CN105738845A - 基于金刚石nv-色心的纳米级三维磁共振分子成像装置 - Google Patents

基于金刚石nv-色心的纳米级三维磁共振分子成像装置 Download PDF

Info

Publication number
CN105738845A
CN105738845A CN201610104365.8A CN201610104365A CN105738845A CN 105738845 A CN105738845 A CN 105738845A CN 201610104365 A CN201610104365 A CN 201610104365A CN 105738845 A CN105738845 A CN 105738845A
Authority
CN
China
Prior art keywords
diamond
imaging device
magnetic field
laser
color center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610104365.8A
Other languages
English (en)
Inventor
申宝忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Harbin Medical University
Original Assignee
Harbin Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Medical University filed Critical Harbin Medical University
Priority to CN201610104365.8A priority Critical patent/CN105738845A/zh
Publication of CN105738845A publication Critical patent/CN105738845A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

本发明公开一种基于金刚石NV?色心的纳米级三维磁共振分子成像装置,包括:玻璃底座;激光器,设置在所述玻璃底座的内部,用于向外部发射激光;含有NV?色心的金刚石,设置在所述玻璃底座的上表面所述激光器发出的激光直接照射至所述金刚石;微波脉冲器,用于向所述金刚石输入微波脉冲;显微镜物镜,使所述金刚石的NV?色心发出的荧光通过所述显微镜物镜向外发射;单色滤光片,用于过滤所述金刚石的NV?色心发出的荧光;纳米凸透镜,将过滤后的所述金刚石的NV?色心发出的荧光进一步集中;分布式光学成像镜头,用以实现成像功能;封装设备,用于实现稳定温度、屏蔽电磁以及隔离保护的功能。

Description

基于金刚石NV-色心的纳米级三维磁共振分子成像装置
技术领域
本发明涉及核磁共振技术,特别涉及一种基于金刚石NV-色心芯片的纳米级三维磁共振成像装置,实现分子、蛋白和细胞水平的纳米级三维立体的超精密磁场成像。
背景技术
现有的磁共振成像技术由于检测分辨率或检测灵敏度的限制,很难应用到微尺度成像领域中。物体的纳米级分辨率成像成为化学、物理学和生物医学的发展中的重要需求。由于单个质子的磁场十分微弱,在10nm的距离探测其磁场强度仅为6nT,利用什么样的感应器能与被测物如此接近且具有这么高的灵敏度是科学界的难题。
近年来以钻石NV-色心为基础研发的弱磁场成像技术打开了新的局面。利用NV-色心中的电子自旋可实现微弱磁场的测量。在待测弱磁场与微波的共同作用下,NV-色心电子自旋达到共振,此时其荧光强度发生变化,实现磁场的测量。金刚石中的NV-色心具有良好的稳定性,在室温下进行工作,分辨率可达到纳米级。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于金刚石NV-色心能够实现三维磁共振分子成像的装置,使其具有高灵敏度、高分辨率等优点。
为达上述目的,本发明提供一种基于金刚石NV-色心的纳米级三维磁共振分子成像装置,包括:
玻璃底座,设置于所述成像装置的底部,用于承载其它元件;
激光器,设置在所述玻璃底座的内部,用于向外部发射激光;
含有NV-色心的金刚石,设置在所述玻璃底座的上表面,与所述激光器相对应,所述激光器发出的激光直接照射至所述金刚石;
微波脉冲器,与所述金刚石相连,用于向所述金刚石输入微波脉冲;
显微镜物镜,设置在所述玻璃底座的正上方,与所述金刚石相对应,使所述金刚石的NV-色心发出的荧光通过所述显微镜物镜向外发射;
单色滤光片,设置在所述显微镜物镜的正上方,用于过滤所述金刚石的NV-色心发出的荧光;
纳米凸透镜,设置在所述单色滤光片的正上方,将过滤后的所述金刚石的NV-色心发出的荧光进一步集中;
分布式光学成像镜头,设置在所述纳米凸透镜的正上方,实现成像功能;
封装设备,环形围绕在所述成像装置的四周,用于实现稳定温度、屏蔽电磁以及隔离保护的功能。
根据本发明提出的成像装置,还包括:
偏振磁场旋转轨道,同心设置在所述封装设备内部,所述偏振磁场旋转轨道为圆环形;
偏置磁场,设置在所述偏振磁场旋转轨道上,能够沿着所述偏振磁场旋转轨道进行360°旋转运动。
根据本发明提出的成像装置,所述单色滤光片允许波长为637nm的荧光通过。
根据本发明提出的成像装置,所述激光器用于发出波长为532nm的脉冲激光。
根据本发明提出的成像装置,所述脉冲微波器用于发射频率为2.87GHz的脉冲微波。
与现有技术相比,本发明具有以下有益效果:
本发明利用外界弱磁场对NV-电子自旋扰动从而改变塞曼劈裂效应,造成荧光强度改变,此时引入的微波射频强度在达到塞曼劈裂能量差值将导致荧光强度降到最低,从而实现从磁场信息到光学信息的转换,光学成像接收器将光学信号转化为电信号。不仅如此本发明利用外加偏置磁场的可旋转性,得到分子表面全方位信息,通过数据融合,最后测得分子三维立体图像。本系统将在化学、物理和生物医学等领域有着重要的应用价值。
附图说明
图1为本发明的三维磁共振分子成像装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明提出的一种基于金刚石NV-色心纳米级三维磁共振分子成像装置包括:玻璃立方底座1、532nm激光器2、含有NV-色心的金刚石3、载样皿4、微波脉冲器5、显微镜物镜6、单色滤光片7、纳米凸透镜8、360°旋转偏置磁场9、分布式光学成像镜头10、偏振磁场旋转轨道和外部的封装设备12。532nm激光器2安装在玻璃立方底座1内,发出射频激光照射金刚石NV-色心3,微波脉冲5从侧面引入金刚石,载样品皿4中待测物弱磁场影像,NV-色心的荧光摄入显微镜物镜6并通过单色滤光片7,由纳米凸透镜8将光信号放大并由分布式光学成像镜头10进行采集。采集过程中偏置磁场9角度固定。随着一次采集完成,偏置磁场在轨道11内旋转一定角度,进行下一次采集,所得数据与之前采集信号融合,知道偏振磁场旋转360°采集完毕,最后获得待测物三维磁场分布图像。整套设备由外层包封装置12稳定隔离。
其中,上述单色滤光片7允许波长为637nm的荧光通过,上述脉冲微波器5用于发射频率为2.87GHz的脉冲微波。
本发明技术方案的原理是:实现物体三维表面为弱磁场成像。通过激光和微波脉冲将置于偏振磁场中的金刚石NV-色心产生荧光,根据待测物磁场引起的荧光强度变化,测定待测物磁场强度。由于NV-色心具有极高的灵敏度和分辨率,使得微弱磁场共振三维成像得以实现。
综上所述,本发明提出的基于金刚石NV-色心的磁共振三维分子成像装置,实现了分子纳米级三维磁共振成像。本发明利用外界弱磁场对NV-电子自旋扰动从而改变塞曼劈裂效应,造成荧光强度改变,此时引入的微波射频强度在达到塞曼劈裂能量差值将导致荧光强度降到最低,从而实现从磁场信息到光学信息的转换,光学成像接收器将光学信号转化为电信号。不仅如此本发明利用外加偏置磁场的可旋转性,得到分子表面全方位信息,通过数据融合,最后测得分子三维立体图像。
本领域普通技术人员可以理解:附图只是一个实施例的示意图,附图中的模块或流程并不一定是实施本发明所必须的。
本领域普通技术人员可以理解:实施例中的装置中的模块可以按照实施例描述分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围。

Claims (5)

1.一种基于金刚石NV-色心的纳米级三维磁共振分子成像装置,其特征在于,包括:
玻璃底座,设置于所述成像装置的底部,用于承载其它元件;
激光器,设置在所述玻璃底座的内部,用于向外部发射激光;
含有NV-色心的金刚石,设置在所述玻璃底座的上表面,与所述激光器相对应,所述激光器发出的激光直接照射至所述金刚石;
微波脉冲器,与所述金刚石相连,用于向所述金刚石输入微波脉冲;
显微镜物镜,设置在所述玻璃底座的正上方,与所述金刚石相对应,使所述金刚石的NV-色心发出的荧光通过所述显微镜物镜向外发射;
单色滤光片,设置在所述显微镜物镜的正上方,用于过滤所述金刚石的NV-色心发出的荧光;
纳米凸透镜,设置在所述单色滤光片的正上方,将过滤后的所述金刚石的NV-色心发出的荧光进一步集中;
分布式光学成像镜头,设置在所述纳米凸透镜的正上方,实现成像功能;
封装设备,环形围绕在所述成像装置的四周,用于实现稳定温度、屏蔽电磁以及隔离保护的功能。
2.根据权利要求1所述的成像装置,其特征在于,还包括:
偏振磁场旋转轨道,同心设置在所述封装设备内部,所述偏振磁场旋转轨道为圆环形;
偏置磁场,设置在所述偏振磁场旋转轨道上,能够沿着所述偏振磁场旋转轨道进行360°旋转运动。
3.根据权利要求2所述的成像装置,其特征在于,所述单色滤光片允许波长为637nm的荧光通过。
4.根据权利要求2所述的成像装置,其特征在于,所述激光器用于发出波长为532nm的脉冲激光。
5.根据权利要求2所述的成像装置,其特征在于,所述脉冲微波器用于发射频率为2.87GHz的脉冲微波。
CN201610104365.8A 2016-02-25 2016-02-25 基于金刚石nv-色心的纳米级三维磁共振分子成像装置 Pending CN105738845A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610104365.8A CN105738845A (zh) 2016-02-25 2016-02-25 基于金刚石nv-色心的纳米级三维磁共振分子成像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610104365.8A CN105738845A (zh) 2016-02-25 2016-02-25 基于金刚石nv-色心的纳米级三维磁共振分子成像装置

Publications (1)

Publication Number Publication Date
CN105738845A true CN105738845A (zh) 2016-07-06

Family

ID=56249432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610104365.8A Pending CN105738845A (zh) 2016-02-25 2016-02-25 基于金刚石nv-色心的纳米级三维磁共振分子成像装置

Country Status (1)

Country Link
CN (1) CN105738845A (zh)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9720055B1 (en) 2016-01-21 2017-08-01 Lockheed Martin Corporation Magnetometer with light pipe
US9823381B2 (en) 2014-03-20 2017-11-21 Lockheed Martin Corporation Mapping and monitoring of hydraulic fractures using vector magnetometers
US9824597B2 (en) 2015-01-28 2017-11-21 Lockheed Martin Corporation Magnetic navigation methods and systems utilizing power grid and communication network
US9823313B2 (en) 2016-01-21 2017-11-21 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with circuitry on diamond
US9823314B2 (en) 2016-01-21 2017-11-21 Lockheed Martin Corporation Magnetometer with a light emitting diode
US9829545B2 (en) 2015-11-20 2017-11-28 Lockheed Martin Corporation Apparatus and method for hypersensitivity detection of magnetic field
US9835693B2 (en) 2016-01-21 2017-12-05 Lockheed Martin Corporation Higher magnetic sensitivity through fluorescence manipulation by phonon spectrum control
US9845153B2 (en) 2015-01-28 2017-12-19 Lockheed Martin Corporation In-situ power charging
US9853837B2 (en) 2014-04-07 2017-12-26 Lockheed Martin Corporation High bit-rate magnetic communication
US9910105B2 (en) 2014-03-20 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
US9910104B2 (en) 2015-01-23 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
US10006973B2 (en) 2016-01-21 2018-06-26 Lockheed Martin Corporation Magnetometer with a light emitting diode
US10012704B2 (en) 2015-11-04 2018-07-03 Lockheed Martin Corporation Magnetic low-pass filter
WO2018174912A1 (en) * 2017-03-24 2018-09-27 Lockheed Martin Corporation Bias magnetic array
US10088336B2 (en) 2016-01-21 2018-10-02 Lockheed Martin Corporation Diamond nitrogen vacancy sensed ferro-fluid hydrophone
US10088452B2 (en) 2016-01-12 2018-10-02 Lockheed Martin Corporation Method for detecting defects in conductive materials based on differences in magnetic field characteristics measured along the conductive materials
US10120039B2 (en) 2015-11-20 2018-11-06 Lockheed Martin Corporation Apparatus and method for closed loop processing for a magnetic detection system
US10126377B2 (en) 2016-05-31 2018-11-13 Lockheed Martin Corporation Magneto-optical defect center magnetometer
US10145910B2 (en) 2017-03-24 2018-12-04 Lockheed Martin Corporation Photodetector circuit saturation mitigation for magneto-optical high intensity pulses
CN108957376A (zh) * 2018-05-18 2018-12-07 中北大学 芯片式原子自旋磁传感器
CN109061295A (zh) * 2018-06-29 2018-12-21 北京航空航天大学 一种近场微波谐振器谐振频率测量系统及方法
US10168393B2 (en) 2014-09-25 2019-01-01 Lockheed Martin Corporation Micro-vacancy center device
US10228429B2 (en) 2017-03-24 2019-03-12 Lockheed Martin Corporation Apparatus and method for resonance magneto-optical defect center material pulsed mode referencing
US10241158B2 (en) 2015-02-04 2019-03-26 Lockheed Martin Corporation Apparatus and method for estimating absolute axes' orientations for a magnetic detection system
US10274550B2 (en) 2017-03-24 2019-04-30 Lockheed Martin Corporation High speed sequential cancellation for pulsed mode
US10277208B2 (en) 2014-04-07 2019-04-30 Lockheed Martin Corporation Energy efficient controlled magnetic field generator circuit
US10281550B2 (en) 2016-11-14 2019-05-07 Lockheed Martin Corporation Spin relaxometry based molecular sequencing
US10317279B2 (en) 2016-05-31 2019-06-11 Lockheed Martin Corporation Optical filtration system for diamond material with nitrogen vacancy centers
US10333588B2 (en) 2015-12-01 2019-06-25 Lockheed Martin Corporation Communication via a magnio
US10330744B2 (en) 2017-03-24 2019-06-25 Lockheed Martin Corporation Magnetometer with a waveguide
US10338162B2 (en) 2016-01-21 2019-07-02 Lockheed Martin Corporation AC vector magnetic anomaly detection with diamond nitrogen vacancies
US10338164B2 (en) 2017-03-24 2019-07-02 Lockheed Martin Corporation Vacancy center material with highly efficient RF excitation
US10338163B2 (en) 2016-07-11 2019-07-02 Lockheed Martin Corporation Multi-frequency excitation schemes for high sensitivity magnetometry measurement with drift error compensation
US10345396B2 (en) 2016-05-31 2019-07-09 Lockheed Martin Corporation Selected volume continuous illumination magnetometer
US10345395B2 (en) 2016-12-12 2019-07-09 Lockheed Martin Corporation Vector magnetometry localization of subsurface liquids
US10359479B2 (en) 2017-02-20 2019-07-23 Lockheed Martin Corporation Efficient thermal drift compensation in DNV vector magnetometry
US10371765B2 (en) 2016-07-11 2019-08-06 Lockheed Martin Corporation Geolocation of magnetic sources using vector magnetometer sensors
US10371760B2 (en) 2017-03-24 2019-08-06 Lockheed Martin Corporation Standing-wave radio frequency exciter
US10379174B2 (en) 2017-03-24 2019-08-13 Lockheed Martin Corporation Bias magnet array for magnetometer
US10408890B2 (en) 2017-03-24 2019-09-10 Lockheed Martin Corporation Pulsed RF methods for optimization of CW measurements
US10408889B2 (en) 2015-02-04 2019-09-10 Lockheed Martin Corporation Apparatus and method for recovery of three dimensional magnetic field from a magnetic detection system
US10459041B2 (en) 2017-03-24 2019-10-29 Lockheed Martin Corporation Magnetic detection system with highly integrated diamond nitrogen vacancy sensor
US10466312B2 (en) 2015-01-23 2019-11-05 Lockheed Martin Corporation Methods for detecting a magnetic field acting on a magneto-optical detect center having pulsed excitation
US10520558B2 (en) 2016-01-21 2019-12-31 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with nitrogen-vacancy center diamond located between dual RF sources
US10527746B2 (en) 2016-05-31 2020-01-07 Lockheed Martin Corporation Array of UAVS with magnetometers
US10571530B2 (en) 2016-05-31 2020-02-25 Lockheed Martin Corporation Buoy array of magnetometers
US10677953B2 (en) 2016-05-31 2020-06-09 Lockheed Martin Corporation Magneto-optical detecting apparatus and methods
US11879859B2 (en) 2019-08-05 2024-01-23 Goldway Technology Limited Process for determining the type of a diamond

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100315079A1 (en) * 2007-12-03 2010-12-16 President And Fellows Of Harvard College Electronic spin based enhancement of magnetometer sensitivity
CN104704375A (zh) * 2012-08-22 2015-06-10 哈佛学院院长及董事 纳米级扫描传感器
CN105137371A (zh) * 2015-08-11 2015-12-09 北京航空航天大学 一种芯片级金刚石nv-色心磁成像装置及成像方法
CN105352489A (zh) * 2015-11-16 2016-02-24 北京航空航天大学 一种基于金刚石nv―色心的加速度传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100315079A1 (en) * 2007-12-03 2010-12-16 President And Fellows Of Harvard College Electronic spin based enhancement of magnetometer sensitivity
CN104704375A (zh) * 2012-08-22 2015-06-10 哈佛学院院长及董事 纳米级扫描传感器
CN105137371A (zh) * 2015-08-11 2015-12-09 北京航空航天大学 一种芯片级金刚石nv-色心磁成像装置及成像方法
CN105352489A (zh) * 2015-11-16 2016-02-24 北京航空航天大学 一种基于金刚石nv―色心的加速度传感器

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10725124B2 (en) 2014-03-20 2020-07-28 Lockheed Martin Corporation DNV magnetic field detector
US9823381B2 (en) 2014-03-20 2017-11-21 Lockheed Martin Corporation Mapping and monitoring of hydraulic fractures using vector magnetometers
US9910105B2 (en) 2014-03-20 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
US10277208B2 (en) 2014-04-07 2019-04-30 Lockheed Martin Corporation Energy efficient controlled magnetic field generator circuit
US9853837B2 (en) 2014-04-07 2017-12-26 Lockheed Martin Corporation High bit-rate magnetic communication
US10168393B2 (en) 2014-09-25 2019-01-01 Lockheed Martin Corporation Micro-vacancy center device
US9910104B2 (en) 2015-01-23 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
US10466312B2 (en) 2015-01-23 2019-11-05 Lockheed Martin Corporation Methods for detecting a magnetic field acting on a magneto-optical detect center having pulsed excitation
US9824597B2 (en) 2015-01-28 2017-11-21 Lockheed Martin Corporation Magnetic navigation methods and systems utilizing power grid and communication network
US9845153B2 (en) 2015-01-28 2017-12-19 Lockheed Martin Corporation In-situ power charging
US10408889B2 (en) 2015-02-04 2019-09-10 Lockheed Martin Corporation Apparatus and method for recovery of three dimensional magnetic field from a magnetic detection system
US10241158B2 (en) 2015-02-04 2019-03-26 Lockheed Martin Corporation Apparatus and method for estimating absolute axes' orientations for a magnetic detection system
US10012704B2 (en) 2015-11-04 2018-07-03 Lockheed Martin Corporation Magnetic low-pass filter
US9829545B2 (en) 2015-11-20 2017-11-28 Lockheed Martin Corporation Apparatus and method for hypersensitivity detection of magnetic field
US10120039B2 (en) 2015-11-20 2018-11-06 Lockheed Martin Corporation Apparatus and method for closed loop processing for a magnetic detection system
US10333588B2 (en) 2015-12-01 2019-06-25 Lockheed Martin Corporation Communication via a magnio
US10088452B2 (en) 2016-01-12 2018-10-02 Lockheed Martin Corporation Method for detecting defects in conductive materials based on differences in magnetic field characteristics measured along the conductive materials
US9823314B2 (en) 2016-01-21 2017-11-21 Lockheed Martin Corporation Magnetometer with a light emitting diode
US10006973B2 (en) 2016-01-21 2018-06-26 Lockheed Martin Corporation Magnetometer with a light emitting diode
US10088336B2 (en) 2016-01-21 2018-10-02 Lockheed Martin Corporation Diamond nitrogen vacancy sensed ferro-fluid hydrophone
US10338162B2 (en) 2016-01-21 2019-07-02 Lockheed Martin Corporation AC vector magnetic anomaly detection with diamond nitrogen vacancies
US9720055B1 (en) 2016-01-21 2017-08-01 Lockheed Martin Corporation Magnetometer with light pipe
US9817081B2 (en) 2016-01-21 2017-11-14 Lockheed Martin Corporation Magnetometer with light pipe
US9835694B2 (en) 2016-01-21 2017-12-05 Lockheed Martin Corporation Higher magnetic sensitivity through fluorescence manipulation by phonon spectrum control
US10520558B2 (en) 2016-01-21 2019-12-31 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with nitrogen-vacancy center diamond located between dual RF sources
US9835693B2 (en) 2016-01-21 2017-12-05 Lockheed Martin Corporation Higher magnetic sensitivity through fluorescence manipulation by phonon spectrum control
US9823313B2 (en) 2016-01-21 2017-11-21 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with circuitry on diamond
US10527746B2 (en) 2016-05-31 2020-01-07 Lockheed Martin Corporation Array of UAVS with magnetometers
US10317279B2 (en) 2016-05-31 2019-06-11 Lockheed Martin Corporation Optical filtration system for diamond material with nitrogen vacancy centers
US10571530B2 (en) 2016-05-31 2020-02-25 Lockheed Martin Corporation Buoy array of magnetometers
US10677953B2 (en) 2016-05-31 2020-06-09 Lockheed Martin Corporation Magneto-optical detecting apparatus and methods
US10126377B2 (en) 2016-05-31 2018-11-13 Lockheed Martin Corporation Magneto-optical defect center magnetometer
US10345396B2 (en) 2016-05-31 2019-07-09 Lockheed Martin Corporation Selected volume continuous illumination magnetometer
US10371765B2 (en) 2016-07-11 2019-08-06 Lockheed Martin Corporation Geolocation of magnetic sources using vector magnetometer sensors
US10338163B2 (en) 2016-07-11 2019-07-02 Lockheed Martin Corporation Multi-frequency excitation schemes for high sensitivity magnetometry measurement with drift error compensation
US10281550B2 (en) 2016-11-14 2019-05-07 Lockheed Martin Corporation Spin relaxometry based molecular sequencing
US10345395B2 (en) 2016-12-12 2019-07-09 Lockheed Martin Corporation Vector magnetometry localization of subsurface liquids
US10359479B2 (en) 2017-02-20 2019-07-23 Lockheed Martin Corporation Efficient thermal drift compensation in DNV vector magnetometry
US10338164B2 (en) 2017-03-24 2019-07-02 Lockheed Martin Corporation Vacancy center material with highly efficient RF excitation
US10228429B2 (en) 2017-03-24 2019-03-12 Lockheed Martin Corporation Apparatus and method for resonance magneto-optical defect center material pulsed mode referencing
US10379174B2 (en) 2017-03-24 2019-08-13 Lockheed Martin Corporation Bias magnet array for magnetometer
US10408890B2 (en) 2017-03-24 2019-09-10 Lockheed Martin Corporation Pulsed RF methods for optimization of CW measurements
US10330744B2 (en) 2017-03-24 2019-06-25 Lockheed Martin Corporation Magnetometer with a waveguide
US10459041B2 (en) 2017-03-24 2019-10-29 Lockheed Martin Corporation Magnetic detection system with highly integrated diamond nitrogen vacancy sensor
US10274550B2 (en) 2017-03-24 2019-04-30 Lockheed Martin Corporation High speed sequential cancellation for pulsed mode
US10371760B2 (en) 2017-03-24 2019-08-06 Lockheed Martin Corporation Standing-wave radio frequency exciter
GB2575219A (en) * 2017-03-24 2020-01-01 Lockheed Corp Bias magnetic array
GB2575219B (en) * 2017-03-24 2022-03-09 Lockheed Corp Bias magnetic array
WO2018174912A1 (en) * 2017-03-24 2018-09-27 Lockheed Martin Corporation Bias magnetic array
US10145910B2 (en) 2017-03-24 2018-12-04 Lockheed Martin Corporation Photodetector circuit saturation mitigation for magneto-optical high intensity pulses
CN108957376A (zh) * 2018-05-18 2018-12-07 中北大学 芯片式原子自旋磁传感器
CN109061295A (zh) * 2018-06-29 2018-12-21 北京航空航天大学 一种近场微波谐振器谐振频率测量系统及方法
US11879859B2 (en) 2019-08-05 2024-01-23 Goldway Technology Limited Process for determining the type of a diamond

Similar Documents

Publication Publication Date Title
CN105738845A (zh) 基于金刚石nv-色心的纳米级三维磁共振分子成像装置
CN105137371B (zh) 一种芯片级金刚石nv‑色心磁成像装置及成像方法
CN105823994B (zh) 一种基于金刚石nv色心的微波磁场测量系统
Radulaski et al. Scalable quantum photonics with single color centers in silicon carbide
KR102513482B1 (ko) 원자 기반 전자기장 감지 요소 및 측정 시스템
Niethammer et al. Vector magnetometry using silicon vacancies in 4 H-SiC under ambient conditions
CN109061295A (zh) 一种近场微波谐振器谐振频率测量系统及方法
CN107356820A (zh) 一种基于脉冲光探测磁共振的电磁场近场成像系统及方法
CN105204310B (zh) 基于光学扫描全息技术的复振幅物体重建装置
CN105444749A (zh) 基于贝利相移的集群nv色心金刚石固态自旋共振陀螺仪
CN109581643B (zh) 傅里叶叠层显微成像装置及方法
CN109238505A (zh) 一种高灵敏度高分辨接触式三维温度场成像系统及方法
CN103584834A (zh) 反向聚焦显微成像结构及方法
CN105675639B (zh) 电子束诱导二次谐波的超分辨显微系统及测试方法
Qi et al. Multiphoton nonclassical light from clusters of single-photon emitters
Fang et al. High spatial resolution multi-channel optically pumped atomic magnetometer based on a spatial light modulator
CN111044948A (zh) 一种基于钾铷混合抽运的高空间分辨率矢量磁场测量装置
CN212569096U (zh) 一种基于金刚石nv色心和克尔效应的磁成像装置
CN107271456B (zh) 微波扫描共振的固态自旋系综定位与浓度测量装置
CN112240880A (zh) 一种实现近共振增强的超分辨受激拉曼显微成像方法及装置
CN204120989U (zh) 内窥式光学分子影像导航系统
CN109804259A (zh) 半导体设备检查方法及半导体设备检查装置
Gottscholl et al. Room temperature initialisation and readout of intrinsic spin defects in a Van der Waals crystal
CN102902056B (zh) 基于量子统计的高精度光学成像装置与方法
JP2012038805A (ja) 電界分布またはキャリア分布を高次高調波の強度に基づいて検出する検出装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Shen Baozhong

Inventor after: Xiao Zunyu

Inventor after: Wu Lina

Inventor after: Hu Lingzhi

Inventor after: Sun Xilin

Inventor after: Fang Fang

Inventor after: Huang Tao

Inventor before: Shen Baozhong

COR Change of bibliographic data
RJ01 Rejection of invention patent application after publication

Application publication date: 20160706

RJ01 Rejection of invention patent application after publication