CN105753059B - 一种碳基镁铁氧体复合吸波膜的制备方法 - Google Patents
一种碳基镁铁氧体复合吸波膜的制备方法 Download PDFInfo
- Publication number
- CN105753059B CN105753059B CN201610167630.7A CN201610167630A CN105753059B CN 105753059 B CN105753059 B CN 105753059B CN 201610167630 A CN201610167630 A CN 201610167630A CN 105753059 B CN105753059 B CN 105753059B
- Authority
- CN
- China
- Prior art keywords
- carbon
- preparation
- magnesium ferrite
- nano particle
- absorbing film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/0018—Mixed oxides or hydroxides
- C01G49/0036—Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/13—Nanotubes
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Carbon And Carbon Compounds (AREA)
- Soft Magnetic Materials (AREA)
- Hard Magnetic Materials (AREA)
Abstract
本发明涉及一种碳基镁铁氧体复合吸波膜的制备方法,工业镁粉在滚压振动磨机中研磨3h后置于去离子水中,在常温常压下超声反应5小时,得到白色乳状胶体,将制备的白色乳状胶体恒温干燥后研磨,得到氢氧化镁纳米颗粒;将氯化铁置于去离子水中,加入氢氧化钠溶液调pH值为7,得到氢氧化铁沉淀,经离心,冷冻干燥,研磨、得到氢氧化铁纳米颗粒;将制备的氢氧化镁纳米颗粒和氢氧化铁纳米颗粒按质量比1:2的比例混合,经超声分散,干燥研磨、焙烧,得到镁铁氧体纳米颗粒;再将镁铁氧体纳米颗粒和碳纳米管按质量比混合,经超声分散、抽滤,得到无定型的柔性碳基镁铁氧体复合吸波膜。本发明工艺简单、成本低廉、产品性能优异,环保无污染。
Description
技术领域
本发明涉及一种碳基镁铁氧体复合吸波膜的制备方法,采用超声化学法固相强化、化学共沉淀法和真空抽滤辅助合成制备碳基镁铁氧体复合吸波膜,属于膜制备技术领域。
背景技术
镁铁氧体作为一种优异的吸波材料在膜制备技术领域受到人们更多的关注,然而作为传统意义上的铁氧体吸波材料,具有密度大,居里温度低,高温稳定性差等缺点。碳基纳米材料(如碳纳米管、石墨烯等)具有较强的宽带微波吸收性能、重量轻、导电性可调变、高温抗氧化性能强和稳定性好等优点,因而它是一种有前途的理想微波吸收剂,具有极大的研究潜力。因此将两者结合起来提高吸波能力一直是研究的热点。薄膜结构具有更优异的吸波性能。
目前,传统的铁氧体制膜方法主要包括液相外延、磁控溅射、分子束外延、激光沉淀等。一方面这些改善其吸波性能的方法涉及元素的掺杂使得过程复杂,另一方面需要较高的制备温度并且物理方法需要较高的真空和昂贵的设备,到目前为止还没有一种工艺简单、效率高、成本低、性能优异的碳基镁铁氧体复合吸波膜制备方法问世。
发明内容
本发明公开了一种碳基镁铁氧体复合吸波膜的制备方法,采用超声化学法、固相强化和化学共沉淀法相结合的方法制备镁铁氧体纳米粉体,使用真空抽滤的方法将此纳米粉体与碳基纳米材料复合制备复合吸波膜,有效克服现有技术存在的制备过程复杂、制备温度高、设备昂贵等缺陷。
本发明技术方案是这样实现的:
一种碳基镁铁氧体复合吸波膜的制备方法,利用超声强化、固相合成、真空抽滤方法制备,其特征在于按照如下步骤进行:
A)取定量的工业镁粉,置于滚压振动磨机中研磨3h,将研磨过的镁粉置于去离子水中以40kHz频率,400W功率,在常温常压下超声水解反应5小时,得到白色乳状胶体,将制备的白色乳状胶体恒温干燥后研磨,得到氢氧化镁纳米颗粒;
B)取定量的氯化铁,置于去离子水中,加入氢氧化钠溶液调pH值为7,利用化学沉淀法制备得到氢氧化铁沉淀,经离心,冷冻干燥,研磨、得到氢氧化铁纳米颗粒;
C)将制备得到的氢氧化镁纳米颗粒和氢氧化铁纳米颗粒按质量比1:2的比例混合,超声分散均匀,干燥研磨,然后在800℃下焙烧4h,得到镁铁氧体纳米颗粒;
D)将所述镁铁氧体纳米颗粒和碳纳米管(CNTs)按照质量比15~25:75~85混合,超声分散均匀,然后抽滤,即可得到无定型的柔性碳基镁铁氧体复合吸波膜;
E)步骤C)、D)中所述的超声分散是在超声清洗仪中以40kHz频率,120W功率,在常温常压下超声水解反应0.5小时。
所述碳纳米管纯度>95%,内径3-5nm,外径8-15nm,密度2.1g/cm3,长度50um±10um。
步骤A)、C)中所述干燥是在60℃的干燥箱内干燥,所述研磨是在干燥后用玛瑙研钵研磨。
步骤B)中所述冷冻干燥是在2Pa、-52℃的条件下干燥12h。
所述化学沉淀法要求在低于25℃的低温下进行。
本发明的优点和积极效果:
本发明提供的碳基镁铁氧体复合吸波膜的制备方法,无需昂贵设备,利用超声强化、固相合成,得到纳米级别的镁铁氧体和碳基纳米材料复合,利用真空抽滤装置抽滤制得碳基镁铁氧体复合吸波膜,本发明具有制备工艺简单,成本低廉、生产周期短,节能,环保等优点,制备得到的复合膜,结构优异,磁学性能良好,为碳基镁铁氧体复合吸波膜的制备提供了一种新的途径。
附图说明
图1为【实施例1】制备的碳基镁铁氧体复合吸波膜的XRD衍射图;
图2为【实施例1】制备的复合膜的SEM图。
具体实施方式
以下结合附图和实施例对本发明进行详细说明,但实施例并不用于限制本发明,凡采用本发明的相似方法及其相似变化,均应列入本发明的保护范围。
以下各实施例中所述碳纳米管纯度>95%,内径3-5nm,外径8-15nm,密度2.1g/cm3,长度50um±10um;制备镁铁氧体纳米颗粒及镁铁氧体纳米颗粒和碳纳米管混合过程中所述的的超声分散,是在超声清洗仪中以40kHz频率,120W功率,在常温常压下超声分散0.5小时;制备氢氧化镁纳米颗粒及镁铁氧体纳米颗粒过程中,所述的干燥是在60℃的干燥箱内干燥,所述研磨是在干燥后用玛瑙研钵研磨;制备氢氧化铁纳米颗粒过程中所述的冷冻干燥是在2Pa、-52℃的条件下干燥12h;所述化学沉淀法要求在低于25℃的低温下进行。
【实施例1】
取150g的工业镁粉,置于滚压振动磨机中研磨3h,取研磨过的镁粉5g置于250ml去离子水中,以40kHz频率,400W功率,在常温常压下超声处理5小时得到白色乳状胶体,恒温干燥后研磨得到Mg(OH)2纳米颗粒;采用化学沉淀法以FeCl3·6H2O和NaOH为原料制备Fe(OH)3沉淀,冷冻干燥后得到Fe(OH)3纳米颗粒;按质量比2:1的比例取Mg(OH)2纳米颗粒与Fe(OH)3纳米颗粒混合,常压下超声处理分散均匀,恒温干燥,研磨后在800℃焙烧4h,得到镁铁氧体纳米颗粒。将制得的镁铁氧体和CNTs以质量比15:85的比例置于无水乙醇中超声混合均匀,真空抽滤得到碳基镁铁氧体复合吸波膜。
图1为本【实施例1】中制备得到的碳基镁铁氧体复合吸波膜结构的XRD衍射图,如图1所示在26°和44°处有碳纳米管特征峰。
图2为本【实施例1】所制备得到的复合膜的SEM图。图中可以看到CNTs和镁铁氧体颗粒。
【实施例2】
取150g的工业镁粉,置于滚压振动磨机中研磨3h,取研磨过的镁粉5g置于250ml去离子水中,以40kHz频率,400W功率,在常温常压下超声处理5小时得到白色乳状胶体,恒温干燥后研磨得到Mg(OH)2纳米颗粒;采用化学沉淀法以FeCl3·6H2O和NaOH为原料制备Fe(OH)3沉淀,冷冻干燥后得到Fe(OH)3纳米颗粒;按质量比2:1的比例取Mg(OH)2纳米颗粒与Fe(OH)3纳米颗粒混合,常压下超声处理分散均匀,恒温干燥,研磨后在800℃焙烧4h,得到镁铁氧体纳米颗粒。将制得的镁铁氧体和CNTs以质量比20:80的比例置于无水乙醇中超声混合均匀,真空抽滤得到碳基镁铁氧体复合吸波膜。
【实施例3】
取150g的工业镁粉,置于滚压振动磨机中研磨3h,取研磨过的镁粉5g置于250ml去离子水中,以40kHz频率,400W功率,在常温常压下超声处理5小时得到白色乳状胶体,恒温干燥后研磨得到Mg(OH)2纳米颗粒;采用化学沉淀法以FeCl3·6H2O和NaOH为原料制备Fe(OH)3沉淀,冷冻干燥后得到Fe(OH)3纳米颗粒;按质量比2:1的比例取Mg(OH)2纳米颗粒与Fe(OH)3纳米颗粒混合,常压下超声处理分散均匀,恒温干燥,研磨后在800℃焙烧4h,得到镁铁氧体纳米颗粒。将制得的镁铁氧体和CNTs以质量比25:75的比例置于无水乙醇中超声混合均匀,真空抽滤得到碳基镁铁氧体复合吸波膜。
【实施例4】
取150g的工业镁粉,置于滚压振动磨机中研磨3h,取研磨过的镁粉5g置于250ml去离子水中,以40kHz频率,400W功率,在常温常压下超声处理5小时得到白色乳状胶体,恒温干燥后研磨得到Mg(OH)2纳米颗粒;采用化学沉淀法以FeCl3·6H2O和NaOH为原料制备Fe(OH)3沉淀,冷冻干燥后得到Fe(OH)3纳米颗粒;按质量比2:1的比例取Mg(OH)2纳米颗粒与Fe(OH)3纳米颗粒混合,常压下超声处理分散均匀,恒温干燥,研磨后在800℃焙烧4h,得到镁铁氧体纳米颗粒。将制得的镁铁氧体和CNTs以质量比15:85的比例置于异丙醇中超声混合均匀,真空抽滤得到碳基镁铁氧体复合吸波膜。
Claims (5)
1.一种碳基镁铁氧体复合吸波膜的制备方法,利用超声强化、固相合成、真空抽滤方法制备,其特征在于按照如下步骤进行:
A)取定量的工业镁粉,置于滚压振动磨机中研磨3h,将研磨过的镁粉置于去离子水中以40kHz频率,400W功率,在常温常压下超声水解反应5小时,得到白色乳状胶体,将制备的白色乳状胶体恒温干燥后研磨,得到氢氧化镁纳米颗粒;
B)取定量的氯化铁,置于去离子水中,加入氢氧化钠溶液调pH值为7,利用化学沉淀法制备得到氢氧化铁沉淀,经离心,冷冻干燥,研磨、得到氢氧化铁纳米颗粒;
C)将制备得到的氢氧化镁纳米颗粒和氢氧化铁纳米颗粒按质量比1:2的比例混合,超声分散均匀,干燥研磨,然后在800℃下焙烧4h,得到镁铁氧体纳米颗粒;
D)将所述镁铁氧体纳米颗粒和碳纳米管按照质量比15~25:75~85混合,超声分散均匀,然后抽滤,即可得到无定型的柔性碳基镁铁氧体复合吸波膜:
E)步骤C)、D)中所述的超声分散是在超声清洗仪中以40kHz频率,120W功率,在常温常压下超声水解反应0.5小时。
2.根据权利要求1所述的一种碳基镁铁氧体复合吸波膜的制备方法,其特征在于:所述碳纳米管纯度>95%,内径3-5nm,外径8-15nm,密度2.1g/cm3,长度为50um±10um。
3.根据权利要求1所述的一种碳基镁铁氧体复合吸波膜的制备方法,其特征在于:步骤A)、C)中所述干燥是在60℃的干燥箱内干燥,所述研磨是在干燥后用玛瑙研钵研磨。
4.根据权利要求1所述的一种碳基镁铁氧体复合吸波膜的制备方法,其特征在于:步骤B)中所述冷冻干燥是在2Pa、-52℃的条件下干燥12h。
5.根据权利要求1所述的一种碳基镁铁氧体复合吸波膜的制备方法,其特征在于:所述化学沉淀法要求在低于25℃的低温下进行。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610167630.7A CN105753059B (zh) | 2016-03-23 | 2016-03-23 | 一种碳基镁铁氧体复合吸波膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610167630.7A CN105753059B (zh) | 2016-03-23 | 2016-03-23 | 一种碳基镁铁氧体复合吸波膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105753059A CN105753059A (zh) | 2016-07-13 |
CN105753059B true CN105753059B (zh) | 2018-06-15 |
Family
ID=56346202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610167630.7A Expired - Fee Related CN105753059B (zh) | 2016-03-23 | 2016-03-23 | 一种碳基镁铁氧体复合吸波膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105753059B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109346848B (zh) * | 2018-10-31 | 2021-03-12 | 哈尔滨工业大学 | 一种SiC-铁氧体/碳质材料高温吸波复合材料及其制备方法 |
CN110759755B (zh) * | 2019-11-22 | 2021-01-05 | 天津大学 | 一种沼渣快速堆肥方法及应用 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0757691B2 (ja) * | 1986-09-18 | 1995-06-21 | 太陽誘電株式会社 | プラスチツク又はゴム磁石用磁性粉及びその製造方法 |
CN101800105A (zh) * | 2010-03-25 | 2010-08-11 | 东华大学 | 一种MWCNTs/Co1-xZnxFe2O4磁性纳米复合材料的制备方法 |
CN102107910B (zh) * | 2011-03-23 | 2012-07-11 | 上海理工大学 | 一种纳米铁酸镁的制备方法 |
CN102553595A (zh) * | 2011-12-22 | 2012-07-11 | 南京理工大学 | 一种纳米铁酸盐/碳纳米管复合材料的制备方法 |
CN103420428A (zh) * | 2012-09-28 | 2013-12-04 | 上海理工大学 | 铁酸镁纳米颗粒的制备方法 |
-
2016
- 2016-03-23 CN CN201610167630.7A patent/CN105753059B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN105753059A (zh) | 2016-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guan et al. | Microwave absorption performance of Ni (OH) 2 decorating biomass carbon composites from Jackfruit peel | |
Wang et al. | Design of morphology-controlled and excellent electromagnetic wave absorption performance of sheet-shaped ZnCo2O4 with a special arrangement | |
Dong et al. | Achieving excellent electromagnetic wave absorption capabilities by construction of MnO nanorods on porous carbon composites derived from natural wood via a simple route | |
Zhou et al. | Construction of multiple electromagnetic loss mechanism for enhanced electromagnetic absorption performance of fish scale-derived biomass absorber | |
Wang et al. | Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal-organic frameworks for high-efficiency microwave attenuation | |
Liang et al. | Bamboo-like short carbon fibers@ Fe3O4@ phenolic resin and honeycomb-like short carbon fibers@ Fe3O4@ FeO composites as high-performance electromagnetic wave absorbing materials | |
Cui et al. | Three dimensional porous MXene/CNTs microspheres: Preparation, characterization and microwave absorbing properties | |
Liao et al. | Rational construction of Ti3C2T x/Co-MOF-derived laminated Co/TiO2-C hybrids for enhanced electromagnetic wave absorption | |
Lei et al. | Broadband high-performance electromagnetic wave absorption of Co-doped NiZn ferrite/polyaniline on MXenes | |
Li et al. | Novel two-dimensional Ti3C2Tx/Ni-spheres hybrids with enhanced microwave absorption properties | |
Gao et al. | Tunable microwave absorbing property of La x FeO 3/C by introducing A-site cation deficiency | |
Wang et al. | Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites | |
Zhang et al. | Designable synthesis of reduced graphene oxide modified using CoFe2O4 nanospheres with tunable enhanced microwave absorption performances between the whole X and Ku bands | |
Zhang et al. | Thermal conversion of an Fe 3 O 4@ metal–organic framework: a new method for an efficient Fe–Co/nanoporous carbon microwave absorbing material | |
Wang et al. | An ultralight nitrogen-doped carbon aerogel anchored by Ni-NiO nanoparticles for enhanced microwave adsorption performance | |
ur Rehman et al. | Carbonized zeolitic imidazolate framework-67/polypyrrole: a magnetic-dielectric interface for enhanced microwave absorption properties | |
Huang et al. | Construction of NiCeOx nanosheets-skeleton cross-linked by carbon nanotubes networks for efficient electromagnetic wave absorption | |
Bao et al. | Facile fabrication of porous NiCo2O4 nanosheets with high adsorption performance toward Congo red | |
Jia et al. | A seed germination-inspired interface polarization augmentation strategy toward superior electromagnetic absorption performance | |
Wu et al. | Surface-oxidized amorphous Fe nanoparticles supported on reduced graphene oxide sheets for microwave absorption | |
Liang et al. | Fe-MOFs derived porous Fe4N@ carbon composites with excellent broadband electromagnetic wave absorption properties | |
Wang et al. | Magnetic MoS2 nanosheets as recyclable solar-absorbers for high-performance solar steam generation | |
Xie et al. | NiCoZn/C@ melamine sponge-derived carbon composites with high-performance electromagnetic wave absorption | |
Yang et al. | Compressible and flexible PPy@ MoS 2/C microwave absorption foam with strong dielectric polarization from 2D semiconductor intermediate sandwich structure | |
Zhou et al. | High-performance electromagnetic wave absorbing composites prepared by one-step transformation of Fe 3+ mediated egg-box structure of seaweed |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180615 Termination date: 20210323 |