075.0A CN105755440B (zh) 2016-04-19 2016-04-19 一种耐海水腐蚀的硬质涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610248075.0A CN105755440B (zh) 2016-04-19 2016-04-19 一种耐海水腐蚀的硬质涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN105755440A true CN105755440A (zh) 2016-07-13
CN105755440B CN105755440B (zh) 2019-04-02

Family

ID=56325376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610248075.0A Active CN105755440B (zh) 2016-04-19 2016-04-19 一种耐海水腐蚀的硬质涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN105755440B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913771A (zh) * 2019-04-02 2019-06-21 中国科学院宁波材料技术与工程研究所 一种VAlTiCrSi高熵合金薄膜及其在海水环境下的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311398A (ja) * 1992-05-13 1993-11-22 Nippon Steel Corp 耐食性セラミック被覆物
JP2003336751A (ja) * 2002-05-17 2003-11-28 Sumitomo Electric Ind Ltd アルミナセラミックス弁体およびそれを用いた温水栓バルブ
CN105441870A (zh) * 2014-08-18 2016-03-30 中国科学院宁波材料技术与工程研究所 一种高硬度、低摩擦系数、低磨损率的固体自润滑涂层
CN105492652A (zh) * 2013-07-03 2016-04-13 欧瑞康表面处理解决方案股份公司特鲁巴赫 TiB2层及其制造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311398A (ja) * 1992-05-13 1993-11-22 Nippon Steel Corp 耐食性セラミック被覆物
JP2003336751A (ja) * 2002-05-17 2003-11-28 Sumitomo Electric Ind Ltd アルミナセラミックス弁体およびそれを用いた温水栓バルブ
CN105492652A (zh) * 2013-07-03 2016-04-13 欧瑞康表面处理解决方案股份公司特鲁巴赫 TiB2层及其制造
CN105441870A (zh) * 2014-08-18 2016-03-30 中国科学院宁波材料技术与工程研究所 一种高硬度、低摩擦系数、低磨损率的固体自润滑涂层

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAAKI NAKA ET AL.: ""Formation of Corrosion Resistant Amorphous Ti-B Alloys"", 《TRANS. JWRI》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913771A (zh) * 2019-04-02 2019-06-21 中国科学院宁波材料技术与工程研究所 一种VAlTiCrSi高熵合金薄膜及其在海水环境下的应用

Also Published As

Publication number Publication date
CN105755440B (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
Boryło et al. Structure and properties of Al2O3 thin films deposited by ALD process
Wei Development of new technologies and practical applications of plasma immersion ion deposition (PIID)
Abd El-Rahman et al. Effect of ion bombardment on structural, mechanical, erosion and corrosion properties of Ti–Si–C–N nanocomposite coatings
Vlasveld et al. Characterisation and performance of partially filtered arc TiAlN coatings
Zalnezhad et al. Optimizing the PVD TiN thin film coating’s parameters on aerospace AL7075-T6 alloy for higher coating hardness and adhesion with better tribological properties of the coating surface
Purandare et al. CrN/NbN coatings deposited by HIPIMS: A preliminary study of erosion–corrosion performance
Barshilia et al. Reactive sputtering of hard nitride coatings using asymmetric-bipolar pulsed DC generator
US10577686B2 (en) Corrosion resistant and low embrittlement aluminum alloy coatings on steel by magnetron sputtering
Yoon et al. Comparison for mechanical properties between TiN and TiAlN coating layers by AIP technique
Chen et al. Improved hardness and corrosion resistance of iron by Ti/TiN multilayer coating and plasma nitriding duplex treatment
Bakhsheshi-Rad et al. Corrosion and mechanical performance of double-layered nano-Al/PCL coating on Mg–Ca–Bi alloy
CN105463391B (zh) 一种纳米晶ZrB2超硬涂层及制备方法
CN110306148B (zh) 联合采用热喷涂和电子束重熔技术制备铝基非晶层的方法
Peng et al. Unlocking the cavitation erosion-corrosion resistance of a TiCN nanocrystalline coating with an equiaxed grain structure
CN109338303B (zh) 一种用于锆合金防护的非晶与纳米晶复合涂层及其制备方法
Huang et al. Investigation on the failure mechanism of graphite-like carbon coatings under cavitation erosion in distilled water
Lou et al. Hybrid high power impulse and radio frequency magnetron sputtering system for TiCrSiN thin film depositions: Plasma characteristics and film properties
RU2608858C2 (ru) Стекло с оптически прозрачным защитным покрытием и способ его изготовления
CN105755440A (zh) 一种耐海水腐蚀的硬质涂层及其制备方法
CN109023283B (zh) 一种具有耐腐蚀性能的四元硬质陶瓷涂层及其制备方法和器件
Singh et al. Magnetron sputtered NbN films with electroplated Cr interlayer
CN106048529B (zh) 一种具有自修复能力的耐腐蚀涂层及其制备方法
Cedeño-Venté et al. Effect of Graded Bias Voltage on the Microstructure of arc-PVD CrN Films and its Response in Electrochemical & Mechanical Behavior
Suresh et al. Structural, nanomechanical and electrochemical properties of TiC and TiN films prepared by pulsed DC magnetron sputtering technique
Wen et al. Salt spray corrosion and electrochemical corrosion characteristics of CAIP and LTPN fabricated AlCrN/NL composite coating

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant