CN105738846B - K空间数据采集方法及其磁共振成像方法 - Google Patents

K空间数据采集方法及其磁共振成像方法 Download PDF

Info

Publication number
CN105738846B
CN105738846B CN201410767038.1A CN201410767038A CN105738846B CN 105738846 B CN105738846 B CN 105738846B CN 201410767038 A CN201410767038 A CN 201410767038A CN 105738846 B CN105738846 B CN 105738846B
Authority
CN
China
Prior art keywords
space data
space
data
overlapping
complete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410767038.1A
Other languages
English (en)
Other versions
CN105738846A (zh
Inventor
刘薇
周堃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Shenzhen Magnetic Resonance Ltd
Original Assignee
Siemens Shenzhen Magnetic Resonance Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Shenzhen Magnetic Resonance Ltd filed Critical Siemens Shenzhen Magnetic Resonance Ltd
Priority to CN201410767038.1A priority Critical patent/CN105738846B/zh
Priority to US14/966,473 priority patent/US10262385B2/en
Publication of CN105738846A publication Critical patent/CN105738846A/zh
Application granted granted Critical
Publication of CN105738846B publication Critical patent/CN105738846B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0007Image acquisition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56341Diffusion imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56572Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of a gradient magnetic field, e.g. non-linearity of a gradient magnetic field
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开了一种K空间数据采集方法及其磁共振成像方法。K空间数据采集方法包括:采集步骤,在磁共振成像系统的正向相位编码梯度下进行上半部分K空间数据采集从而得到一第一部分K空间数据,在磁共振成像系统的反向相位编码梯度下进行下半部分K空间数据采集从而得到一第二部分K空间数据;合并步骤,将所述第一部分K空间数据和所述第二部分K空间数据合并成一完全K空间数据,其中,所述第一部分K空间数据和所述第二K空间数据分别占所述完全K空间数据的至少一半。

Description

K空间数据采集方法及其磁共振成像方法
技术领域
本发明涉及磁共振成像技术领域,特别是磁共振成像系统的K空间数据采集方法。
背景技术
磁共振成像(Magnetic Resonance Imaging,MRI)是利用磁共振现象进行成像的一种技术。磁共振现象的原理主要包括:包含单数质子的原子核,例如人体内广泛存在的氢原子核,其质子具有自旋运动,犹如一个小磁体,并且这些小磁体的自旋轴没有一定的规律,如果施加外在磁场,这些小磁体将按外在磁场的磁力线重新排列,具体为在平行于或反平行于外在磁场磁力线的两个方向排列,将上述平行于外在磁场磁力线的方向称为正纵向轴,将上述反平行于外在磁场磁力线的方向称为负纵向轴;原子核只具有纵向磁化分量,该纵向磁化分量既具有方向又具有幅度。用特定频率的射频(Radio Frequency,RF)脉冲激发处于外在磁场中的原子核,使这些原子核的自旋轴偏离正纵向轴或负纵向轴,产生共振,这就是磁共振现象。上述被激发的原子核的自旋轴偏离正纵向轴或负纵向轴之后,该原子核就具有了横向磁化分量。
停止发射射频脉冲后,被激发的原子核发射回波信号,将吸收的能量逐步以电磁波的形式释放出来,其相位和能级都恢复到激发前的状态,将原子核发射的回波信号经过空间编码等进一步处理即可重建图像。
回波平面成像(Echo Planar Imaging,EPI)方法是一种存在几何失真的快速磁共振(MR)成像方法。弥散加权成像(Diffusion Weighted Imaging,DWI)等具有短测量时间的应用,额外的时间不能忽略,具体而言,弥散加权成像基于回波平面成像(Echo PlanarImaging,EPI)方法(一种快速磁共振成像方法)。
配合扩散加权-回波平面成像(DW-EPI)方法中,时常使用部分K空间采集技术来减少回波时间(Echo Time,TE)并且改良信噪比(Signal Noise Ratio,SNR)。实际上,通过在相位编码方向上采集稍微超过完整的K空间数据的一半,扫描时间可以减少两倍。最简单且常用的方法为在给K空间的未取样部分填零的情况下重构部分K空间数据集,也称为直接填零重建。然而,这种方法将会降低图像分辨率并且导致在相位编码方向上明显的模糊,有时还将造成归因于数据截断的吉布斯(Gibbs)环状效应。
发明内容
有鉴于此,本发明提供一种磁共振成像系统的K空间数据采集方法,包括:
采集步骤,在磁共振成像系统的正向相位编码梯度下进行上半部分K空间数据采集从而得到一第一部分K空间数据,在磁共振成像系统的反向相位编码梯度下进行下半部分K空间数据采集从而得到一第二部分K空间数据;
合并步骤,将所述第一部分K空间数据和所述第二部分K空间数据合并成一完全K空间数据,其中,所述第一部分K空间数据和所述第二K空间数据分别占所述完全K空间数据的至少一半。
优选地,所述合并步骤包括:
将所述第一部分K空间数据相应填充至所述第二部分K空间数据相对于所述完全K空间数据的补集从而合并成所述完全K空间;或
将所述第二部分K空间数据相应填充至所述第一部分K空间数据相对于所述完全K空间数据的补集从而合并成所述完全K空间。
优选地,所述第一部分K空间数据和所述第二K空间数据分别占所述完全K空间数据的多于一半,其中,在所述第一部分K空间数据和所述第二K空间数据的重叠区域,所述第一部分K空间数据包括一第一重叠K空间数据,所述第二部分K空间数据包括一第二重叠K空间数据。
优选地,所述合并步骤包括:
将所述第一重叠K空间数据和所述第二重叠K空间数据加权平均得到一加权平均重叠K空间数据;
将所述加权平均重叠K空间数据填充至所述重叠区域。
本发明还提供一种磁共振成像方法,包括如上任一所述的K空间数据采集方法。
本发明还提供一种磁共振成像方法,包括如权利要求3-4中任一项所述的K空间数据采集方法。
优选地,在所述合并步骤之前,所述磁共振成像方法还包括:利用所述第一重叠K空间数据和所述第二重叠K空间数据对所述第一部分K空间数据和第二部分K空间数据进行相位校正。
优选地,在所述合并步骤之前,所述磁共振成像方法还包括:对所述第一部分K空间数据和第二部分K空间数据进行失真校正。
优选地,还包括,应用一回波平面成像方法。
本发明还提供一种磁共振成像系统的K空间数据采集装置,包括:
一采集单元,用于在磁共振成像系统的正向相位编码梯度下进行上半部分K空间数据采集从而得到一第一部分K空间数据,并且在磁共振成像系统的反向相位编码梯度下进行下半部分K空间数据采集从而得到一第二部分K空间数据;以及
一合并单元,用于将所述第一部分K空间数据和所述第二部分K空间数据合并成一完全K空间数据,其中,所述第一部分K空间数据和所述第二K空间数据分别占所述完全K空间数据的至少一半。
优选地,所述合并单元,还用于:
将所述第一部分K空间数据填充至所述第二部分K空间数据相对于所述完全K空间数据的补集从而合并成所述完全K空间;或
将所述第二部分K空间数据填充至所述第一部分K空间数据相对于所述完全K空间数据的补集从而合并成所述完全K空间。
优选地,所述第一部分K空间数据和所述第二K空间数据分别占所述完全K空间数据的多于一半,其中,在所述第一部分K空间数据和所述第二K空间数据的重叠区域,所述第一部分K空间数据包括一第一重叠K空间数据,所述第二部分K空间数据包括一第二重叠K空间数据。
优选地,所述合并单元,还用于:
将所述第一重叠K空间数据和所述第二重叠K空间数据加权平均得到一加权平均重叠K空间数据;
将所述加权平均重叠K空间数据填充至所述重叠区域。
本发明还提供一种磁共振成像系统,包括如权利要求10-11任一所述的K空间数据采集装置。
本发明还提供一种磁共振成像系统,包括如权利要求12-13任一所述的K空间数据采集装置。
优选地,还包括:一相位校正单元,用于利用所述第一重叠K空间数据和所述第二重叠K空间数据对所述第一部分K空间数据和第二部分K空间数据进行相位校正。
优选地,还包括:一失真校正单元,对所述第一部分K空间数据和第二部分K空间数据进行失真校正。
优选地,还包括,一应用单元,用于应用一回波平面成像方法。
从上述方案中可以看出,根据本发明的具体实施例的磁共振成像系统的K空间数据采集方法用正向和反向相位编码梯度采集K空间数据两次,在失真和相位校正之后,遗漏数据可以互相恢复;根据本发明的具体实施例的磁共振成像方法本身能够失真校正,因为未失真图像在两个相对失真图像之间的中间位置;平均维度用于标记逆向采集以集成扫描程序并且促进ICE重建,其中没有必要重复整个标准采集协议;最后,根据本发明的具体实施例的磁共振成像系统的K空间数据采集方法可以广泛用于EPI序列来改进模糊和失真问题,它们是EPI中的主要伪影,从而使图像质量明显提高并且有利于后续诊断。
附图说明
下面将通过参照附图详细描述本发明的优选实施例,使本领域的普通技术人员更清楚本发明的上述及其它特征和优点,附图中:
图1是根据本发明的具体实施例的磁共振成像系统的K空间数据采集方法的步骤图。
图2是根据本发明的具体实施例的磁共振成像系统的K空间数据采集方法的示意图。
图3是根据本发明的具体实施例的磁共振成像方法的步骤图。
图4是根据本发明的具体实施例的磁共振成像方法的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下举具体实施例对本发明进一步详细说明。
就提高图像分辨率而言,最好用非零值填充K空间中的未取样区域。存在几种不同的填充方法,所述填充方法基于共轭合成方法,如相位校正和共轭合成(PCCS)方法、零差重建和迭代算(POCS)法以及迭代部分K空间数据法。但是,PCCS方法会降低图像的幅度;当图像相位快速变化时,POCS法会产生鬼影。迭代部分K空间方法效果良好,但它至少需要四次迭代以收敛数据从而计算复杂性升高。
此外,上述方法将有限的空间分辨率图像用于相位校正和相位补偿,因此由于不充分的相位补偿,可能丢失一些信号。举例而言,血管过小无法分辨并且靠近空气组织界限的信号可能因快速的相位变换而减少。
根据本发明的具体实施例的磁共振成像系统的磁场不均匀性值方法的核心在于,利用K空间拼接方法来提高图像分辨率同时保持较高信噪比;此外,利用两个K空间数据经过傅立叶变换还可以有效地校正几何失真。同时,在根据本发明的具体实施例的K空间数据采集方法中,K空间完全由非零值填充有非零值,图像质量不受损失并且无须大量计算。
为了避免自直接填零重建的问题,根据本发明的具体实施例的K空间数据采集方法用非零值填充K空间的未取样部分。图1是根据本发明的具体实施例的磁共振成像系统的K空间数据采集方法的步骤图。如图1所示,根据本发明的具体实施例的磁共振成像系统的K空间数据采集方法,包括:步骤101,在磁共振成像系统的正向相位编码梯度下进行上半部分K空间数据采集从而得到一第一部分K空间数据,在磁共振成像系统的反向相位编码梯度下进行下半部分K空间数据采集从而得到一第二部分K空间数据;步骤102,将所述第一部分K空间数据和所述第二部分K空间数据合并成一完全K空间数据,其中,所述第一部分K空间数据和所述第二K空间数据分别占所述完全K空间数据的至少一半。
图2是根据本发明的具体实施例的磁共振成像系统的K空间数据采集方法的示意图。具体而言,磁共振成像系统进行正向相位编码梯度和反向相位编码梯度的双重发射采集,如图2所示,在磁共振成像系统的正向相位编码梯度下进行上半部分K空间数据采集从而得到一第一部分K空间数据201,在磁共振成像系统的反向相位编码梯度下进行下半部分K空间数据采集从而得到一第二部分K空间数据202;进而将所述第一部分K空间数据201和所述第二部分K空间数据202合并成一完全K空间数据203,如图2所示,所述第一部分K空间数据201和所述第二K空间数据202分别占所述完全K空间数据203的一半或一半以上。
步骤102包括多种实现方式,具体而言,实现方式之一包括:将所述第一部分K空间数据201相应填充至所述第二部分K空间数据202相对于所述完全K空间数据的补集从而合并成所述完全K空间203(也就是将第一部分K空间数据201全部相应填充至K空间,剩余的K空间需要填充,因此将第二部分K空间数据202相应填充至剩余的K空间);或将所述第二部分K空间数据202相应填充至所述第一部分K空间数据201相对于所述完全K空间数据的补集从而合并成所述完全K空间203(也就是将第二部分K空间数据202全部相应填充至K空间,剩余的K空间需要填充,因此将第一部分K空间数据201部分相应填充至剩余的K空间)。
实现方式之二包括:如图2所示,所述第一部分K空间数据201和所述第二K空间数据202分别占所述完全K空间数据的多于一半,其中,在所述第一部分K空间数据201和所述第二K空间数据201的重叠区域204,所述第一部分K空间数据201包括一第一重叠K空间数据2041,所述第二部分K空间数据202包括一第二重叠K空间数据2042。
具体而言,将所述第一重叠K空间数据2041和所述第二重叠K空间数据2042加权平均得到一加权平均重叠K空间数据;将所述加权平均重叠K空间数据填充至所述重叠区域204。
图3是根据本发明的具体实施例的磁共振成像方法的步骤图。如图3所示,根据本发明的具体实施例的磁共振成像方法包括:步骤301,进行磁共振成像序列扫描;步骤302,采集K空间数据;步骤303,利用K空间数据成像。其中,步骤302可以利用根据本发明的具体实施例的K空间数据采集方法进行。
具体而言,以DW-EPI方法为例,由于EPI在相位编码方向上有效带宽较小,所以EPI对磁共振成像系统的主磁场B0的不均匀性极其敏感,因此需要对主磁场B0的不均匀性产生的失真进行校正。根据与相位编码的极性有关的偏共振的极性,主磁场B0的不均匀性产生的失真表现为在所采集的图像中沿相位编码方向的局部拉伸或压缩。
图4是根据本发明的具体实施例的磁共振成像方法的示意图。如图4所示,第一部分K空间数据201是正向相位编码极性扫描得到的K空间数据(在磁共振成像系统的正向相位编码梯度下进行上半部分K空间数据采集从而得到一第一部分K空间数据201),第二部分K空间数据202是反向相位编码极性扫描得到的K空间数据(在磁共振成像系统的反向相位编码梯度下进行下半部分K空间数据采集从而得到一第二部分K空间数据202)。对第一部分K空间数据201和第二部分K空间数据202进行傅立叶逆变换分别得到第一失真图像401和第二失真图像402。如图4所示,第一失真图像401和第二失真图像402的空间失真相反,即相反的相位编码梯度将会导致图像在相位编码方向上相反的失真,如在正向梯度的图像中如果有局部信号拉伸的失真,那么在反向梯度的图像中对应局部信号压缩的失真。
因此,在步骤102之前,即,将所述第一部分K空间数据和所述第二部分K空间数据合并成一完全K空间数据之前,移除第一失真图像401和第二失真图像402之间的失真。具体而言,以DW-EPI方法为例,对第一失真图像401和第二失真图像402进行失真校正。具体方法如下:
真实图像空间的坐标为u和v,第一失真图像401和第二失真图像402的空间坐标分别为(x,y)+和(x,y)-则可以表示为式[1]:
(x,y)+=T+(u,v)=(u,v-d(u,v))
(x,y)-=T-(u,v)=(u,v+d(u,v))
[1]
其中,T+(u,v)和T-(u,v)分别是从真实图像空间坐标到第一失真图像401和第二失真图像402的空间坐标的映射关系,d(u,v)是真实图像在相位编码梯度方向上的像素偏移。
根据式[1],得到真实图像的空间坐标u和v以及真实图像在相位编码梯度方向上的像素偏移d(u,v),进而根据上述三者得到第一校正图像403,即I+(u,v)和第二校正图像404,即I-(u,v):
其中,I+(u,v-d(u,v))和I-(u,v+d(u,v))分别是第一失真图像401和第二失真图像402。
对第一校正图像403,即I+(u,v)和第二校正图像404,即I-(u,v),进行傅立叶变换即可得到经过校正的第一部分K空间数据201’和经过校正的第二K空间数据202’,再对经过校正的第一部分K空间数据201’和经过校正的第二K空间数据202’进行合并即可得到完全K空间数据203。
在磁共振成像中,不同激发产生的信号之间存在非线性的相位误差,由此导致严重的图像伪影。以多次激发的弥散加权成像为例,在进行K空间数据合并之前,需要对所述第一部分K空间数据和所述第二部分K空间数据进行相位校正。具体方法如下:
所述第一部分K空间数据和所述第二部分K空间数据分别为M1(kx,ky)和M2(kx,ky),第一重叠K空间数据和第二重叠K空间数据分别为Mo1(kx,ky),Mo2(kx,ky)。kx和ky是各个K空间数据在K空间的坐标。
由于大的相位误差将会加大K空间信号分布的宽度Wx,如式[3]所示,
其中Mi是K空间数据的复数表示,Ωx是最大信号强度的K空间数据的kx,选取Wx较小的重叠区域的K空间数据得到的图像作为参考图象。
然后,将第一重叠K空间数据Mo1(kx,ky)和第二重叠K空间数据Mo2(kx,ky)填零后傅里叶变换到得到第一重叠图像Mo1(x,y)和第二重叠图像Mo2(x,y),其中x和y分别是图像域坐标。在填零后傅里叶变换前,需要在ky方向做Hanning滤波从而最小化截断伪影。
最后,在本具体实施例中,假设用第一重叠图像Mo1作为参考图象(即,Wx较小的重叠区域的K空间数据得到的图像作为参考图象),用参考图象Mo1(x,y)的相位来取代对应位置处第二重叠图像Mo2(x,y)的相位,再将第一重叠图像Mo1(x,y)和经校正的第二重叠图像Mo2(x,y)变换到K空间得到经校正的第二重叠K空间数据M’o2(kx,ky),用经校正的第二重叠K空间数据M’o2的相位来替代第二部分K空间数据M2(kx,ky)的相位,从而使得第一部分K空间数据和第二部分K空间数据有相同的相位差。
为了减少回波时间并且提高磁共振图像(尤其是DW-EPI图像)中的信噪比,根据本发明的具体实施例的磁共振成像系统的K空间数据采集方法将相位部分傅立叶(Fourier)(PPF)的因子保守设定成6/8以保证稳固的部分K空间重建。在本发明中,由在部分K空间重建中的填零引起的图像模糊将通过K空间拼接改良同时保持相同或更低的回波时间。在K空间中的覆盖量可以减少至5/8;同时,由磁共振成像系统的主磁场B0不均匀性诱发的失真可以减少;并且使用反向梯度的集成式双重发射采集将促进在ICE中的后续重建。
根据本发明的具体实施例的磁共振成像系统的K空间数据采集方法用正向和反向相位编码梯度采集K空间数据两次,在失真和相位校正之后,遗漏数据可以互相恢复;根据本发明的具体实施例的磁共振成像方法本身能够失真校正,因为未失真图像在两个相对失真图像之间的中间位置;平均维度用于标记逆向采集以集成扫描程序并且促进ICE重建,其中没有必要重复整个标准采集协议;最后,根据本发明的具体实施例的磁共振成像系统的K空间数据采集方法可以广泛用于EPI序列来改进模糊和失真问题,它们是EPI中的主要伪影,从而使图像质量明显提高并且有利于后续诊断。
以上所述仅为本发明的较佳实施例而己,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

1.一种磁共振成像系统的K空间数据采集方法,包括:
采集步骤,在磁共振成像系统的正向相位编码梯度下进行上半部分K空间数据采集从而得到一第一部分K空间数据,在磁共振成像系统的反向相位编码梯度下进行下半部分K空间数据采集从而得到一第二部分K空间数据;
合并步骤,将所述第一部分K空间数据和所述第二部分K空间数据合并成一完全K空间数据,其中,所述第一部分K空间数据和所述第二部分K空间数据分别占所述完全K空间数据的至少一半,
在所述合并步骤之前,对所述第一部分K空间数据和第二部分K空间数据进行失真校正。
2.如权利要求1所述的K空间数据采集方法,其中,所述合并步骤包括:
将所述第一部分K空间数据相应填充至所述第二部分K空间数据相对于所述完全K空间数据的补集从而合并成所述完全K空间;或
将所述第二部分K空间数据相应填充至所述第一部分K空间数据相对于所述完全K空间数据的补集从而合并成所述完全K空间。
3.如权利要求1所述的K空间数据采集方法,其中,
所述第一部分K空间数据和所述第二部分K空间数据分别占所述完全K空间数据的多于一半,其中,在所述第一部分K空间数据和所述第二部分K空间数据的重叠区域,所述第一部分K空间数据包括一第一重叠K空间数据,所述第二部分K空间数据包括一第二重叠K空间数据。
4.如权利要求3所述的K空间数据采集方法,其中,所述合并步骤包括:
将所述第一重叠K空间数据和所述第二重叠K空间数据加权平均得到一加权平均重叠K空间数据;
将所述加权平均重叠K空间数据填充至所述重叠区域。
5.一种磁共振成像方法,包括如权利要求1-2中任一项所述的K空间数据采集方法。
6.一种磁共振成像方法,包括如权利要求3-4中任一项所述的K空间数据采集方法。
7.如权利要求6所述的磁共振成像方法,其中,在所述合并步骤之前,所述磁共振成像方法还包括:利用所述第一重叠K空间数据和所述第二重叠K空间数据对所述第一部分K空间数据和第二部分K空间数据进行相位校正。
8.如权利要求6-7中任一项所述的磁共振成像方法,其中,还包括,应用一回波平面成像方法。
9.一种磁共振成像系统的K空间数据采集装置,包括:
一采集单元,用于在磁共振成像系统的正向相位编码梯度下进行上半部分K空间数据采集从而得到一第一部分K空间数据,并且在磁共振成像系统的反向相位编码梯度下进行下半部分K空间数据采集从而得到一第二部分K空间数据;以及
一合并单元,用于将所述第一部分K空间数据和所述第二部分K空间数据合并成一完全K空间数据,其中,所述第一部分K空间数据和所述第二部分K空间数据分别占所述完全K空间数据的至少一半,
一失真校正单元,对所述第一部分K空间数据和第二部分K空间数据进行失真校正。
10.如权利要求9所述的K空间数据采集装置,其中,所述合并单元,还用于:
将所述第一部分K空间数据填充至所述第二部分K空间数据相对于所述完全K空间数据的补集从而合并成所述完全K空间;或
将所述第二部分K空间数据填充至所述第一部分K空间数据相对于所述完全K空间数据的补集从而合并成所述完全K空间。
11.如权利要求9所述的K空间数据采集装置,其中,
所述第一部分K空间数据和所述第二部分K空间数据分别占所述完全K空间数据的多于一半,其中,在所述第一部分K空间数据和所述第二部分K空间数据的重叠区域,所述第一部分K空间数据包括一第一重叠K空间数据,所述第二部分K空间数据包括一第二重叠K空间数据。
12.如权利要求11所述的K空间数据采集装置,其中,所述合并单元,还用于:
将所述第一重叠K空间数据和所述第二重叠K空间数据加权平均得到一加权平均重叠K空间数据;
将所述加权平均重叠K空间数据填充至所述重叠区域。
13.一种磁共振成像系统,包括如权利要求9-10任一所述的K空间数据采集装置。
14.一种磁共振成像系统,包括如权利要求11-12任一所述的K空间数据采集装置。
15.如权利要求14所述的磁共振成像系统,其中,还包括:一相位校正单元,用于利用所述第一重叠K空间数据和所述第二重叠K空间数据对所述第一部分K空间数据和第二部分K空间数据进行相位校正。
16.如权利要求14-15中任一项所述的磁共振成像系统,其中,还包括,一应用单元,用于应用一回波平面成像方法。
CN201410767038.1A 2014-12-12 2014-12-12 K空间数据采集方法及其磁共振成像方法 Active CN105738846B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410767038.1A CN105738846B (zh) 2014-12-12 2014-12-12 K空间数据采集方法及其磁共振成像方法
US14/966,473 US10262385B2 (en) 2014-12-12 2015-12-11 Method and apparatus for acquiring magnetic resonance data and entering the data into k-space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410767038.1A CN105738846B (zh) 2014-12-12 2014-12-12 K空间数据采集方法及其磁共振成像方法

Publications (2)

Publication Number Publication Date
CN105738846A CN105738846A (zh) 2016-07-06
CN105738846B true CN105738846B (zh) 2019-01-25

Family

ID=56110954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410767038.1A Active CN105738846B (zh) 2014-12-12 2014-12-12 K空间数据采集方法及其磁共振成像方法

Country Status (2)

Country Link
US (1) US10262385B2 (zh)
CN (1) CN105738846B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105785297B (zh) * 2014-12-18 2019-11-12 西门子(深圳)磁共振有限公司 多片层数据采集方法及其磁共振成像方法
CN106443534B (zh) * 2016-09-27 2019-10-22 中国科学技术大学 一种磁共振快速成像方法及系统
US10650631B2 (en) * 2017-07-28 2020-05-12 Hand Held Products, Inc. Systems and methods for processing a distorted image
CN107993271A (zh) * 2017-12-26 2018-05-04 上海交通大学 一种磁共振动态成像采样方法和图像重建方法
EP3561535A1 (de) 2018-04-26 2019-10-30 Siemens Healthcare GmbH Simultane mehrschicht-magnetresonanzbildgebung mit variabler dichte der k-raum-abtastung
CN110189814A (zh) * 2019-04-26 2019-08-30 视联动力信息技术股份有限公司 一种图像处理方法及装置
CN113391251B (zh) * 2020-03-12 2023-05-26 上海联影医疗科技股份有限公司 磁共振图像重建方法、装置和设备
CN113835058A (zh) * 2020-06-24 2021-12-24 通用电气精准医疗有限责任公司 采集和处理mr数据的方法、mri系统和方法、存储介质
CN113970717B (zh) * 2020-07-24 2023-11-24 西门子(深圳)磁共振有限公司 磁敏感加权成像方法、装置及磁共振成像系统
JP2023003840A (ja) 2021-06-24 2023-01-17 富士フイルムヘルスケア株式会社 磁気共鳴イメージング装置及びその制御方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19816961A1 (de) * 1998-04-17 1999-06-17 Siemens Ag Verfahren zur Gewinnung eines dreidimensionalen Rohdatensatzes für die MR-Bildgebung und Vorrichtung zur Durchführung des Verfahrens
DE10147919A1 (de) * 2001-09-28 2003-04-30 Siemens Ag Verfahren zur Erzeugung von Bilddaten mittels magnetischer Resonanz
CN101109791A (zh) * 2006-07-19 2008-01-23 西门子(中国)有限公司 回波平面成像序列的纠正方法
CN101122633A (zh) * 2006-08-08 2008-02-13 西门子(中国)有限公司 Mri脉冲序列的相位校正方法及装置
CN101153896A (zh) * 2006-09-29 2008-04-02 西门子(中国)有限公司 回波平面成像序列的图像重建方法
CN102141603A (zh) * 2010-01-28 2011-08-03 西门子迈迪特(深圳)磁共振有限公司 一种平面回波成像方法和系统
CN102435966A (zh) * 2011-09-02 2012-05-02 中国科学院深圳先进技术研究院 三维磁共振成像方法及系统
CN102928796A (zh) * 2012-09-28 2013-02-13 清华大学 快速扩散磁共振成像和重建方法
CN103529414A (zh) * 2012-07-04 2014-01-22 上海联影医疗科技有限公司 磁共振成像方法与装置、k空间的重建方法与装置
CN103809141A (zh) * 2012-11-02 2014-05-21 弗赖堡大学综合诊所 用于磁共振成像的方法
CN104181487A (zh) * 2013-11-19 2014-12-03 上海联影医疗科技有限公司 K空间重建方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329925A (en) * 1991-11-14 1994-07-19 Picker International, Inc. Reduced scan time cardiac gated magnetic resonance cine and flow imaging
US5957843A (en) * 1995-08-14 1999-09-28 Board Of Trustees Of The Leland Stanford Junior University Partial flyback echo-planar imaging
US5910728A (en) * 1996-11-12 1999-06-08 Beth Israel Deaconess Medical Center Simultaneous acquisition of spatial harmonics (SMASH): ultra-fast imaging with radiofrequency coil arrays
JP4632535B2 (ja) * 2000-12-27 2011-02-16 株式会社東芝 Mri装置
US6801800B2 (en) * 1999-11-29 2004-10-05 Kabushiki Kaisha Toshiba MR imaging using ECG-prep scan
US6230039B1 (en) * 2000-03-28 2001-05-08 Philips Electronics North America Corporation Magnetic resonance imaging method and system with adaptively selected flip angels
US6700374B1 (en) * 2000-03-29 2004-03-02 Koninklijke Philips Electronics, N.V. EPI calibration method to minimize ghosting in reconstructed images
US6694165B2 (en) * 2000-03-31 2004-02-17 General Electric Company Method for ultra-fast MR fluoroscopy
US6320380B1 (en) * 2000-10-03 2001-11-20 Marconi Medical Systems, Inc. MRI method and apparatus for increasing the efficiency of echo lanar imaging and other late echo techniques
US6804546B1 (en) * 2001-04-20 2004-10-12 Koninklijke Philips Electronics, N.V. Multiple contrast echo-planar imaging for contrast-enhanced imaging
EP1506417A1 (en) * 2002-05-13 2005-02-16 Koninklijke Philips Electronics N.V. Reduction of susceptibility artifacts in subencoded single-shot magnetic resonance imaging
US7672426B2 (en) * 2002-12-04 2010-03-02 Varian Medical Systems, Inc. Radiation scanning units with reduced detector requirements
US7706855B1 (en) * 2004-07-20 2010-04-27 General Electric Company System and method for MR data acquisition with uniform fat suppression
US8664954B2 (en) * 2009-03-31 2014-03-04 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Magnetic resonance imaging with improved imaging contrast
US9084542B2 (en) * 2009-11-10 2015-07-21 General Electric Company Apparatus and methods for computed tomography imaging
WO2013140276A1 (en) * 2012-03-19 2013-09-26 Koninklijke Philips N.V. Magnetic resonance image reconstruction method with respiratory mot detection during sampling of central and peripheral k- space areas
US9983283B2 (en) * 2015-03-16 2018-05-29 Toshiba Medical Systems Corporation Accelerated MRI using radial strips and undersampling of k-space

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19816961A1 (de) * 1998-04-17 1999-06-17 Siemens Ag Verfahren zur Gewinnung eines dreidimensionalen Rohdatensatzes für die MR-Bildgebung und Vorrichtung zur Durchführung des Verfahrens
DE10147919A1 (de) * 2001-09-28 2003-04-30 Siemens Ag Verfahren zur Erzeugung von Bilddaten mittels magnetischer Resonanz
CN101109791A (zh) * 2006-07-19 2008-01-23 西门子(中国)有限公司 回波平面成像序列的纠正方法
CN101122633A (zh) * 2006-08-08 2008-02-13 西门子(中国)有限公司 Mri脉冲序列的相位校正方法及装置
CN101153896A (zh) * 2006-09-29 2008-04-02 西门子(中国)有限公司 回波平面成像序列的图像重建方法
CN102141603A (zh) * 2010-01-28 2011-08-03 西门子迈迪特(深圳)磁共振有限公司 一种平面回波成像方法和系统
CN102435966A (zh) * 2011-09-02 2012-05-02 中国科学院深圳先进技术研究院 三维磁共振成像方法及系统
CN103529414A (zh) * 2012-07-04 2014-01-22 上海联影医疗科技有限公司 磁共振成像方法与装置、k空间的重建方法与装置
CN102928796A (zh) * 2012-09-28 2013-02-13 清华大学 快速扩散磁共振成像和重建方法
CN103809141A (zh) * 2012-11-02 2014-05-21 弗赖堡大学综合诊所 用于磁共振成像的方法
CN104181487A (zh) * 2013-11-19 2014-12-03 上海联影医疗科技有限公司 K空间重建方法及装置

Also Published As

Publication number Publication date
CN105738846A (zh) 2016-07-06
US20160170000A1 (en) 2016-06-16
US10262385B2 (en) 2019-04-16

Similar Documents

Publication Publication Date Title
CN105738846B (zh) K空间数据采集方法及其磁共振成像方法
JP6037652B2 (ja) 拡散強調磁気共鳴データの生成方法、磁気共鳴システムおよびコンピュータ読み取り可能な記憶媒体
US9797974B2 (en) Nonrigid motion correction in 3D using autofocusing with localized linear translations
JP6245861B2 (ja) 水・脂肪の分離を実行する磁気共鳴画像化方法および装置
US9664758B2 (en) Method and magnetic resonance system to generate multiple magnetic resonance images
US9488711B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
CN104714199B (zh) 一种磁共振成像方法和装置
JP6243522B2 (ja) 正則化された検出再構成を使用するマルチエコーディクソン水−脂肪分離及びb0歪補正による並列mri
JP5848713B2 (ja) 磁気共鳴イメージング装置及びコントラスト強調画像取得方法
JP6332891B2 (ja) サイドバンドアーチファクトを抑制する並列マルチスライスmr撮像
CN105334479B (zh) 一种磁共振成像方法和装置
US20150061668A1 (en) Mri ghosting correction using unequal magnitudes ratio
US10916007B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
CN110133556A (zh) 一种磁共振图像处理方法、装置、设备及存储介质
CN106574955A (zh) 使用由表面线圈和体线圈同时接收的磁共振数据的表面线圈灵敏度校正
CN106597337A (zh) 一种磁共振t2*加权快速成像方法及装置
JP2017529960A (ja) アーチファクト抑制を有するプロペラmrイメージング
KR20130099612A (ko) 자기 공명 영상 처리 장치 및 방법
Chang et al. Correction of geometric distortion in Propeller echo planar imaging using a modified reversed gradient approach
CN111103562B (zh) 一种同时多个片层成像的重建方法及装置
US10928473B2 (en) Methods and systems for reduced shading and blurring in magnetic resonance imaging
KR101475932B1 (ko) 하이브리드 자기 공명 영상 처리 장치 및 방법
CN108577841B (zh) 一种propeller技术中抑制非刚性运动的权重计算方法
US20190377049A1 (en) Magnetic resonance imaging
CN109752681A (zh) 倾斜平面回波成像方法及核磁共振成像系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant