CN105738441B - 一种修饰玻碳电极及其制备方法和应用 - Google Patents

一种修饰玻碳电极及其制备方法和应用 Download PDF

Info

Publication number
CN105738441B
CN105738441B CN201610106046.0A CN201610106046A CN105738441B CN 105738441 B CN105738441 B CN 105738441B CN 201610106046 A CN201610106046 A CN 201610106046A CN 105738441 B CN105738441 B CN 105738441B
Authority
CN
China
Prior art keywords
electrode
carbon electrode
aminobenzoic acid
glass
polysalicylates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610106046.0A
Other languages
English (en)
Other versions
CN105738441A (zh
Inventor
王玉春
刘赵荣
弓巧娟
张稳婵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuncheng University
Original Assignee
Yuncheng University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuncheng University filed Critical Yuncheng University
Priority to CN201610106046.0A priority Critical patent/CN105738441B/zh
Publication of CN105738441A publication Critical patent/CN105738441A/zh
Application granted granted Critical
Publication of CN105738441B publication Critical patent/CN105738441B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Abstract

本发明公开了一种修饰玻碳电极,是由玻碳电极和涂覆在所述玻碳电极表面的聚水杨醛缩对氨基苯甲酸沉积膜构成的聚水杨醛缩对氨基苯甲酸修饰的玻碳电极;其制备方法为:将玻碳电极、铂丝对电极和饱和甘汞参比电极组成的三电极置于氯化钾、氢氧化钠、水杨醛和对氨基苯甲酸的混合电解质溶液中以‑1.0~1.0V的扫描电压和0.03~0.08V/s的扫描速度进行循环伏安扫描;扫描结束后取下玻碳电极,经洗涤、晾干,得到聚水杨醛缩对氨基苯甲酸修饰的玻碳电极;所述修饰的玻碳电极可以在检测亚硝酸根中应用。本发明具有原料易得,电极制备过程简单的特点,测定亚硝酸根样品时,具有快速、灵敏、准确等特点,同时能够有效降低了污染环境的风险。

Description

一种修饰玻碳电极及其制备方法和应用
技术领域
本发明涉及一种修饰玻璃电极,具体涉及一种聚水杨醛缩对氨基苯甲酸修饰的玻碳电极的制备,以及该电极在催化及检测水体中亚硝酸根的方法。
背景技术
亚硝酸盐是一种重要的工业用盐,也是水体中氮转化的一种中间产物,广泛存在于与生命过程密切相关的土壤、天然水和食品中。进入人体的NO2 -,不仅会使正常的血红蛋白转化为高铁血红蛋白,造成人体缺氧中毒,而且能够与胃液中不同的胺类反应产生致癌的亚硝胺类,引起消化系统器官的癌变。因此,对亚硝酸根进行检测是一件非常重要且有意义的事情。
目前测定NO2 -的方法主要有:分光光度法、荧光猝灭法、流动注射法、荧光光度法和电化学方法。电化学法以其准确、简便、成本低等优点,是水体中亚硝酸根的检测的一种常见方法,但由于NO2 -在裸玻碳电极上的还原反应有较大的过电位而难以进行,因此需对电极表面进行修饰。
早期,人们通过滴涂法对玻碳电极进行修饰,进而提高其测定亚硝酸根的性能。近年来,也有不少科研工作者采用电沉积法修饰玻碳电极检测NO2 -,如申请号为201110338020.6的“修饰玻碳电极及其制备方法和其在检测亚硝酸根中的应用”、申请号为200910053867.2“双十二烷基二甲基溴化铵修饰玻碳电极的制备方法及其应用”、申请号为201510306906.0的“一种Cu/Ag/碳纳米管复合物修饰玻碳电极及其制备方法和应用”和申请号为201310207482.3的“还原石墨烯-钯复合物修饰电极的制备及其应用”等。本发明采用电聚合的方法直接将Schiff碱修饰层固定于玻碳电极表面,与传统的滴涂法相比,修饰层与玻碳电极之间的结合更稳定。与上述采用电沉积法制备的检测NO2 -的修饰电极相比,本发明的修饰电极除具有响应快速、灵敏度高外,还具有宽的线性范围等优点。
发明内容
为了克服现有技术中的缺陷,本发明公开了一种聚水杨醛缩对氨基苯甲酸修饰的玻碳电极及其制备方法和应用。本发明采用电聚合将水杨醛缩对氨基苯甲酸聚合到玻碳电极上来修饰玻碳电极,并将其应用于亚硝酸根的测定,与其它亚硝酸根检测方法相比,具有操作简单、线性范围宽、灵敏度高的特点。
本发明是通过如下技术方案实现的:
本发明的一个目的是提供一种修饰玻碳电极,所述修饰玻碳电极是由玻碳电极和涂覆在所述玻碳电极表面的聚水杨醛缩对氨基苯甲酸沉积膜构成的聚水杨醛缩对氨基苯甲酸修饰的玻碳电极;其中,所述水杨醛缩对氨基苯甲酸沉积膜是将玻碳电极置于氯化钾、氢氧化钠、水杨醛和对氨基苯甲酸的混合电解质溶液中作为工作电极,以-1.0~1.0V的扫描电压和0.03~0.08V/s的扫描速度进行循环伏安扫描得到的。
优选地,所述循环伏安扫描的扫描次数为5~20圈。
优选地,所述循环伏安扫描的扫描速度为0.05 V/s。
较佳地,所述循环伏安扫描是在玻碳电极、铂丝对电极和饱和甘汞参比电极组成的三电极体系中进行。
优选地,氯化钾、氢氧化钠、水杨醛和对氨基苯甲酸的混合电解质溶液中氯化钾浓度为0.05~0.15 mol·L-1,氢氧化钠浓度为0.5~2.0 mol·L-1,水杨醛浓度为0.016~0.032g·L-1,对氨基苯甲酸浓度为0.016~0.032 g·L-1
本发明还公开了一种修饰玻碳电极的制备方法,包括如下步骤:
(1)将玻碳电极、铂丝对电极和饱和甘汞参比电极组成的三电极置于氯化钾、氢氧化钠、水杨醛和对氨基苯甲酸的混合电解质溶液中,以-1.0~1.0V的扫描电压和0.03~0.08V/s的扫描速度进行循环伏安扫描;
(2)循环伏安扫描结束后取下玻碳电极,经洗涤、晾干,得到聚水杨醛缩对氨基苯甲酸修饰的玻碳电极。
当然,在对玻碳电极修饰前通常需要对玻碳电极进行清洗预处理,最常用的方法就是将玻碳电极用金相砂纸打磨好后,依次用1:1 HNO3溶液、无水乙醇和三次蒸馏水超声清洗后,于0.5mol·L-1的H2SO4溶液中,以0.05V/s的扫描速度,在-1.0~1.0V电位区间进行活化至峰电流基本稳定;当然其他玻碳电极进行清洗预处理的方法也是可以的。
本发明还涉及所述修饰玻碳电极在检测亚硝酸根中的应用。
本发明还公开了所述修饰玻碳电极在检测亚硝酸根中的应用方法如下:
(1)以聚水杨醛缩对氨基苯甲酸修饰电极为工作电极,采用循环伏安法得到聚水杨醛缩对氨基苯甲酸修饰玻碳电极在不同浓度亚硝酸盐溶液中的响应电流,计算亚硝酸盐浓度与对应的响应电流之间的函数关系,并绘制标准曲线;
(2)利用聚水杨醛缩对氨基苯甲酸修饰电极检测未知亚硝酸盐浓度水样的响应电流浓度,根据所得标准曲线计算所测水样中的亚硝酸盐浓度。
作为一种优选实施方式,步骤(1)中,将聚水杨醛缩对氨基苯甲酸修饰电极、铂丝对电极和饱和甘汞参比电极组成的三电极放入含有不同浓度亚硝酸根的磷酸盐缓冲溶液中,以循环伏安法氧化亚硝酸根,磷酸盐缓冲溶液中亚硝酸根的浓度为1.51×10-3~2.93×10-5 mol·L-1,所用磷酸盐缓冲溶液的pH值为1.71~7.01;步骤(2)中,将聚水杨醛缩对氨基苯甲酸修饰电极、铂丝对电极和饱和甘汞参比电极组成的三电极放入含有未知亚硝酸根的pH值为1.71~7.01的磷酸盐缓冲溶液中,以循环伏安法测定亚硝酸根;步骤(1)和(2)中,循环伏安参数为:电位区间为0~1.2V,扫描速度为0.05~0.35V/s,扫描次数为1圈。
较佳地,步骤(1)和(2)中所用磷酸盐缓冲溶液的pH值为3.25。
本发明与现有技术相比,具有如下优点:
1.本发明在玻碳电极上电聚合水杨醛缩对氨基苯甲酸,具有原料易得,电极制备过程简单的特点;
2.本发明聚水杨醛缩对氨基苯甲酸修饰的玻碳电极在测定亚硝酸根的过程中只需消耗较少量的缓冲溶液,有效降低了污染环境的风险;
3.本发明聚水杨醛缩对氨基苯甲酸修饰的玻碳电极测定亚硝酸根样品时,具有快速、灵敏、准确等特点。
附图说明
图1为实施例1中亚硝酸根在裸玻碳电极和聚水杨醛缩对氨基苯甲酸修饰的玻碳电极上的循环伏安特性图。
图2为实施例1中亚硝酸根浓度为1.04×10-3 mol·L-1时不同pH的磷酸盐缓冲溶液中的循环伏安曲线。
图3为实施例1中亚硝酸根浓度为1.04×10-3 mol·L-1时不同扫描速度下的循环伏安曲线。
图4为实施例1中峰电流与亚硝酸根浓度关系。
图5为实施例2中亚硝酸根在裸玻碳电极和聚水杨醛缩对氨基苯甲酸修饰的玻碳电极上的循环伏安特性图。
图6为实施例2中峰电流与亚硝酸根浓度关系。
图7为实施例3中亚硝酸根在裸玻碳电极和聚水杨醛缩对氨基苯甲酸修饰的玻碳电极上的循环伏安特性图。
图8为实施例3中峰电流与亚硝酸根浓度关系。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。
实施例1
将玻碳电极用金相砂纸打磨好后,依次用1∶1 HNO3溶液、无水乙醇和三次蒸馏水超声清洗后,置于0.5mol·L-1的H2SO4溶液中,以0.05V/s的扫描速度,在-1.0~1.0V电位区间进行 活化至峰电流基本稳定。
将处理得到的玻碳电极、铂丝对电极和饱和甘汞参比电极组成三电极体系,置于氯化钾、氢氧化钠、水杨醛和对氨基苯甲酸的混合电解质溶液中以-1.0~1.0V的扫描电压和0.05V/s的扫描速度进行循环伏安扫描20圈,其中,混合电解质溶液中氯化钾浓度为0.1mol·L-1,氢氧化钠浓度为1.0 mol·L-1,水杨醛和对氨基苯甲酸浓度均为0.028 g·L-1,循环伏安扫描结束后,取下玻碳电极,用去离子水清洗干净,晾干,得到聚水杨醛缩对氨基苯甲酸修饰的玻碳电极。
为了对比修饰前后玻碳电极对亚硝酸根的不同表现:分别以裸玻碳电极和聚水杨醛缩对氨基苯甲酸修饰的玻碳电极为工作电极、铂丝对电极和饱和甘汞参比电极组成的三电极体系,对亚硝酸根浓度为4.68×10-4 mol·L-1的pH值为3.25的磷酸盐缓冲溶液进行循环伏安扫描测定,其中,扫描电压为0~1.2V,扫描速率为0.05V/s。结果如图1所示,亚硝酸根在裸玻碳电极(曲线b)上未出现电流峰,而在聚水杨醛缩对氨基苯甲酸修饰的玻碳电极(曲线a)出现了明显的氧化峰,且其峰电位为0.887V,峰电流为-6.290×10-5A;表明聚水杨醛缩对氨基苯甲酸修饰的玻碳电极对亚硝酸根具有明显的电催化性能。
以聚水杨醛缩对氨基苯甲酸修饰的玻碳电极为工作电极的三电极体系,通过循环伏安扫描法测试浓度为1.04×10-3 mol·L-1的亚硝酸根溶液,缓冲体系的pH为1.71~7.01,其值分别为1.17、2.62、3.25、4.51、5.58、5.66、7.01的磷酸盐缓冲溶液,浓度为0.1 mol·L-1,实验结果如图2所示,循环伏安曲线a到g的pH值依次增加。
以聚水杨醛缩对氨基苯甲酸修饰的玻碳电极为工作电极的三电极体系,通过循环伏安扫描法测试浓度为1.04×10-3 mol·L-1的亚硝酸根溶液,缓冲体系为pH值3.25的磷酸盐缓冲溶液,循环伏安扫描速度为0.05~0.35V/s,结果如附图3所示,随着扫描速度增加峰电位正向移动,峰电流增加。
综合研究和分析pH值为3.25的磷酸盐缓冲溶液中亚硝酸根浓度分别为7.63×10-3mol·L-1、5.44×10-3 mol·L-1、3.26×10-3 mol·L-1、1.51×10-3 mol·L-1、1.03×10-3mol·L-1、5.44×10-4 mol·L-1、3.26×10-4 mol·L-1、1.63×10-4 mol·L-1、2.93×10- 5mol·L-1时的响应电流,不同亚硝酸根浓度与响应电流的曲线如图4所示,在亚硝酸根浓度在7.63×10-3 ~2.93×10-5mol·L-1范围内,与氧化峰电流具有良好的线性关系,线性方程为:Ip/A=-1.310×10-5-0.1099 mol·L-1[NO2 -],R2= -0.9992,电极的灵敏度为0.1099。
实施例2
将处理得到的玻碳电极、铂丝对电极和饱和甘汞参比电极组成三电极体系,置于氯化钾、氢氧化钠和水杨醛缩对氨基苯甲酸的混合电解质溶液中以-1.0~1.0V的扫描电压和0.08V/s的扫描速度进行循环伏安扫描10圈;其中,混合电解质溶液中氯化钾浓度为0.15mol·L-1,氢氧化钠浓度为2.0 mol·L-1,水杨醛和对氨基苯甲酸浓度均为0.016 g·L-1;循环伏安扫描结束后,取下玻碳电极,用去离子水清洗干净,晾干,得到聚水杨醛缩对氨基苯甲酸修饰的电极。
为了对比修饰前后玻碳电极对亚硝酸根的不同表现:分别以裸玻碳电极和聚水杨醛缩对氨基苯甲酸修饰的玻碳电极为工作电极、铂丝对电极和饱和甘汞参比电极组成的三电极体系,对pH值为7.01,浓度为2.58×10-4 mol·L-1的亚硝酸根的磷酸盐缓冲溶液进行循环伏安扫描测定,其中,扫描电压为0~1.2V,扫描速率为0.35V/s。结果如图5所示,亚硝酸根在裸玻碳电极(曲线b)上未出现电流峰,而在聚水杨醛缩对氨基苯甲酸修饰的玻碳电极(曲线a)出现了明显的氧化峰,且其峰电位为0.995V,峰电流为-4.135×10-5A;表明聚水杨醛缩对氨基苯甲酸修饰的玻碳电极对亚硝酸根具有明显的电催化性能。
综合研究和分析pH值为7.01的亚硝酸根的磷酸盐缓冲溶液在亚硝酸根浓度分别为5.44×10-3 mol·L-1、3.26×10-3 mol·L-1、1.51×10-3 mol·L-1、1.03×10-3 mol·L-1、5.44×10-4 mol·L-1、3.26×10-4 mol·L-1、1.63×10-4 mol·L-1、2.93×10-5mol·L-1、1.60×10-5 mol·L-1时的响应电流,不同亚硝酸根浓度与响应电流的曲线如图6所示,在亚硝酸根浓度在5.44×10-3 ~1.63×10-5mol·L-1范围内,与氧化峰电流具有良好的线性关系,线性方程为:Ip/A=-1.015×10-5-0.1474 mol·L-1[NO2 -],R2= -0.9991,电极的灵敏度为0.1474。
实施例3
将由处理得到的玻碳电极、铂丝对电极和饱和甘汞参比电极组成三电极体系,置于氯化钾、氢氧化钠和水杨醛缩对氨基苯甲酸的混合电解质溶液中以-1.0~1.0V的扫描电压和0.03V/s的扫描速度进行循环伏安扫描5圈;其中,混合电解质溶液中氯化钾浓度为0.05 mol·L-1,氢氧化钠浓度为0.5 mol·L-1,水杨醛和对氨基苯甲酸浓度均为0.032 g·L-1;循环伏安扫描结束后,取下玻碳电极,用去离子水洗涤干净,晾干,得到聚水杨醛缩对氨基苯甲酸修饰的电极。
为了对比修饰前后玻碳电极对亚硝酸根的不同表现:分别以裸玻碳电极和聚水杨醛缩对氨基苯甲酸修饰的玻碳电极为工作电极、铂丝对电极和饱和甘汞参比电极组成的三电极体系,对pH值为1.71,浓度为4.68×10-4 mol·L-1的亚硝酸根的磷酸盐缓冲溶液进行循环伏安扫描测定,其中,扫描电压为0~1.2V,扫描速率为0.20V/s。结果如图7所示,亚硝酸根在裸玻碳电极(曲线b)上未出现电流峰,而在聚水杨醛缩对氨基苯甲酸修饰的玻碳电极(曲线a)出现了明显的氧化峰,且其峰电位为0.94V,峰电流为-4. 39×10-5A;表明聚水杨醛缩对氨基苯甲酸修饰的玻碳电极对亚硝酸根具有明显的电催化性能。
综合研究和分析pH值为1.71的亚硝酸根的磷酸盐缓冲溶液在亚硝酸根浓度分别为9.63×10-3 mol·L-1、7.63×10-3 mol·L-1、5.44×10-3 mol·L-1、3.26×10-3 mol·L-1、1.51×10-3 mol·L-1、1.03×10-3 mol·L-1、5.44×10-4 mol·L-1、3.26×10-4 mol·L-1、1.63×10-4 mol·L-1时的响应电流,不同亚硝酸根浓度与响应电流的曲线如图8所示,在亚硝酸根浓度在9.58×10-3 ~1.63×10-5mol·L-1范围内,与氧化峰电流具有良好的线性关系,线性方程为: Ip/A=-2.564×10-5-0.08547mol·L-1[NO2 -],R2= -0.9952,电极的灵敏度为8.547×10-2
该修饰电极具有良好的重现性,以实施例1的聚水杨醛缩对氨基苯甲酸修饰的玻碳电极为工作电极及相同的测试条件,其中亚硝酸根浓度为1.51×10-3mol·L-1,测试了电极的重现性,见附表1。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (9)

1.一种修饰玻碳电极,其特征在于:所述修饰玻碳电极是由玻碳电极和涂覆在所述玻碳电极表面的聚水杨醛缩对氨基苯甲酸沉积膜构成的聚水杨醛缩对氨基苯甲酸修饰的玻碳电极;其中,所述聚水杨醛缩对氨基苯甲酸沉积膜是将玻碳电极置于氯化钾、氢氧化钠、水杨醛和对氨基苯甲酸的混合电解质溶液中作为工作电极,以-1.0~1.0V的扫描电压和0.03~0.08V/s的扫描速度进行循环伏安扫描得到的;
其中,混合电解质溶液中氯化钾浓度为0.05~0.15 mol·L-1,氢氧化钠浓度为0.5~2.0mol·L-1,水杨醛浓度为0.016~0.032 g·L-1,对氨基苯甲酸浓度为0.016~0.032 g·L-1
2.如权利要求1所述修饰玻碳电极,其特征在于:所述循环伏安扫描的扫描次数为5~20圈。
3.如权利要求1所述修饰玻碳电极,其特征在于:所述循环伏安扫描的扫描速度为0.05V/s。
4.如权利要求1~3中任一所述修饰玻碳电极,其特征在于:所述循环伏安扫描是在玻碳电极、铂丝对电极和饱和甘汞参比电极组成的三电极体系中进行。
5.一种修饰玻碳电极的制备方法,其特征在于包括如下步骤:
(1)将玻碳电极、铂丝对电极和饱和甘汞参比电极组成的三电极与置于氯化钾、氢氧化钠、水杨醛和对氨基苯甲酸的混合电解质溶液中,以-1.0~1.0V的扫描电压和0.03~0.08V/s的扫描速度进行循环伏安扫描;其中,混合电解质溶液中氯化钾浓度为0.05~0.15 mol·L-1,氢氧化钠浓度为0.5~2.0 mol·L-1,水杨醛浓度为0.016~0.032 g·L-1,对氨基苯甲酸浓度为0.016~0.032 g·L-1
(2)循环伏安扫描结束后取下玻碳电极,经洗涤、晾干,得到聚水杨醛缩对氨基苯甲酸修饰的玻碳电极。
6.如权利要求1~4中任一所述修饰玻碳电极在检测亚硝酸根中的应用。
7.如权利要求6所述修饰玻碳电极在检测亚硝酸根中的应用,其特征在于:所述应用的方法如下:
(1)以聚水杨醛缩对氨基苯甲酸修饰电极为工作电极,采用循环伏安法得到聚水杨醛缩对氨基苯甲酸修饰玻碳电极在不同浓度亚硝酸盐溶液中的响应电流,计算亚硝酸盐浓度与对应的响应电流之间的函数关系,并绘制标准曲线;
(2)利用聚水杨醛缩对氨基苯甲酸修饰电极检测未知亚硝酸盐浓度水样的响应电流浓度,根据所得标准曲线计算所测水样中的亚硝酸盐浓度。
8.如权利要求7所述修饰玻碳电极在检测亚硝酸根中的应用,其特征在于:步骤(1)中,将聚水杨醛缩对氨基苯甲酸修饰电极、铂丝对电极和饱和甘汞参比电极组成的三电极放入含有不同浓度亚硝酸根的磷酸盐缓冲溶液中,以循环伏安法氧化亚硝酸根,磷酸盐缓冲溶液中亚硝酸根的浓度为1.51×10-3~2.93×10-5 mol·L-1,所用磷酸盐缓冲溶液的pH值为1.71~7.01;步骤(2)中,将聚水杨醛缩对氨基苯甲酸修饰电极、铂丝对电极和饱和甘汞参比电极组成的三电极放入含有未知亚硝酸根的pH值为1.71~7.01的磷酸盐缓冲溶液中,以循环伏安法测定亚硝酸根;步骤(1)和(2)中,循环伏安参数为:电位区间为0~1.2V,扫描速度为0.05~0.35V/s,扫描次数为1圈。
9.如权利要求8所述修饰玻碳电极在检测亚硝酸根中的应用,其特征在于:步骤(1)和(2)中所用磷酸盐缓冲溶液的pH值为3.25。
CN201610106046.0A 2016-02-26 2016-02-26 一种修饰玻碳电极及其制备方法和应用 Expired - Fee Related CN105738441B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610106046.0A CN105738441B (zh) 2016-02-26 2016-02-26 一种修饰玻碳电极及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610106046.0A CN105738441B (zh) 2016-02-26 2016-02-26 一种修饰玻碳电极及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN105738441A CN105738441A (zh) 2016-07-06
CN105738441B true CN105738441B (zh) 2018-06-05

Family

ID=56248600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610106046.0A Expired - Fee Related CN105738441B (zh) 2016-02-26 2016-02-26 一种修饰玻碳电极及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN105738441B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107688044B (zh) * 2017-09-17 2020-04-14 桂林理工大学 一种同时检测对乙酰氨基酚和4-氨基苯酚浓度的方法
CN110006983A (zh) * 2019-04-11 2019-07-12 东华大学 电极、电解系统及检测样品中亚硝酸盐含量的方法
CN114034754B (zh) * 2021-10-20 2023-07-21 蚌埠学院 一种基于钴胺素/铁氰化钾复合膜传感器的制备方法及其应用
CN114324512B (zh) * 2021-11-29 2023-11-03 郑州大学 羟基磷灰石-离子液体/甲硫氨酸/聚l-苯丙氨酸复合膜修饰玻碳电极、制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650330A (zh) * 2009-06-26 2010-02-17 上海大学 双十二烷基二甲基溴化铵修饰玻碳电极的制备方法及其应用
CN102507684A (zh) * 2011-10-31 2012-06-20 西北师范大学 修饰玻碳电极及其制备方法和其在检测亚硝酸根中的应用
CN103497122A (zh) * 2013-09-27 2014-01-08 桂林理工大学 3,5-二溴水杨醛缩对氨基苯甲酸席夫碱基聚乙二醇月桂酸单酯及其应用
CN105223261A (zh) * 2015-10-22 2016-01-06 桂林理工大学 一种利用循环伏安法检测饮料中柠檬黄浓度的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650330A (zh) * 2009-06-26 2010-02-17 上海大学 双十二烷基二甲基溴化铵修饰玻碳电极的制备方法及其应用
CN102507684A (zh) * 2011-10-31 2012-06-20 西北师范大学 修饰玻碳电极及其制备方法和其在检测亚硝酸根中的应用
CN103497122A (zh) * 2013-09-27 2014-01-08 桂林理工大学 3,5-二溴水杨醛缩对氨基苯甲酸席夫碱基聚乙二醇月桂酸单酯及其应用
CN105223261A (zh) * 2015-10-22 2016-01-06 桂林理工大学 一种利用循环伏安法检测饮料中柠檬黄浓度的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于壳聚糖席夫碱类衍生物修饰电极测定食品中的亚硝酸根离子;徐忠良 等;《东华理工学院学报》;20070915;第30卷(第3期);1.2实验,2.2修饰电极对NO2-的还原,2.3亚硝酸根的响应电流与浓度的关系,图2 *
层层自组装纳米金/硫堇修饰玻碳电极测定亚硝酸根;韩金土 等;《冶金分析》;20120215;第32卷(第2期);摘要,1实验部分,2.3亚硝酸根在电化学行为,2.4pH值的影响,3样品分析,图7和8 *

Also Published As

Publication number Publication date
CN105738441A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN109187693B (zh) 基于纳米复合物修饰电极的香草醛比率电化学适体传感器的制备方法
CN105738441B (zh) 一种修饰玻碳电极及其制备方法和应用
CN109444238B (zh) 一种碳纳米材料修饰的电化学传感器的制备方法及应用
CN110501398B (zh) 一种β-环糊精修饰的石墨电极、制备方法及应用
CN104280435A (zh) 一种石墨烯修饰的玻碳电极及制备方法和应用
CN102128867A (zh) 用对氨基苯甲酸/纳米金修饰碳糊电极测定对乙酰氨基酚的方法
CN110632145A (zh) 一种检测肥素硝态氮全固态离子选择性电极及其制备方法
CN102636535A (zh) 水滑石复合材料构建修饰碳糊电极的方法、超痕量重金属离子电化学测定方法及应用
CN106198497A (zh) 一种用于组胺检测的电化学发光传感方法
CN110632144B (zh) 一种检测肥素钾全固态离子选择性电极及其制备方法
CN106018532B (zh) 氧化石墨烯与植酸修饰电极的制备及组装的电化学检测装置
CN107449820A (zh) 一种用于同时检测水样中对苯二酚和邻苯二酚的修饰电极
CN104020205B (zh) 对氯苯胺的印迹聚合物膜电极、其制备方法及应用方法
CN110031526A (zh) 一种基于K2Fe4O7电极的多巴胺无酶传感器、制备方法及其应用
CN110988061B (zh) 石墨修饰电极的制备方法、及应用于4-氨基联苯的检测
CN209247682U (zh) 基于3,3’-二硫代双(1-丙磺酸)-汞复合膜的l-半胱氨酸传感器
CN101576525B (zh) 一种选择性测定多巴胺的聚合物修饰电极的制备方法
Liu et al. Rapid determination of rhodamine B in chilli powder by electrochemical sensor based on graphene oxide quantum dots
ZHANG et al. Construction of electrochemical impedance sensor based on poly dopamine-hyaluronic acid composite membrane for detection of hydrogen peroxide
CN208860789U (zh) 基于2-巯基苯并咪唑的l-半胱氨酸传感器
CN109030583B (zh) 基于2-巯基苯并咪唑的l-半胱氨酸的检测方法及传感器
CN105928998B (zh) 一种检测酪胺的化学修饰电极以及酪胺的电化学测定方法
CN111304716A (zh) 一种铅笔石墨修饰电极的制备方法和检测水体中苯二酚异构体的方法
CN105004774B (zh) 修饰电极的制备方法与饲料添加剂赖氨酸铜中游离铜离子的测定应用
CN109187697A (zh) 基于3,3`-二硫代双(1-丙磺酸)-汞复合膜的l-半胱氨酸的检测方法及传感器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180605

Termination date: 20190226