CN105744657A - 钽纳米电热材料 - Google Patents

钽纳米电热材料 Download PDF

Info

Publication number
CN105744657A
CN105744657A CN201610091319.9A CN201610091319A CN105744657A CN 105744657 A CN105744657 A CN 105744657A CN 201610091319 A CN201610091319 A CN 201610091319A CN 105744657 A CN105744657 A CN 105744657A
Authority
CN
China
Prior art keywords
tantalum
nano
electrothermal
accounting
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610091319.9A
Other languages
English (en)
Inventor
彭文婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610091319.9A priority Critical patent/CN105744657A/zh
Publication of CN105744657A publication Critical patent/CN105744657A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

钽纳米电热材料所属的技术领域为“新材料”大类别的分支“纳米材料”,具体为“由一种主要钽形成的钽纳米电热材料体”。由钽、镍、钨、铬按质量百分比50~82%∶10~25%∶7~17%∶0~13%经溅射嵌镀在表面经特殊处理的石英玻璃、陶瓷等材料做成不同尺寸的管、板、片、条、圆形等形状的基材上形成的纳米材料。膜厚度为5千~2万纳米,其性质是电热转换率高、升温极快、耐久性长、耐划不脱落、功率不衰减、磁辐射低,可用10~220V交、直流供电。本发明制成各种发热总成并设计成各种新型电器、设备,具有即开即热、节能、环保等特点,使用简单、用途广泛。

Description

钽纳米电热材料
一、技术领域
1、属于“新材料”大类别,“纳米材料”为其分支,具体归为“一种主要由纯金属钽和几种少量贵金属形成的钽纳米电热材料体”;
2、经纳米材料制备及相关靶材溅射嵌镀在石英管、耐热玻璃等基材表面上制成,其多元金属电热体薄膜根据不同使用工况要求厚度为5千~2万纳米,相当普遍人发丝直径的1/14~2/7;
3、钽纳米电热材料性质与特点:
①电热转换率达96%及以上;
②温升速度极快。根据使用工况要求不同在1~10秒钟可达600℃~1000℃,最高温度可达2000℃;
③耐久性能好。通电后电能转换为高温热量在额定温度下连续使用寿命达1.5万小时及以上;
④钽钠米电热材料工作时,与空气接触表面不易氧化,功率不衰减;
⑤磁辐射极低。因采用面状电加热,其磁通量低,用其做成核心总成,并制造成各种新型功能电器与设备对周围环境不造成任何磁污染;
⑥采用特殊结构及保护装置制造的产品安全性高;
⑦所用的几种贵金属均为国产,储量及生产量有保障,单件耗材极少,性价比高;
⑧由于钽纳米电热材料的性质决定了用其做成各种发热总成,并开发出各种功能新型电器、设备具有即开即热、节能、环保等特点,与传统加热体、电器、设备相比,可节能50%以上,使用范围广泛,可用于民用、商用、工业用途及其它领域,具有较高的经济、社会效益,当大批量生产及应用时,可形成新的产业群及一种新兴产业的崛起;
⑨该技术在世界上处在同行领先水平,居国内独创地位。
二、背景技术:
1、纳米技术是采用单个原子、分子制造物质的科学技术,是专用研究结构尺寸1纳米到几万纳米范围内材料和应用的一门新学科,由此产生一个上万亿美元的高科技新产业。该技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理等)和现代技术(计算机技术、微电子技术、电镜技术和分析技术等)结合的新学科,由此产生一系列的科学技术:纳米物理学、纳米化学、纳米加工技术和纳米计量学科等;并产生纳米新材料、纳米器件、纳米尺寸的检测与表征这三个研究领域(前面是理论,后面是目的)。
纳米材料的制备(包括实验室研究、中试和规模生产生产设备)和应用研究是整个纳米材料的基础。
纳米材料分为非金属类(例如碳纳米管、石墨烯等)、非金属或金属氧化物类(例如汽车后窗化霜的二氧化硅膜、太阳电池用的二氧化钛膜等)、金属类(例如钽纳米电热材料薄膜)。
2、纳米材料标志和现状:
①性质完全和宏观同元素性质不同或发生巨变,例如良好导电的白银在某纳米厚度呈现绝缘性质,磁铁如制成20纳米磁通量高达原千倍,碳纳米管可吸收电磁波,石墨烯如能将若干单层叠加成0.2毫米厚薄膜则强度、韧性比钢材提高千倍而重量仅为后者百分之一,以上许多仍在实验室研究中,大规模生产有待工艺技术和生产设备的突破;
②目前社会上许多所谓“纳米材料”性质和该元素宏观材料性质相同,仅是尺寸改变,因此科学界不称其为纳米材料;
③以美国为代表的发达国家在碳纳米管研究取得成功已应用在军事等领域,二氧化钛薄膜广泛用在太阳能发电板上。我国也投入一些资金,科技界和企业或引进技术或仿制出太阳能发电板,但主要专利技术是别人的,我们的附加值较低;
④钽纳米电热材料已形成工业化生产,其核心技术、工艺日趋完善,已开始应用于家用、商用、工业等领域,开发的功能电器设备经用户使用好评不断,销量逐年增加,各种应用户要求制造的新产品样机正在验证中。
3、基材选择:
①由于钽为主的多元金属纳米材料是厚度极薄的均匀电热膜,其热膨胀系数几乎为零,因此需选择膨胀系数相同或接近的经表面特殊处理的基材做依托,以保证电能经过整个薄膜产生高温发热时该薄膜与所选基材不会因膨胀,使嵌合牢度有改变,长期运行不允许薄膜有任何分离脱落现象发生,并经得起锐器划割无痕迹;
②为了提高电热转换率,所选加热液体的管状基材应对热的阻断率基本为零,直接加热空气为媒介所选的板式基材等无此要求;
③根据不同用途对使用工况的要求,采用石英玻璃、耐热玻璃、陶瓷、不锈钢、钛合金钢、碳素纤维等材料按设计要求做成不同尺寸的管、板、条、片或圆等形状的基材。
4、纳米电热材料的选择和制备、检测试验仪器:
①为了满足各种电加热用途对使用工况的要求和较高性价比的成本要求,所选金属应具有强度高、耐高温、不易氧化、耐腐蚀强、有导电性、良好导热性、导磁性好等特点;经对若干金属元素进行了深入研究和挑选,用正交试验法通过上千次制作和试验,挑选出以钽为主的3~4种金属做成纯靶块或靶棒用于制作纳米电热材料的原料;
②纳米材料的制备应能实现在大规模工业化生产中以较低生产成本制造出的产品达到设计要求,出品合格率在95%及以上,该设备能自动化运行,对环境不产生废气、废水、磁泄漏等污染。为此,采用了射频技术或激光技术或其它电轰技术、计算机控制技术、工艺软件编程技术、真空净化技术、强制冷技术、高压输电控制技术等和机械部件、机构元件、工装、工位器具等设计技术;
③检测、试验仪器有高倍显微镜、磁通仪,非接触温度仪、膜厚度仪、各种电工仪器仪表、可调式变压器、交直流逆变器、烘箱、模拟环境测试柜、空气净化室等以及老化、耐久、检测试验台等设备。
5、钽纳米电热材料电热转换机理:
①试验条件为在溅射钽纳米材料的石英管两端涂上导电白银胶和高温胶烘干,装上导电铜箍装置,在室温条件下将200v交流电接上正负极;通电后电能迅速使纳米电热薄膜温升达1000℃产生热量;将自来水接入管芯下端,在1秒钟内管芯上端出沸水(100℃);用非接触型温度仪测纳米薄膜表面中段温度在470℃,两端温度在350℃;将交流电用全桥硅整流堆调制为220v(正向)全波正弦直流电(如加上有电容器和稳压二极管的稳压装置才能调制为真正的直流电);经温度仪测膜表面中段温度在170℃,两端温度在100℃,而出沸水上端水温仍在100℃(用接触式温度仪测得);
②在同一室温(20℃)情况下,同一功率钽发热管自来水温度为约20℃,分别用上述交、直流电加热产生在100℃开水用量杯测量,直流电加热的量比交流电加热的多5%以上;用电热转换公式计算出电热转换率为96%~98%(上限是用直流电加热水测算值);
③由于钽纳米电热材料温升极快,最高温度可达2000℃,通过加入镍、钨、铬金属一定比例并经上千次配比、试验后确定的配方可满足不同用途的使用工况要求,可控制最高温度,组成发热总成时装有2~3个温度控制器确保达设计要求;
④用钽纳米电热材料制成的发热总成的功能电器、设备,加热水即开即沸或出蒸汽,比传统水家电或电取暖锅炉节能50%及以上;
⑤通过大量试验分析及研究,钽纳米电热材料虽为金属合金组成,但其呈现半导体性质而成为加热体,而且温升快、热转率高、功率不衰减、使用寿命长,成为一种革命性的新型加热纳米材料,克服了传统电炉丝和钛合金管(板)等加热体存在的升温慢、电热效率低、功率会衰减、使用寿命短诸多弱点;
⑥研究钽纳米电热材料为什么不是导体,而呈现半导体性质时,我们认为其薄膜厚度仅为5千~2万纳米,相当非常狭窄缝隙通道,通电后大量电子流在电压作用下需快速通过整个膜层造成拥挤碰撞而快速温升产生热量(尤其50HZ交流电是正负正弦波电流,每秒钟电子流向正、反方面掉头流动使发热管中段温度高于两端就是例证);为了不使温升过高使膜击穿,在以钽为主加入适当比例的镍、钨和铬,一是为了使膜更耐高温刚性和韧性外,二是主要在于该合金薄膜内增加了空穴运动,调节电子流速度,类似电影院下一场观众在入场口要进场,上一场观众从电影院内四个太平门快速退场而疏导分流,形成座位(相当空穴)快速腾出,而下一场观众有序快速进入场内;从而达到电子流与空穴流形成一定比例平衡与阻抗;既达到使用工况要求,又不失去控制,使温升陡度及加热温度控制在设计允许范围内。
三、发明内容:
1、钽纳米电热材料配方(按各纯金属质量计量)
①钽:占比50~82%;
②镍:占比10~25%;
③钨:占比7~17%;
④铬:占比0~13%;
2、选择经表面特殊处理的如或喷砂或磨砂或腐蚀后清洗洁净的石英玻璃、耐热玻璃、陶瓷、不锈钢、钛合金钢、碳素纤维等材料按设计要求做成不同尺寸的管、板、条、片、圆形等形状的基材做为依托;
3、经专用设备溅射嵌镀在基材表面上形成钽纳米电热材料膜,其厚度在5千至2万纳米范围内,满足使用10~220v电压下交流、直流供电通过该纳米材料膜将电能转换为热量加热液体或空气达到不同使用工况下的设计要求;
4、本发明的钽纳米电热材料升温快、电热转换率高、安全、节能、环保、使用范围广泛,具有连续使用寿命长、功率不衰减等特点。
四、具体实施方式:
1、将前述纯金属各制成靶块、靶棒材,放入纳米材料专用制备内分别固定;
2、将特殊处理的已清洗、烘干的洁净基材放入专用制备内专用夹具上分别按要求固定;
3、将制备仓门(有密封条)锁紧,设备装在空气高净化室内已净化处理;
4、用真空设备将制备内腔空气抽排出,使腔内呈真空状;
5、纳米材料制备上装有用射频器或激光器或其它电轰器,并连接工业计算机、制冷机、供电线路输入设备、变电柜等其它设备;
6、用编程软件控制计算机和材料制备运行;
通过上述一种电轰器将电子流或激光束根据工艺设计依次和时间长短轰击各靶材,形成某金属的粒子流,均匀溅射嵌镀在基材表面直到设计厚度和各金属占比,制备自动停止工作,进行快速冷却到设计要求;
7、打开仓门,将溅射好的纳米电热材料基材体取出放在工位器具上;
8、将已加工好的纳米电热材料基材体两端进行导电涂料、高温胶涂敷烘干,然后与其它零部件、温控器等组装成发热总成(功能电器、设备的核心部件);
9、根据不同用途设计制造的其它零部件与发热总成装配成各种功能新型电器、设备;
10、对组装好的发热总成和整机在测试平台上进行各项性能测试、老化处理,装箱后做震动抽查检验,达到设计要求,经检验合格的产品入库待售出;
11、应不同用户要求设计的功能电器、设备需对专门设计的不同发热总成进行反复试验,然后做成样机进行各项指标测试及改进试验,交用户试用一段时间,再根据用户反馈意见修改设计,反复多次后定型进行小批量生产验证工艺,然后才批量生产至直大批量生产供应市场,并不断完善技术资料,改进生产线及工装器具以达到质量、效益双保证;
12、由于全世界目前温度测量仪器无法做到额定功率和额定电压下的钽纳米电热材料通电即开即热情况下以毫秒时间级测出即时温度(既现在仪器反应时间是为传统电器设计用的,温度感应元件反应慢),我们采取用调压器方式从低电压开始,经过几秒钟达到多少温度,在坐标图上标出对应值;然后再提高若干伏电压,测得时间与温度对应点,以此类推得若干个点,连接这些点形成平滑曲线,推导公式后,将设计额定电压、时间参数输入、计算出此时间点的即时温度以满足特殊用户对时间、电压与温度参数对应关系要求极高的应用要求。
综上所述,纳米材料是一种新兴产业,尤其钽纳米电热材料是一个革命性技术,它有优良的性质、显著特点和使用范围广,有着极高使用价值和广阔前景,在不久的未来随着该项技术的推广及应用,将形成一个新产业群及一种新型产业的崛起,使中国创造迈出实质的进步。

Claims (3)

  1. “钽纳米电热材料”发明的技术特征为一种纯金属钽为主和几种少量贵金属形成的钽纳米电热材料体。它由纳米材料制备将多元金属溅射嵌镀在表面经特殊处理的石英玻璃、陶瓷等材料做成不同尺寸的管、板、片、条、圆形等形状的基材上形成5千~2万纳米厚的纳米电热膜。
    1.钽纳米电热材料配方(按各纯金属质量计量)
    钽:占比50%~82%;
    镍:占比10%~25%;
    钨:占比7%~17%;
    铬:占比0%~13%。
  2. 2.选择经表面特殊处理的如或喷砂或磨砂或腐蚀后清洗洁净的石英玻璃、耐热玻璃、陶瓷、不锈钢、钛合金钢、碳素纤维等材料按设计要求做成不同尺寸的管、板、条、片、圆形等形状的基材做为依托。
  3. 3.经专用设备溅射嵌镀在基材表面上形成钽纳米电热材料膜,其厚度在5千至2万纳米范围内,满足使用10~220v电压下交流、直流供电通过该纳米材料膜将电能转换为热量加热液体或空气达到不同使用工况下的设计要求。
CN201610091319.9A 2016-02-12 2016-02-12 钽纳米电热材料 Withdrawn CN105744657A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610091319.9A CN105744657A (zh) 2016-02-12 2016-02-12 钽纳米电热材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610091319.9A CN105744657A (zh) 2016-02-12 2016-02-12 钽纳米电热材料

Publications (1)

Publication Number Publication Date
CN105744657A true CN105744657A (zh) 2016-07-06

Family

ID=56245592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610091319.9A Withdrawn CN105744657A (zh) 2016-02-12 2016-02-12 钽纳米电热材料

Country Status (1)

Country Link
CN (1) CN105744657A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294991A (zh) * 2019-12-28 2020-06-16 彭文婷 钼纳米电热材料
CN111304590A (zh) * 2019-12-28 2020-06-19 彭文婷 钒纳米电热材料
CN111306778A (zh) * 2019-12-31 2020-06-19 盐城市华邦合金电器有限公司 一种平衡电流纳米电热锅炉炉胆

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1849018A (zh) * 2005-04-05 2006-10-18 王佰忠 钛纳米电热材料

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1849018A (zh) * 2005-04-05 2006-10-18 王佰忠 钛纳米电热材料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294991A (zh) * 2019-12-28 2020-06-16 彭文婷 钼纳米电热材料
CN111304590A (zh) * 2019-12-28 2020-06-19 彭文婷 钒纳米电热材料
CN111306778A (zh) * 2019-12-31 2020-06-19 盐城市华邦合金电器有限公司 一种平衡电流纳米电热锅炉炉胆

Similar Documents

Publication Publication Date Title
Ahmadi et al. Analysis of utilizing Graphene nanoplatelets to enhance thermal performance of flat plate solar collectors
Wang et al. Prediction of thermal conductivity of various nanofluids with ethylene glycol using artificial neural network
Wang et al. Microstructure and infrared emissivity property of coating containing TiO2 formed on titanium alloy by microarc oxidation
CN105744657A (zh) 钽纳米电热材料
CN110016803B (zh) 一种耐高温电热纤维及其应用
White et al. Boiling surface enhancement by electrophoretic deposition of particles from a nanofluid
Gao et al. Optical simulation, corrosion behavior and long term thermal stability of TiC-based spectrally selective solar absorbers
CN206990487U (zh) 纳米材料的热电性能测量系统
Ma et al. Experimental study of boiling heat transfer for a novel type of GNP-Fe3O4 hybrid nanofluids blended with different nanoparticles
Nazari et al. Critical heat flux enhancement of pool boiling using a porous nanostructured coating
WO2020177259A1 (zh) 气雾淬火装置、零件界面传热系数的测试系统及测试方法
CN109142433B (zh) 一种基于交流法测量低维微纳材料热导率的方法
Iliopoulos et al. Evaluation of organic coatings for corrosion protection of condensing economizers
CN105355783A (zh) 一种用于高密度相变存储器的多层纳米复合薄膜材料及其制备方法
Zhao et al. Alumina composite coatings with enhanced high-temperature electrical insulating properties on Ni-based superalloy substrates
Khan et al. Design, synthesis, and characterization of hybrid micro‐nano surface coatings for enhanced heat transfer applications
Vrublevsky et al. Improvement of the thermal characteristics of the electric heater in the architecture with aluminum, nanoporous alumina and resistive component of carbon fiber
Su-Yuan et al. Thermal conductivity measurement of submicron-thick aluminium oxide thin films by a transient thermo-reflectance technique
Chen et al. Measurement of thermal conductivities of [mmim] DMP/CH3OH and [mmim] DMP/H2O by freestanding sensor-based 3ω technique
Paknezhad et al. A hybrid genetic–BP algorithm approach for thermal conductivity modeling of nanofluid containing silver nanoparticles coated with PVP
Wang et al. Rapid fabrication of a transparent superhydrophobic coating: Potential application with pollution-free under construction
CN110022623B (zh) 一种耐高温电热纤维的制备与应用
Gajghate et al. Experimental and numerical investigation of pool boiling heat transfer over different thickness of graphene–poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) layers on copper heater surface
Chen et al. Different wetting behavior of alkyl-and fluorocarbon-terminated films based on cupric hydroxide nanorod quasi-arrays
CN111294991A (zh) 钼纳米电热材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
DD01 Delivery of document by public notice

Addressee: Peng Wenting

Document name: Notification of Publication of the Application for Invention

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20160706

WW01 Invention patent application withdrawn after publication