CN105734674A - Epitaxy generation structure and generation method thereof - Google Patents

Epitaxy generation structure and generation method thereof Download PDF

Info

Publication number
CN105734674A
CN105734674A CN201410740951.2A CN201410740951A CN105734674A CN 105734674 A CN105734674 A CN 105734674A CN 201410740951 A CN201410740951 A CN 201410740951A CN 105734674 A CN105734674 A CN 105734674A
Authority
CN
China
Prior art keywords
substrate
epitaxial
structure
generating
nano
Prior art date
Application number
CN201410740951.2A
Other languages
Chinese (zh)
Inventor
郑克勇
王佑立
吴浚宏
李品颐
邱绍谚
Original Assignee
郑克勇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑克勇 filed Critical 郑克勇
Priority to CN201410740951.2A priority Critical patent/CN105734674A/en
Publication of CN105734674A publication Critical patent/CN105734674A/en

Links

Abstract

The invention provides an epitaxy generation structure and a generation method thereof. The epitaxy generation structure comprises a substrate, multiple seeds which are arranged on the surface of the substrate in an array form, multiple nanometer columns which are longitudinally arranged on the seeds, and a thin film which horizontally covers the upper surfaces of the multiple nanometer columns so that a plane is formed. The epitaxy generation structure and its generation method reduce epitaxy defect density.

Description

磊晶生成结构及其生成方法 Generating epitaxial structure and method for generating

技术领域 FIELD

[0001] 本发明是有关于一种磊晶生成结构及其生成方法,尤指一种适用于氮化镓(GaN)的磊晶生成结构与方法。 [0001] The present invention relates to an epitaxial structure and generation method for generating, suitable particularly to a gallium nitride (GaN) epitaxial structure and generation method.

背景技术 Background technique

[0002] 在现有技术中,异质基板(如Sapphire、Si等)晶格常数与热胀系数差异必然影响磊晶结构品质,造成磊晶层的缺陷与应力,应力进一步会导致晶圆翘曲,影响元件工艺精确度。 [0002] In the prior art, the hetero-substrate (e.g., Sapphire, Si, etc.) with a lattice constant difference in coefficient of thermal expansion will inevitably affect the quality of the epitaxial structure, cause defects in the epitaxial layer and the stress, the stress can cause the wafer is further warped Qu, affect the accuracy of the process element. 以Si基板为例,其与GaN存在着高达16.2%的晶格不匹配、113%的热胀系数差异、以及Si与氮(N)原子间高反应活性等不利因素。 In an example of the Si substrate, with GaN there is up to 16.2% of the lattice mismatch, the difference in coefficient of thermal expansion of 113%, and Si and nitrogen (N) between the high reactivity of an active and other unfavorable factors. 此外,GaN磊晶生成于硅基板时,其GaN会存在大于109cm 2的缺陷密度(high defect density),即每平方厘米存在大于10 9个缺陷。 Further, when the GaN epitaxial generated in the silicon substrate, which is greater than the defect density GaN exist (high defect density) 109cm 2, i.e. is present per square centimeter greater than 109 defects.

发明内容 SUMMARY

[0003] 为了解决上述的缺点和不足,本发明的目的在于提供一种磊晶生成结构。 [0003] To solve the above disadvantages and drawbacks, an object of the present invention is to provide an epitaxial structure generation.

[0004] 本发明的目的还在于提供上述磊晶生成结构的生成方法。 [0004] The object of the present invention is to provide a method of generating the above-described structure of the epitaxial generated. 本发明的磊晶生成结构及其生成方法可以降低磊晶缺陷密度。 Generating epitaxial structure and generation method according to the present invention can reduce the defect density of epitaxial.

[0005] 本发明提供一种磊晶生成结构,适用于GaN的磊晶生成结构,磊晶生成结构包含:基板;多个晶种,以阵列式排列并设置于基板的表面;多个纳米柱,分别纵向设置于上述晶种上;以及薄膜,水平覆盖于多个纳米柱的上表面以形成平面。 [0005] The present invention provides an epitaxial generating structure for generating epitaxial structure of GaN, epitaxial generation includes: a substrate; a plurality of seed crystals arranged in an array and disposed in the surface of the substrate; a plurality of nano-pillars , respectively, provided in the longitudinal direction on the seed crystal; and a thin film, the level of coverage in a plurality of nano-pillars to form a planar upper surface.

[0006] 根据本发明所述的磊晶生成结构,上述晶种为氮化铝。 [0006] The epitaxial structure generated according to the present invention, the seed crystal aluminum nitride.

[0007] 根据本发明所述的磊晶生成结构,上述纳米柱与薄膜为氮化镓。 [0007] The epitaxial structure generated according to the present invention, the above-described gallium nitride thin film nano-pillars.

[0008] 根据本发明所述的嘉晶生成结构,上述纳米柱的长度为50nm-150nm ;宽度为100_300nmo [0008] According to Jia Jingsheng structure according to the present invention, the length of the nanocolumns 50nm-150nm; width 100_300nmo

[0009] 根据本发明所述的磊晶生成结构,上述以阵列式排列的晶种之间的间距为100_300nmo [0009] The epitaxial structure generated according to the present invention, a pitch between the above-mentioned seed crystal was arranged in an array 100_300nmo

[0010] 根据本发明所述的嘉晶生成结构,上述薄膜厚度为3-4 μπι或3_5 μπι。 [0010] According to Jia Jingsheng structure according to the present invention, the thin film having a thickness of 3-4 μπι or 3_5 μπι.

[0011] 根据本发明所述的磊晶生成结构,其中,上述基板为硅基板、蓝宝石基板、氮化镓基板或碳化硅基板。 [0011] The epitaxial structure generated according to the present invention, wherein the substrate is a silicon substrate, a sapphire substrate, a gallium nitride substrate or a silicon carbide substrate.

[0012] 本发明提供一种磊晶生成结构的生成方法,适用于GaN的磊晶生成,该方法包含:提供硅基板;在该硅基板上设置氮化铝层,并利用软性纳米压印后;利用强酸蚀刻氮化铝层,使氮化铝层形成以阵列式排列的多个晶种;利用磊晶成长使GaN在上述晶种上纵向生成多个纳米柱;以及利用磊晶成长使GaN横向生成薄膜;其中,薄膜水平覆盖于多个纳米柱的上表面以形成平面。 [0012] The present invention provides a generation method epitaxial structures for GaN epitaxial generation, the method comprising: providing a silicon substrate; aluminum nitride layer is provided on the silicon substrate, and using soft nanoimprinting after; aluminum nitride layer is etched using a strong acid, aluminum nitride layer is formed in a plurality of seed crystals arranged in an array; using the epitaxial growth of GaN in the longitudinal direction to generate a plurality of nano-pillars on the seed crystal; and using an epitaxial growth so that generating a lateral GaN film; wherein the film covering the upper surface level of the plurality of nano-pillars to form a plane.

[0013] 根据本发明所述的磊晶生成结构的生成方法,上述强酸可采用氢氟酸来实现。 [0013] The generation method of generating epitaxial structure according to the present invention, the above hydrofluoric acid can be achieved.

[0014] 根据本发明所述的磊晶生成结构的生成方法,上述基板为硅基板、蓝宝石基板、氮化镓基板或碳化硅基板。 [0014] The generation method of generating epitaxial structure according to the present invention, the substrate is a silicon substrate, a sapphire substrate, a gallium nitride substrate or a silicon carbide substrate.

[0015] 根据本发明所述的磊晶生成结构的生成方法,以阵列式排列的上述晶种之间的间距为100-300nm。 [0015] The generation method of generating epitaxial structure according to the present invention, a pitch between the seed crystal arranged in an array of 100-300nm.

[0016] 本发明采取以低温生成分子束磊晶法,并搭配阵列式晶种使GaN在硅基板上生成纳米柱,通过GaN纳米柱之间的空隙可以降低因晶格不匹配所产生的应力,如此一来可增加GaN薄膜的厚度,改善现有技术中存在的密度缺陷。 [0016] The present invention takes to generate a low temperature molecular beam epitaxy, with the array and a GaN seed crystal silicon substrate generates nanorods, stress can be reduced due to the lattice mismatch between the voids produced by the GaN nanocolumns , result increased thickness of the GaN film, the density of defects in the prior art to improve the present.

附图说明 BRIEF DESCRIPTION

[0017] 图1A为本发明磊晶生成结构的示意图; [0017] FIG. 1A schematic diagram of the present invention generates an epitaxial structure;

[0018] 图1B为本发明磊晶生成结构的基板101与晶种102的俯视图; [0018] FIG. 1B a top substrate 101 and an epitaxial seed crystal structure of a map generator 102 of the present invention;

[0019] 图1C为本发明磊晶生成结构的基板以及纳米柱的俯视图; [0019] FIG. 1C a plan view of the epitaxial structure and the substrate generated nanocolumns present invention;

[0020] 图2A为本发明磊晶生成结构的生成方法的流程图; [0020] FIG 2A is a flowchart of a method generating a resultant structure of the present invention epitaxy;

[0021] 图2B为氮化铝层蚀刻后的示意图; [0021] FIG. 2B is a schematic rear aluminum nitride layer is etched;

[0022] 图2C为GaN纳米柱纵向生成于晶种上的示意图; [0022] Figure 2C the longitudinal direction generated in the seed crystal is a schematic view of the GaN nanocolumns;

[0023] 图2D为GaN薄膜横向生成于GaN纳米柱上的示意图; [0023] FIG 2D is a schematic transverse generated in the GaN thin film of GaN nano-column;

[0024]图3A为本发明利用光激发荧光法测量的频谱图; [0024] FIG 3A oriented using fluorescence excitation light spectrum measurement method of the present invention;

[0025] 图3B为本发明在不同环境温度下利用光激发荧光法测量的频谱图。 [0025] FIG 3B of the present invention at different ambient temperatures by using spectral optical excitation fluorescence measurement method of FIG.

[0026] 主要附图标号说明: [0026] Main Reference numerals:

[0027] 100 磊晶生成结构 [0027] 100 generates an epitaxial structure

[0028] 101 基板 [0028] 101 of the substrate

[0029] 102 晶种 [0029] 102 seed

[0030] 103 纳米柱 [0030] 103 nanocolumn

[0031] 104 薄膜 [0031] 104 film

[0032] B 底层 [0032] B underlayer

[0033] T 上表面 [0033] T on the surface

[0034] S201 〜S204 步骤。 [0034] S201 ~S204 step.

具体实施方式 Detailed ways

[0035] 为使本发明所运用的技术内容、发明目的及其达成的功效有更完整且清楚地揭露,现对本发明进行以下详细说明,并请一并参阅附图及主要附图标号说明。 [0035] The use of the technical details of the present invention, the object of the invention to achieve its effect more complete and clear disclosure, the present invention will now be described in detail hereinafter, and main Referring to the drawings and reference numerals. FIG.

[0036] 实施例1 [0036] Example 1

[0037] 请参阅图1A,图1A为本发明磊晶生成结构的示意图。 [0037] Refer to FIGS. 1A, FIG. 1A is a schematic view of the structure of the present invention, epitaxial generated. 在本实施例中,其结构为GaN的磊晶生成结构,磊晶生成结构100包含:基板101、多个晶种102、多个纳米柱103以及薄膜104。 In the present embodiment, the structure of the GaN epitaxial structure generated, generating epitaxial structure 100 includes: a substrate 101, a plurality of seed crystals 102, film 103, and a plurality of nano-pillars 104.

[0038] 在此请注意,在本实施例中,基板101是由硅(Si)基板、蓝宝石基板、氮化镓基板或碳化硅基板所实现的。 [0038] Note here that, in this embodiment, the substrate 101 is realized by a silicon (Si) substrate, a sapphire substrate, a gallium nitride substrate or a silicon carbide substrate in the present embodiment.

[0039] 基板101设置于磊晶生成结构100的底层B,接着,晶种102以阵列式排列并设置于基板101的表面,请同时参阅图1B,图1B为本发明磊晶生成结构的基板与晶种的俯视图。 [0039] The substrate 101 is disposed on the bottom B of the epitaxial structure 100 is generated, then, the seed crystal 102 is provided and arranged in an array on the surface of the substrate 101, refer to FIG. 1B, FIG. 1B epitaxial substrate of the present invention to generate structure a plan view of the seed crystal. 因此,在本实施例中,晶种102具有规则性的空隙。 Accordingly, in the present embodiment, the seed voids 102 having regularity.

[0040] 请同时参阅图1C,图1C为本发明磊晶生成结构的基板以及纳米柱的俯视图。 [0040] Referring also to 1C, a top plan view of a substrate structure and the epitaxial invention to generate FIG. 1C nanocolumns present. 在本发明中,晶种102是由氮化铝(AlN)所实现的,且阵列式排列的晶种102之间的间距为100-300nm。 In the present invention, the seed crystal 102 is a spacing between 100-300nm of aluminum nitride (AlN) is achieved, and the seed crystal 102 is arranged in an array. 接着,纳米柱103分别纵向设置于晶种102上,使纳米柱103的长边实质上垂直于基板101,且纳米柱103的宽度为100-300nm。 Then, nano-pillars 103 are disposed longitudinally on the seed crystal 102, so that the nano-pillars substantially perpendicular to the long side of the substrate 101, and a width of 100-300 nm nano-pillars 103 to 103. 综上所述,因晶种102具有规则性的空隙存在,所以纳米柱103之间也具有规则性的空隙。 In summary, the seed crystal 102 because of the presence of voids having a regular, so it has a void between a regular nano-pillars 103.

[0041] 最后,薄膜104沿水平H覆盖于纳米柱103的上表面T,以形成平面,在本实施例中,其纳米柱103与薄膜104是由GaN所实现的,且纳米柱103的长度为50_150nm,薄膜104的厚度为3-4 μ m或3-5 μ m。 [0041] Finally, the thin film 104 along the horizontal H covering the nano-pillars 103 on the surface with T, form a plane, in the present embodiment that the nano-pillars 103 and the film 104 is made of GaN is achieved, and the length of the nano-pillars 103 is 50_150nm, thickness of the film is 104 or 3-4 μ m 3-5 μ m.

[0042] 在此请注意,由于纳米柱103之间具有规则性的空隙,故可减少薄膜104的应力产生,避免薄膜104因应力产生破裂。 [0042] Note here that, since the regularity of the voids between nano-pillars 103, it can reduce the stress generating film 104, film 104 to avoid generation of cracks due to stress.

[0043] 接着请同时参阅图2A与图2B,图2A为本发明磊晶生成结构的生成方法的流程图,图2B为氮化铝层蚀刻后的示意图,在本发明中此方法适用于GaN的磊晶生成,该方法包含下列步骤: [0043] Next, please also refer to FIG. 2A and 2B, a flowchart of the present invention. FIG. 2A generating method for generating an epitaxial structure, FIG. 2B is a schematic view of the aluminum nitride layer is etched, in the present invention, this method is suitable for GaN epitaxial generation, the method comprising the steps of:

[0044] 步骤S201:提供娃基板; [0044] Step S201: providing a substrate baby;

[0045] 步骤S202:在该硅基板上设置氮化铝层,并利用强酸蚀刻氮化铝层,使氮化铝层形成以阵列式排列的多个晶种;在本实施例中,强酸是由氢氟酸(HF)所实现的; [0045] Step S202: the silicon substrate is provided an aluminum nitride layer and aluminum nitride layer is etched using a strong acid, aluminum nitride layer is formed so that a plurality of seed crystals arranged in an array; in this embodiment, the strong acid is hydrofluoric acid (HF) is achieved;

[0046] 步骤S203:利用磊晶成长使GaN在晶种上纵向生成多个GaN纳米柱,请参阅图2C,图2C为GaN纳米柱纵向生成于晶种上的不意图;以及 [0046] Step S203: using an epitaxial growth of the GaN nanocolumns longitudinal generate a plurality of GaN on the seed crystal, see FIG. 2C, FIG. 2C is a longitudinal GaN nanocolumns generated on the seed is not intended; and

[0047] 步骤S204:利用磊晶成长使GaN横向生成GaN薄膜;其中,GaN薄膜水平覆盖于多个纳米柱的上表面以形成平面,请参阅图2D,图2D为GaN薄膜横向生成于GaN纳米柱上的示意图。 [0047] Step S204: using a lateral epitaxial growth of GaN GaN thin film generated; wherein, the level of coverage GaN thin film on the surface to form a plurality of nano-pillars plane, see FIG. 2D, FIG. 2D is generated transversely to the GaN thin film GaN nanowires schematic column.

[0048] 在本实施例中,步骤S203中嘉晶成长是通过分子束嘉晶(Molecular BeamEpitaxy,MBE)法实现的。 [0048] embodiment, step S203 is long Jiajing Cheng Ka by molecular beam crystal (Molecular BeamEpitaxy, MBE) method implemented in the present embodiment. 在步骤S203中,当GaN纵向生成时,此时氮离子浓度大于镓离子浓度(N-rich),此时环境温度控制在880°C。 In step S203, when generating longitudinal GaN, a gallium concentration is greater than this time N + ion concentration (N-rich), ambient temperature control in this case 880 ° C.

[0049] 在本实施例中,步骤S204是利用嘉晶侧向延长法(Epitaxial LateralOvergrowth,EL0G)使GaN横向生成薄膜,S卩当GaN横向生成时,此时镓离子浓度大于氮离子浓度(Ga-rich),环境温度控制在750°C。 [0049] In the present embodiment, step S204 is to extend the method (Epitaxial LateralOvergrowth, EL0G) transverse to generate a GaN crystal film using side Ka, when S Jie generated when the lateral GaN, a gallium ion concentration at this time is greater than the concentration of nitrogen ions (Ga -rich), ambient temperature was controlled at 750 ° C.

[0050] 在此请注意,由于GaN纳米柱生成于氮化铝的晶种上时,换言之,GaN纳米柱的生成过程之间会产生规则性的空隙,故当生长GaN薄膜时,其规则性的空隙可以减少GaN薄膜的应力产生,避免GaN薄膜因应力产生破裂。 [0050] Note here that, due to the GaN nanocolumns generate aluminum nitride seed crystal, in other words, a void is generated between the regular generation of GaN nanocolumns, so when growing a GaN film, its rules of the gap can reduce the stress generated in the GaN thin film, to avoid the generation of cracks due to stress GaN thin film.

[0051] 另外,上述实施例是以硅基板为范例,但本发明的硅基板也可由蓝宝石基板、氮化镓基板或碳化硅基板所取代。 [0051] Further, the embodiment described above as an example is a silicon substrate, the silicon substrate according to the present invention can also be replaced with a sapphire substrate, a gallium nitride substrate or a silicon carbide substrate.

[0052]目前,现有技术中都是非阵列式的磊晶成长,而本发明利用阵列式成长与横向生长使其表面平坦后,再次采用纳米压印(或多次纳米压印)将GaN材料的缺陷密度降低至小于17-1O8Cm2;另外,现有技术采用非阵列式的磊晶成长,所以其缺陷密度会大于109cm 2,且薄膜厚度在2-3 μ m,薄膜就会破裂,但本发明可以使薄膜成长至厚度大于3um以上而不会破裂。 [0052] Currently, the prior art are the non-array type epitaxial growth, whereas the present invention utilizes an array of formula growth and lateral growth after the surface flat, again using nanoimprint (nanoimprinting or more times) the GaN material defect density reduced to less than 17-1O8Cm2; Further, prior art array of non-epitaxial growth, so that a defect density will be greater than 109cm 2, and the film thickness of 2-3 μ m, the film will break, but the present invention the film can be grown to a thickness greater than 3um or more without cracking.

[0053] 请参阅图3A,图3A为本发明利用光激发焚光(photoluminescence)法测量的频谱图。 [0053] Please refer to FIG. 3A, FIG. 3A using the present invention, an optical spectrum of the excitation light burning (Photoluminescence) measurement method. 在图3A中为本发明在硅基板与现有技术在蓝宝石基板上进行的比较,其中实线为硅基板,虚线为蓝宝石基板。 In comparison the present invention in FIG. 3A with the prior art in the silicon substrate on a sapphire substrate, a silicon substrate where the solid line, the dotted line is the sapphire substrate. 本发明在娃基板上的半峰全宽(Full width at half maximum,FffHM)为71meV,现有技术在蓝宝石基板上的半峰全宽为96meV,即本发明的磊晶结构优于现有技术。 Baby half maximum on the substrate of the present invention, the full width (Full width at half maximum, FffHM) is 71meV, prior art FWHM on a sapphire substrate is 96meV, i.e., an epitaxial structure of the present invention over the prior art .

[0054] 请参阅图3B,图3B为本发明在不同环境温度下利用光激发荧光法测量的频谱图,其中虚线为常温,实线为绝对温度77K。 [0054] Referring to FIG. 3B, FIG. 3B present invention takes advantage of light at different ambient temperatures the excitation spectrum of the fluorescence measurement method, wherein the dotted line is a normal temperature, the solid line is the absolute temperature 77K. 由图3B可以看出,本发明的结构在室温与绝对温度77K下时,其性能维持稳定。 It can be seen from Figure 3B, the structure of the invention at room temperature to the absolute temperature at 77K, which is to maintain a stable performance.

[0055] 综上所述,本发明采取以低温生成分子束磊晶法,并搭配阵列式晶种使GaN在硅基板上生成纳米柱,通过GaN纳米柱之间的空隙可以降低因晶格不匹配所产生的应力,如此一来可增加GaN薄膜的厚度,改善现有技术中存在的密度缺陷。 [0055] In summary, the present invention takes to generate a low-temperature molecular beam epitaxy, with the array and a GaN seed crystal silicon substrate generates nanorods can be reduced due to the lattice through the gap between the GaN nanocolumns matching the generated stress, a result may increase the thickness of the GaN film, to improve the density of defects in the prior art.

Claims (10)

1.一种磊晶生成结构,适用于氮化镓的磊晶生成结构,该磊晶生成结构包含: 基板; 多个晶种,以阵列式排列并设置于所述基板的表面; 多个纳米柱,分别纵向设置于所述晶种上;以及薄膜,水平覆盖于所述多个纳米柱的上表面以形成平面。 An epitaxial generating structure for generating the epitaxial structure of the gallium nitride, the epitaxial generation includes: a substrate; a plurality of seed crystals arranged in an array and disposed at a surface of the substrate; a plurality of nano columns, respectively, disposed in the longitudinal direction on the seed; and a thin film, covering the upper surface level of the plurality of nano-pillars to form a plane.
2.根据权利要求1所述的磊晶生成结构,其中,所述晶种为氮化铝。 2. The epitaxial structure generated according to claim 1, wherein said seed crystal aluminum nitride.
3.根据权利要求2所述的磊晶生成结构,其中,所述纳米柱与所述薄膜为氮化镓。 3. The epitaxial structure generated according to claim 2, wherein the nano-pillar and the film is gallium nitride.
4.根据权利要求3所述的磊晶生成结构,其中,所述纳米柱的长度为50nm-150nm ;宽度为100_300nm。 4. epitaxial structure generated according to claim 3, wherein a length of the nanocolumn is 50nm-150nm; width 100_300nm.
5.根据权利要求4所述的磊晶生成结构,其中,所述以阵列式排列的晶种之间的间距为100_300nm。 The epitaxial structure to generate as claimed in claim 4, wherein the pitch between the seed crystal is arranged in an array 100_300nm.
6.根据权利要求5所述的磊晶生成结构,其中,所述薄膜厚度为3-4 μπι或3-5 μm。 6. epitaxial generating structure according to claim 5, wherein the film thickness of 3-4 μπι or 3-5 μm.
7.根据权利要求1所述的磊晶生成结构,其中,所述基板为硅基板、蓝宝石基板、氮化镓基板或碳化硅基板。 The epitaxial structure generated according to claim 1, wherein the substrate is a silicon substrate, a sapphire substrate, a gallium nitride substrate or a silicon carbide substrate.
8.一种磊晶生成结构的生成方法,适用于氮化镓的磊晶生成,该方法包含: 提供基板; 在该基板上设置氮化铝层,并利用强酸蚀刻所述氮化铝层,使该氮化铝层形成以阵列式排列的多个晶种; 利用磊晶成长使氮化镓在所述晶种上纵向生成多个纳米柱;以及利用磊晶成长使氮化镓横向生成薄膜; 其中,该薄膜水平覆盖于所述多个纳米柱的上表面以形成平面。 A method of generating generates epitaxial structure for a gallium nitride epitaxial generation, the method comprising: providing a substrate; aluminum nitride layer disposed on the substrate, using a strong acid etching the aluminum nitride layer, the aluminum nitride layer is formed in a plurality of seed crystals arranged in an array; using the gallium nitride epitaxial growth of nano-rods in the longitudinal direction generated on the seed; and using the epitaxial growth film to generate lateral gallium nitride ; wherein the film covering the upper surface level of the plurality of nano-pillars to form a plane.
9.根据权利要求8所述的磊晶生成结构的生成方法,其中,所述基板为硅基板、蓝宝石基板、氮化镓基板或碳化硅基板。 9. The method of claim 8 generating generated epitaxial structure according to claim, wherein the substrate is a silicon substrate, a sapphire substrate, a gallium nitride substrate or a silicon carbide substrate.
10.根据权利要求9所述的磊晶生成结构的生成方法,其中,阵列式排列的所述晶种之间的间距为100-300nm。 10. The method of claim 9 epitaxial generating generating structure according to claim, wherein the spacing between the seed arranged in an array of 100-300nm.
CN201410740951.2A 2014-12-08 2014-12-08 Epitaxy generation structure and generation method thereof CN105734674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410740951.2A CN105734674A (en) 2014-12-08 2014-12-08 Epitaxy generation structure and generation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410740951.2A CN105734674A (en) 2014-12-08 2014-12-08 Epitaxy generation structure and generation method thereof

Publications (1)

Publication Number Publication Date
CN105734674A true CN105734674A (en) 2016-07-06

Family

ID=56237470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410740951.2A CN105734674A (en) 2014-12-08 2014-12-08 Epitaxy generation structure and generation method thereof

Country Status (1)

Country Link
CN (1) CN105734674A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435720A (en) * 2016-09-22 2017-02-22 东莞市联洲知识产权运营管理有限公司 Preparation method of GaN film material
WO2018177117A1 (en) * 2017-04-01 2018-10-04 厦门三安光电有限公司 Nitride underlayer and preparation method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307747A (en) * 1998-04-17 1999-11-05 Nec Corp Soi substrate and production thereof
CN101350298A (en) * 2008-09-03 2009-01-21 中国科学院上海微系统与信息技术研究所 Method for improving thick film GaN quality using uniform nano particle dot array mask
CN101510504A (en) * 2009-03-13 2009-08-19 苏州纳晶光电有限公司 Transversal epitaxial growth method for nano area of semiconductor film
CN102163545A (en) * 2011-03-18 2011-08-24 苏州纳维科技有限公司 Method for manufacturing micro-column array, array structure and method for growing crystalline material
CN102593273A (en) * 2011-01-17 2012-07-18 晶元光电股份有限公司 Luminous diode device and formation method of base plate structure thereof
CN103262211A (en) * 2010-11-08 2013-08-21 韩国光技术院 Method for manufacturing a group iii nitride substrate using a chemical lift-ff process
CN103378230A (en) * 2012-04-23 2013-10-30 奈米晶光电股份有限公司 Production method for flat substrate with low defect density

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307747A (en) * 1998-04-17 1999-11-05 Nec Corp Soi substrate and production thereof
CN101350298A (en) * 2008-09-03 2009-01-21 中国科学院上海微系统与信息技术研究所 Method for improving thick film GaN quality using uniform nano particle dot array mask
CN101510504A (en) * 2009-03-13 2009-08-19 苏州纳晶光电有限公司 Transversal epitaxial growth method for nano area of semiconductor film
CN103262211A (en) * 2010-11-08 2013-08-21 韩国光技术院 Method for manufacturing a group iii nitride substrate using a chemical lift-ff process
CN102593273A (en) * 2011-01-17 2012-07-18 晶元光电股份有限公司 Luminous diode device and formation method of base plate structure thereof
CN102163545A (en) * 2011-03-18 2011-08-24 苏州纳维科技有限公司 Method for manufacturing micro-column array, array structure and method for growing crystalline material
CN103378230A (en) * 2012-04-23 2013-10-30 奈米晶光电股份有限公司 Production method for flat substrate with low defect density

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435720A (en) * 2016-09-22 2017-02-22 东莞市联洲知识产权运营管理有限公司 Preparation method of GaN film material
WO2018177117A1 (en) * 2017-04-01 2018-10-04 厦门三安光电有限公司 Nitride underlayer and preparation method therefor

Similar Documents

Publication Publication Date Title
CN101308896B (en) GaN substrate and epitaxial substrate using the substrate and a semiconductor light emitting device
KR100897589B1 (en) Preparation method of a coating of gallium nitride
US20110312159A1 (en) Methods of Fabricating Nitride Semiconductor Structures with Interlayer Structures
US8362503B2 (en) Thick nitride semiconductor structures with interlayer structures
US20080217745A1 (en) Nitride Semiconductor Wafer
US6579359B1 (en) Method of crystal growth and resulted structures
Able et al. Growth of crack-free GaN on Si (1 1 1) with graded AlGaN buffer layers
CN101719483B (en) The substrate for growing a wurtzite type crystal, and a method for manufacturing a semiconductor device
Paskova Development and prospects of nitride materials and devices with nonpolar surfaces
US20060145186A1 (en) Buffer structure for modifying a silicon substrate
US20060189020A1 (en) Method for manufacturing nitride based single crystal substrate and method for manufacturing nitride based light emitting diode using the same
Okada et al. Growth of semipolar (1122) GaN layer by controlling anisotropic growth rates in r-plane patterned sapphire substrate
JP2006344954A (en) Manufacturing method for nitride semiconductor device
Dadgar et al. MOVPE growth of GaN on Si–Substrates and strain
JP2001210598A (en) Substrate for epitaxial growth and manufacturing method
Polychroniadis et al. Microstructural characterization of very thick freestanding 3C-SiC wafers
JP2005123619A (en) Nitride semiconductor formed on silicon substrate, and manufacturing method therefor
Fareed et al. High quality InN/GaN heterostructures grown by migration enhanced metalorganic chemical vapor deposition
JP4529846B2 (en) Iii-v nitride semiconductor substrate and a manufacturing method thereof
JP2008166349A (en) Semiconductor substrate and semiconductor device
Kukushkin et al. Synthesis of epitaxial silicon carbide films through the substitution of atoms in the silicon crystal lattice: A review
US9617656B2 (en) Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
JP2007273946A (en) Nitride semiconductor single crystal film
WO2011016304A1 (en) Epitaxial substrate for semiconductor element, method for manufacturing epitaxial substrate for semiconductor element, and semiconductor element
Hartono et al. Reduction of threading dislocation density in GaN grown on strain relaxed nanoporous GaN template

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
WD01