CN105718723A - 一种质谱数据处理中谱峰位置检测方法 - Google Patents

一种质谱数据处理中谱峰位置检测方法 Download PDF

Info

Publication number
CN105718723A
CN105718723A CN201610031234.1A CN201610031234A CN105718723A CN 105718723 A CN105718723 A CN 105718723A CN 201610031234 A CN201610031234 A CN 201610031234A CN 105718723 A CN105718723 A CN 105718723A
Authority
CN
China
Prior art keywords
matrix
particle
metric
spectrum peak
peak position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610031234.1A
Other languages
English (en)
Other versions
CN105718723B (zh
Inventor
田地
郑瀛
范润龙
龙涛
邱春玲
张玉海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201610031234.1A priority Critical patent/CN105718723B/zh
Publication of CN105718723A publication Critical patent/CN105718723A/zh
Application granted granted Critical
Publication of CN105718723B publication Critical patent/CN105718723B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Abstract

本发明涉及一种质谱数据处理中谱峰位置检测方法,对原始谱图进行连续小波变换,形成二维小波系数矩阵;在矩阵中设置多个粒子,使粒子按照固定规则移动,逐渐聚集至局部极值点位置;对矩阵位置进行度量,采用噪声阈值和原始谱峰强度修正度量值形成度量值矩阵;在度量值矩阵中搜索脊点,连接脊线,根据脊线确定谱峰位置。该方法综合利用了原始谱峰强度和小波系数矩阵信息进行谱峰位置检测,克服了传统CWT方法进行弱峰和重叠峰检测时误检率上升的问题,提高了算法的灵敏度和对重叠峰的分辨能力。

Description

一种质谱数据处理中谱峰位置检测方法
技术领域
本发明涉及质谱数据预处理以及信息提取方法,特别涉及一种基于连续小波变换的质谱谱峰位置检测方法。
背景技术
质谱法以其高灵敏度、高分辨率等优点成为一种应用广泛的分析技术。质谱计产生原始谱图数据后,需要利用算法进行精确的谱峰位置和强度的检测,以获取样品的成分和结构信息。谱峰位置的检测结果直接影响着质谱计的灵敏度和精度。目前常用的寻峰方法包括直接比较法、导数法、曲线拟合和连续小波变换法(以下简称:CWT)等。直接比较法和导数法对谱图噪声和背景敏感,而曲线拟合法只能提取若干单峰的信息,不具备全谱寻峰能力。
CWT采用特定小波基函数的伸缩和平移来分解谱图,将谱图由时域转换到小波域,形成一个二维的小波系数矩阵,利用小波系数矩阵进行谱峰检测。该方法具有准确率高和多尺度分辨的优点,并且对噪声和背景有较强抑制能力。目前CWT法寻峰通常的做法是:在小波系数矩阵中采用简单的局部比较方式搜索局部极大值确定脊点,将不同尺度上的脊点连接形成脊线,通过脊线确定谱峰位置。该方法单纯根据小波系数确定谱峰位置,在进行微弱谱峰检测时,易受到噪声干扰,存在误检率上升的问题。谱峰重叠时,强峰会对弱峰的小波系数产生严重影响,导致弱峰处的局部极值减弱,甚至成为负值,此时无法实现对弱峰的检测,严重影响了算法对重叠峰的分辨能力。
本发明从文献[1]:R.A.Carmona,W.L.Hwang,andB.Torresani,"Multiridgedetectionandtime-frequencyreconstruction,"SignalProcessing,IEEETransactionson,vol.47,pp.480-492,1999.中引入Crazy-climber寻峰方法的思想,根据质谱脊线特征提出了一种新的脊点搜索方式,结合传统CWT方法形成了一种新的谱峰位置检测方法。该方法综合利用了原始谱峰强度和小波系数矩阵信息进行谱峰位置检测,克服了传统CWT方法进行弱峰和重叠峰检测时误检率上升的问题,提高了算法的灵敏度和对重叠峰的分辨能力。
发明内容
本发明的目的是针对上述现有寻峰方法的不足,提出一种质谱数据处理中谱峰位置检测方法。
本发明的目的是通过以下技术方案实现的:
一种质谱数据处理中谱峰位置检测方法,包括以下步骤:
Ⅰ、选择一定尺度范围对原始质谱图进行连续小波变换,形成二维小波系数矩阵C(a,b),其中a为尺度参数,b为位移参数;
Ⅱ、在小波系数矩阵C(a,b)中均匀设置N个粒子,使粒子按照固定规则移动,逐渐聚集在局部极值点的位置;
Ⅲ、根据粒子占据情况对小波系数矩阵中所有位置进行度量,形成度量值矩阵,并采用噪声阈值和对应位置谱峰强度对度量值矩阵进行修正;
Ⅳ、在修正后的度量值矩阵中进行局部极大值搜索,并设置强度阈值过滤局部极值得到脊点;
Ⅴ、连接脊点形成脊线,设置脊线长度阈值,去除过短脊线;
Ⅵ、根据脊线确定谱峰位置,完成谱峰位置检测,谱峰位置为脊线中度量值最大的脊点位置。
步骤Ⅰ中所述的一定尺度范围a=1~Na,尺度间隔为指数间隔,最大尺度Na的确定方法包括以下步骤:
a、在所处理的谱图中截取一个独立的谱峰,选择一个大的尺度范围对谱峰进行小波变换,观察谱峰位置处小波系数随尺度参数的变化曲线;
b、随尺度参数增加,小波系数应表现为先增大后减小的趋势,若未出现该趋势,则继续增大尺度范围进行小波变换;
c、出现先增大后减小的趋势后,选择小波系数达到最大后的2-3个尺度点作为最大尺度Na。
步骤Ⅱ所述的粒子移动规则如下:
A、对于小波系数矩阵C(a,b),以b为水平方向,a为垂直方向,先进行垂直方向移动,然后进行水平方向移动;
B、粒子进行垂直方向移动时,判断粒子是否处于上下边界,若处于边界则向内移动,否认按照相同概率向上或向下移动;
C、粒子进行水平移动时,仍先判断粒子是否处于左右边界,处于边界则向内移动,否则各按相同概率准备向左或向右移动,是否移动根据移动前后位置小波系数大小进行判断,满足判断标准则移动,否则不移动。
设计粒子水平移动判断标准的主要依据是使粒子逐渐聚集至谱峰形成的脊线上,且不被噪声形成的个别局部极小值阻隔,判断标准如下:
①、若下一位置小波系数值大于当前位置,则一定发生该移动。
②、若下一位置小波系数值小于当前位置,则将小波系数值做差,若差值小于某一阈值则发生该移动,否则不动。
③、随移动次数增加将准则②中的阈值逐渐减小,使粒子逐渐趋于稳定。
步骤Ⅲ所述的矩阵位置度量方式为:
设t次移动后矩阵位置(k,j)的粒子个数为n(k,j)(t),粒子移动次数为T,则矩
阵位置初始度量值为:
i ( k , j ) = 1 T Σ t = 1 T n ( k , j ) ( t ) - - - ( 1 )
度量值矩阵修正方法如下:
设阈值i0为噪声点所产生的度量值,从上述初始度量值中减去阈值,并与原始谱图谱峰强度S(j)作乘积形成最终的度量值矩阵:
I(k,j)=S(j)·(i(k,j)-i0)(2)
度量值矩阵中所有度量值均为非负实数,上述度量方式中,初始度量值减去噪声阈值i0后,若度量值小于零则将该值归零,若噪声阈值选择得当,此时度量值矩阵将成为稀疏矩阵,从而有效突出小波系数矩阵中的局部极值点,降低后续脊点搜索难度。
有益效果:本发明与一般采用简单的局部比较方式搜索局部极大值确定脊点进行谱峰位置检测的方法不同。提出一种粒子随机移动,根据粒子占据情况度量矩阵位置,采用噪声阈值和谱峰强度修正度量值,在度量值矩阵中进行脊线搜索,确定谱峰位置的方法。综合利用了原始谱峰强度和小波系数矩阵信息进行谱峰位置检测,有效增加微弱谱峰的检测能力。通过粒子占据情况进行矩阵位置度量,采用噪声阈值修正度量值,去除大部分噪声对应的局部极值点,降低误检率。克服了传统CWT方法进行弱峰和重叠峰检测时误检率上升的问题,提高了算法的灵敏度和对重叠峰的分辨能力。
附图说明
图1一种质谱数据处理中谱峰位置检测方法中寻峰方法流程图
图2锆石TOF-SIMS原始谱图
图3一种质谱数据处理中谱峰位置检测方法流程图
图4尺度参数对小波系数的影响图
图5初始度量值图
图6修正度量值图
图7原始谱图及其脊点图
图8寻峰结果图
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细描述:
一种质谱数据处理中谱峰位置检测方法,包括以下步骤:
Ⅰ、选择一定尺度范围对原始质谱图进行连续小波变换,形成二维小波系数矩阵C(a,b),其中a为尺度参数,b为位移参数;
Ⅱ、在小波系数矩阵C(a,b)中均匀设置N个粒子,使粒子按照固定规则移动,逐渐聚集在局部极值点的位置;
Ⅲ、根据粒子占据情况对小波系数矩阵中所有位置进行度量,形成度量值矩阵,并采用噪声阈值和对应位置谱峰强度对度量值矩阵进行修正;
Ⅳ、在修正后的度量值矩阵中进行局部极大值搜索,并设置强度阈值过滤局部极值得到脊点;
Ⅴ、连接脊点形成脊线,设置脊线长度阈值,去除过短脊线;
Ⅵ、根据脊线确定谱峰位置,完成谱峰位置检测,谱峰位置为脊线中度量值最大的脊点位置。
步骤Ⅰ中所述的一定尺度范围a=1~Na,尺度间隔为指数间隔,最大尺度Na的确定方法包括以下步骤:
a、在所处理的谱图中截取一个独立的谱峰,选择一个大的尺度范围对谱峰进行小波变换,观察谱峰位置处小波系数随尺度参数的变化曲线;
b、随尺度参数增加,小波系数应表现为先增大后减小的趋势,若未出现该趋势,则继续增大尺度范围进行小波变换;
c、出现先增大后减小的趋势后,选择小波系数达到最大后的2-3个尺度点作为最大尺度Na。
步骤Ⅱ所述的粒子移动规则如下:
A、对于小波系数矩阵C(a,b),以b为水平方向,a为垂直方向,先进行垂直方向移动,然后进行水平方向移动;
B、粒子进行垂直方向移动时,判断粒子是否处于上下边界,若处于边界则向内移动,否认按照相同概率向上或向下移动;
C、粒子进行水平移动时,仍先判断粒子是否处于左右边界,处于边界则向内移动,否则各按相同概率准备向左或向右移动,是否移动根据移动前后位置小波系数大小进行判断,满足判断标准则移动,否则不移动。
设计粒子水平移动判断标准的主要依据是使粒子逐渐聚集至谱峰形成的脊线上,且不被噪声形成的个别局部极小值阻隔,判断标准如为:
①、若下一位置小波系数值大于当前位置,则一定发生该移动。
②、若下一位置小波系数值小于当前位置,则将小波系数值做差,若差值小于某一阈值则发生该移动,否则不动。
③、随移动次数增加将准则②中的阈值逐渐减小,使粒子逐渐趋于稳定。
4、按照权利要求1所述的一种质谱数据处理中谱峰位置检测方法,其特征在于,步骤Ⅲ所述的矩阵位置度量方式为:
设t次移动后矩阵位置(k,j)的粒子个数为n(k,j)(t),粒子移动次数为T,则矩阵位置初始度量值为: i ( k , j ) = 1 T Σ t = 1 T n ( k , j ) ( t ) - - - ( 1 )
度量值矩阵修正方法如下:
设阈值i0为噪声点所产生的度量值,从上述初始度量值中减去阈值,并与原始谱图谱峰强度S(j)作乘积形成最终的度量值矩阵:
I(k,j)=S(j)·(i(k,j)-i0)(2)
度量值矩阵中所有度量值均为非负实数,上述度量方式中,初始度量值减去噪声阈值i0后,若度量值小于零则将该值归零,若噪声阈值选择得当,此时度量值矩阵将成为稀疏矩阵,从而有效突出小波系数矩阵中的局部极值点,降低后续脊点搜索难度。
实施例1
采用同位素地质学专用TOF-SIMS锆石谱图中锆同位素谱峰片段(质量数为88-98)对本发明作进一步详细描述,原始谱图如图2所示。
对上述谱图进行谱峰位置检测,检测方法流程图见图3,包括以下步骤:
(1)选择一定尺度范围对原始质谱图进行连续小波变换,形成二维小波系数矩阵C(a,b),其中a为尺度参数,b为位移参数;位移参数等于原始谱图长度,尺度范围a=1~Na,优选的尺度间隔为按1.18指数增长,最大尺度Na的确定方法如下:
截取谱图中一个单峰,选择一个大的尺度范围对其进行小波变换,观察谱峰位置处尺度参数对小波系数的影响,如图4所示。从图中可以看出,随着尺度参数的增大,小波系数逐渐增大。当小波基函数与谱峰宽度相同时,达到最大的小波系数值,之后小波系数逐渐减小。为了提高寻峰精度和寻峰算法稳定性,需要选择多个尺度进行小波变换。小的尺度参数与重叠峰和微弱谱峰识别有关,决定了算法的寻峰灵敏度和重叠峰的分辨能力。尺度参数的最大值Na选择小波系数达到最大之后2-3个尺度即可,尺度参数过大只会增大计算量而不会提高精度。本实施例选择的尺度范围为1~19.67共18个值。
(2)在小波系数矩阵C(a,b)中均匀设置N个粒子,使粒子按照固定规则移动,逐渐聚集在局部极值点的位置。移动规则如下:
在t时刻,粒子位置X(t)=(k,j),下一时刻位置X(t+1)=(k’,j’)由以下规则确定:
a、对于小波系数矩阵C(a,b),以b为水平方向,a为垂直方向。b的范围为1,2,…,B,a的范围为1,2,…,A。
b、粒子首先进行垂直方向移动,如果2≤k≤A-1,那么k'=K+1和K'=K-1各取1/2的概率。
如果粒子到达下边界,即k=1,那么粒子向上移动一格,即K’=2;
如果粒子到达上边界,即K=A,那么粒子向下移动一格,即K’=A-1。
c、垂直移动完成后进行水平方向移动。仍先判断粒子是否处于左右边界,即j=1或j=B,则粒子向内移动一格,j’=2或j’=B-1。否则各按1/2的概率准备向左或向右移动一格,是否移动根据小波系数大小进行判断。判断标准如下:
如果C(k’,j’)>C(k,j)则粒子发生该移动,X(t+1)=(k’,j’);
如果C(k’,j’)≤C(k,j)则计算差值ΔC=|C(k',j')-C(k,j)|,设置阈值Temp,若ΔC<Temp,则发生该移动,即X(t+1)=(k’,j’),否则不动,即X(t+1)=(k,j)。
d、随移动次数增加,逐渐减小Temp,使Temp逐渐接近零。该方法类似模拟退火算法思想,随移动次数增加,温度降低,粒子趋于稳定。
(3)根据粒子占据情况对小波系数矩阵中所有位置进行度量,形成度量值矩阵。优选的度量方法如下:
设t次移动后矩阵位置(k,j)的粒子个数为n(k,j)(t),粒子移动次数为T,则矩阵位置初始度量值为:
i ( k , j ) = 1 T &Sigma; t = 1 T n ( k , j ) ( t ) - - - ( 3 )
设置噪声阈值并结合对应位置谱峰强度对初始度量值矩阵进行修正。设阈值i0为噪声点所产生的度量值,从上述初始度量值中减去阈值,并与原始谱图谱峰强度S(j)作乘积形成最终的度量值矩阵,即:
I(k,j)=S(j)·(i(k,j)-i0)(4)
采用上述方法对矩阵位置进行度量,尺度参数a=2.29时的各位移参数对应的初始度量值如图5所示。设置噪声阈值i0=4,根据公式(4)对初始度量值进行校正后得到的最终度量值如图6所示。两图比较可以看出,进行度量值修正后,能够将绝大部分度量值归零,使度量值矩阵成为稀疏矩阵。将原始谱峰强度与度量值作乘积,可以有效突出谱峰位置,降低脊点搜索难度。
(4)根据公式(5)在修正后的度量值矩阵中进行局部极大值搜索,并设置强度阈值过滤局部极值得到脊点。原始谱图和得到的脊点如图7所示。
I ( k , j ) &GreaterEqual; I ( k , j - 2 ) I ( k , j ) &GreaterEqual; I ( k , j - 1 ) I ( k , j ) &GreaterEqual; I ( k , j + 1 ) I ( k , j ) &GreaterEqual; I ( k , j + 2 ) - - - ( 5 )
连接脊点形成脊线,设置脊线长度阈值,去除过短脊线。根据脊线确定谱峰位置,完成谱峰位置检测。
优选的脊线长度阈值为5,将脊点数少于5个的脊线剔除。优选的谱峰位置为脊线中度量值最大的脊点位置,度量值越大,说明该位置处小波基函数与谱峰匹配程度最好,因此将其作为谱峰位置。检测到的谱峰位置及过滤后的脊线如图8所示。从图中可以看出,本发明能够有效检测到谱图中各个谱峰位置。包括质量数89处的微弱谱峰和92处的重叠谱峰,都有很好的寻峰效果。

Claims (5)

1.一种质谱数据处理中谱峰位置检测方法,其特征在于,包括以下步骤:
Ⅰ、选择一定尺度范围对原始质谱图进行连续小波变换,形成二维小波系数矩阵C(a,b),其中a为尺度参数,b为位移参数;
Ⅱ、在小波系数矩阵C(a,b)中均匀设置N个粒子,使粒子按照固定规则移动,逐渐聚集在局部极值点的位置;
Ⅲ、根据粒子占据情况对小波系数矩阵中所有位置进行度量,形成度量值矩阵,并采用噪声阈值和对应位置谱峰强度对度量值矩阵进行修正;
Ⅳ、在修正后的度量值矩阵中进行局部极大值搜索,并设置强度阈值过滤局部极值得到脊点;
Ⅴ、连接脊点形成脊线,设置脊线长度阈值,去除过短脊线;
Ⅵ、根据脊线确定谱峰位置,完成谱峰位置检测,谱峰位置为脊线中度量值最大的脊点位置。
2.按照权利要求1所述的一种质谱数据处理中谱峰位置检测方法,其特征在于,步骤Ⅰ中所述的一定尺度范围a=1~Na,尺度间隔为指数间隔,最大尺度Na的确定方法包括以下步骤:
a、在所处理的谱图中截取一个独立的谱峰,选择一个大的尺度范围对谱峰进行小波变换,观察谱峰位置处小波系数随尺度参数的变化曲线;
b、随尺度参数增加,小波系数应表现为先增大后减小的趋势,若未出现该趋势,则继续增大尺度范围进行小波变换;
c、出现先增大后减小的趋势后,选择小波系数达到最大后的2-3个尺度点作为最大尺度Na。
3.按照权利要求1所述的一种质谱数据处理中谱峰位置检测方法,其特征在于,步骤Ⅱ所述的粒子移动规则如下:
A、对于小波系数矩阵C(a,b),以b为水平方向,a为垂直方向,先进行垂直方向移动,然后进行水平方向移动;
B、粒子进行垂直方向移动时,判断粒子是否处于上下边界,若处于边界则向内移动,否认按照相同概率向上或向下移动;
C、粒子进行水平移动时,仍先判断粒子是否处于左右边界,处于边界则向内移动,否则各按相同概率准备向左或向右移动,是否移动根据移动前后位置小波系数大小进行判断,满足判断标准则移动,否则不移动。
4.按照权利要求3所述的一种质谱数据处理中谱峰位置检测方法,其特征在于,设计粒子水平移动判断标准的主要依据是使粒子逐渐聚集至谱峰形成的脊线上,且不被噪声形成的个别局部极大值阻隔,判断标准如下:
①、若下一位置小波系数值大于当前位置,则一定发生该移动。
②、若下一位置小波系数值小于当前位置,则将小波系数值做差,若差值小于某一阈值则发生该移动,否则不动。
③、随移动次数增加将准则②中的阈值逐渐减小,使粒子逐渐趋于稳定。
5.按照权利要求1所述的一种质谱数据处理中谱峰位置检测方法,其特征在于,步骤Ⅲ所述的矩阵位置度量方式为:
设t次移动后矩阵位置(k,j)的粒子个数为n(k,j)(t),粒子移动次数为T,则矩阵位置初始度量值为:
i ( k , j ) = 1 T &Sigma; t = 1 T n ( k , j ) ( t ) - - - ( 1 )
度量值矩阵修正方法如下:
设阈值i0为噪声点所产生的度量值,从上述初始度量值中减去阈值,并与原始谱图谱峰强度S(j)作乘积形成最终的度量值矩阵:
I(k,j)=S(j)·(i(k,j)-i0)(2)
度量值矩阵中所有度量值均为非负实数,上述度量方式中,初始度量值减去噪声阈值i0后,若度量值小于零则将该值归零,若噪声阈值选择得当,此时度量值矩阵将成为稀疏矩阵,从而有效突出小波系数矩阵中的局部极值点,降低后续脊点搜索难度。
CN201610031234.1A 2016-01-18 2016-01-18 一种质谱数据处理中谱峰位置检测方法 Expired - Fee Related CN105718723B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610031234.1A CN105718723B (zh) 2016-01-18 2016-01-18 一种质谱数据处理中谱峰位置检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610031234.1A CN105718723B (zh) 2016-01-18 2016-01-18 一种质谱数据处理中谱峰位置检测方法

Publications (2)

Publication Number Publication Date
CN105718723A true CN105718723A (zh) 2016-06-29
CN105718723B CN105718723B (zh) 2018-01-16

Family

ID=56147341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610031234.1A Expired - Fee Related CN105718723B (zh) 2016-01-18 2016-01-18 一种质谱数据处理中谱峰位置检测方法

Country Status (1)

Country Link
CN (1) CN105718723B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535403A (zh) * 2018-04-17 2018-09-14 西南大学 数据处理的方法及装置
CN112558924A (zh) * 2020-12-11 2021-03-26 黑龙江大学 伪随机二值序列的局部弱随机现象的快速检测方法
CN113804814A (zh) * 2021-09-06 2021-12-17 中国农业科学院农产品加工研究所 香辛料赋予酱卤肉制品滋味成分的鉴定方法
CN115166120A (zh) * 2022-06-23 2022-10-11 中国科学院苏州生物医学工程技术研究所 一种谱峰识别方法、设备、介质及产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020116252A1 (en) * 2001-01-19 2002-08-22 I.T.M.L. Co., Ltd. Market trend analyzing method and market trend analyzing device
WO2005067640A3 (en) * 2004-01-07 2006-08-17 Univ Hawaii Methods for enhanced detection & analysis of differentially expressed genes using gene chip microarrays
CN101752179A (zh) * 2008-12-22 2010-06-23 岛津分析技术研发(上海)有限公司 质谱分析器
CN102141609A (zh) * 2010-12-28 2011-08-03 哈尔滨工业大学 一种高频段一阶Bragg峰及其分裂谱峰的识别方法及系统
CN103091289A (zh) * 2012-12-21 2013-05-08 吉林大学 基于激光诱导击穿光谱分析技术的自动化实验平台
CN105067650A (zh) * 2015-08-03 2015-11-18 东南大学 一种利用小波计算导数检测谱特征峰的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020116252A1 (en) * 2001-01-19 2002-08-22 I.T.M.L. Co., Ltd. Market trend analyzing method and market trend analyzing device
WO2005067640A3 (en) * 2004-01-07 2006-08-17 Univ Hawaii Methods for enhanced detection & analysis of differentially expressed genes using gene chip microarrays
CN101752179A (zh) * 2008-12-22 2010-06-23 岛津分析技术研发(上海)有限公司 质谱分析器
CN102141609A (zh) * 2010-12-28 2011-08-03 哈尔滨工业大学 一种高频段一阶Bragg峰及其分裂谱峰的识别方法及系统
CN103091289A (zh) * 2012-12-21 2013-05-08 吉林大学 基于激光诱导击穿光谱分析技术的自动化实验平台
CN105067650A (zh) * 2015-08-03 2015-11-18 东南大学 一种利用小波计算导数检测谱特征峰的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GUANG YANG ETC: "Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement", 《SCIENTIFIC REPORTS》 *
R.A.CARMONA ETC: "Multiridge detection and time-frequency reconstruction", 《IEEE TRANSACTIONS ON SIGNAL PROCESSING》 *
R.A.CARMONA ETC: "Multiridge detection and time-frequency reconstruction", <SIGNAL PROCESSING IEEE TRANSACTIONS> *
丁宇 等: "Development of an Automated LIBS Analytical Test System Integrated with Component Control and Spectrum Analysis", 《PLASMA SCIENCE AND TECHNOLOGY》 *
陈鹏飞 等: "一种基于连续小波变换的LIBS光谱自动寻峰方法", 《光谱学与光谱分析》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535403A (zh) * 2018-04-17 2018-09-14 西南大学 数据处理的方法及装置
CN108535403B (zh) * 2018-04-17 2019-07-02 西南大学 数据处理的方法及装置
CN112558924A (zh) * 2020-12-11 2021-03-26 黑龙江大学 伪随机二值序列的局部弱随机现象的快速检测方法
CN112558924B (zh) * 2020-12-11 2022-08-26 黑龙江大学 伪随机二值序列的局部弱随机现象的快速检测方法
CN113804814A (zh) * 2021-09-06 2021-12-17 中国农业科学院农产品加工研究所 香辛料赋予酱卤肉制品滋味成分的鉴定方法
CN115166120A (zh) * 2022-06-23 2022-10-11 中国科学院苏州生物医学工程技术研究所 一种谱峰识别方法、设备、介质及产品

Also Published As

Publication number Publication date
CN105718723B (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
CN103558529B (zh) 一种三相共筒式超高压gis局部放电的模式识别方法
CN105718723A (zh) 一种质谱数据处理中谱峰位置检测方法
CN109596955B (zh) 局部放电状态确定方法及装置
CN108446632B (zh) 一种局部放电脉冲边沿寻找与局部放电确认方法
CN102445544B (zh) 一种提高单同位素峰判断准确率的方法和系统
CN103454671B (zh) 一种基于高速数字采样的核辐射脉冲堆积判断与校正方法
CN105527650B (zh) 一种工程尺度下微震信号及p波初至自动识别算法
CN106353737B (zh) 一种基于全频带谱分析的雷达压制式干扰检测方法
CN103995259B (zh) 密集干扰环境下雷达目标自适应滤波融合检测方法
WO2016004687A1 (zh) 超高频局放信号初始时刻判别方法
CN112603334B (zh) 基于时序特征和堆叠Bi-LSTM网络的棘波检测方法
CN104990893A (zh) 一种基于相似判别的汽油辛烷值检测方法
CN104732543A (zh) 一种沙漠戈壁背景下红外弱小目标快速检测方法
CN103217404A (zh) 一种激光诱导击穿光谱元素谱线归属识别方法
CN111089856B (zh) 一种拉曼光谱弱信号提取的后处理方法
CN106770192B (zh) 基于插值法的激光诱导击穿光谱连续背景校正方法
CN107273421B (zh) 一种高准确性茶叶香气类型和品质的模式识别检测方法
CN101853503A (zh) 一种谱线拐点多尺度寻优分段方法及其应用
CN111523587A (zh) 一种基于机器学习的木本植物物种光谱识别方法
CN107703911B (zh) 一种不确定系统的可诊断性分析方法
US20140005954A1 (en) Method Of Processing Multidimensional Mass Spectrometry
CN116520068B (zh) 一种电力数据的诊断方法、装置、设备及存储介质
CN104715160A (zh) 基于kmdb的软测量建模数据异常点检测方法
CN103700102A (zh) 基于ct图像的岩心目标提取方法
CN110310704A (zh) 一种基于局部异常因子的拷贝数变异检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180116

Termination date: 20190118

CF01 Termination of patent right due to non-payment of annual fee