CN105700074A - 偏振无关的级联可调光衰减器 - Google Patents

偏振无关的级联可调光衰减器 Download PDF

Info

Publication number
CN105700074A
CN105700074A CN201610226520.3A CN201610226520A CN105700074A CN 105700074 A CN105700074 A CN 105700074A CN 201610226520 A CN201610226520 A CN 201610226520A CN 105700074 A CN105700074 A CN 105700074A
Authority
CN
China
Prior art keywords
optical attenuator
adjustable optical
mzi
variable optical
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610226520.3A
Other languages
English (en)
Other versions
CN105700074B (zh
Inventor
任梅珍
张家顺
安俊明
王亮亮
张春威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HENAN SHIJIA PHOTONS TECHNOLOGY Co Ltd
Original Assignee
HENAN SHIJIA PHOTONS TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HENAN SHIJIA PHOTONS TECHNOLOGY Co Ltd filed Critical HENAN SHIJIA PHOTONS TECHNOLOGY Co Ltd
Priority to CN201610226520.3A priority Critical patent/CN105700074B/zh
Publication of CN105700074A publication Critical patent/CN105700074A/zh
Application granted granted Critical
Publication of CN105700074B publication Critical patent/CN105700074B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • G02F1/0144TE-TM mode separation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种偏振无关的级联可调光衰减器,包括第一级MZI可调光衰减器和第二级MZI可调光衰减器,第一级MZI可调光衰减器的输出端与第二级MZI可调光衰减器的输入端相连,第一级MZI可调光衰减器和第二级MZI可调光衰减器的波导宽度大于波导高度。本发明通过加宽第一级MZI可调光衰减器和第二级MZI可调光衰减器的波导宽度,使第一级MZI可调光衰减器的PDL1与第二级MZI可调光衰减器的PDL2大小相等,符号相反,这样补偿了整个器件的偏振相关损耗。

Description

偏振无关的级联可调光衰减器
技术领域
本发明属于集成光学技术领域,具体涉及一种偏振无关的级联可调光衰减器。
背景技术
近年来,WDM(WavelengthDivisionMultiplexing)和DWDM(DenseWavelengthDivisionMultiplexing)系统得到越来越广泛的应用,WDM系统中的各个信道需要功率均衡,这是可调光衰减器的主要用途。此外,光学衰减器还可以用于某些器件的过功率保护,如光学衰减器与光电探测器集成可以有效抑制光电探测器的饱和;光学衰减器还是构成其他光电功能模块的重要元件,如OADM(OpticalAdd-DropMultiplexer)、MUX+VOA(Multiplexer+VariableOpticalAttenuator)等;光学衰减器广泛用于有线电视网络节点处的功率均衡。
平面光波导型可调光衰减器具有制作简单,稳定性好,尺寸小,成本低,易于集成、适合大规模生产等优点,随着技术的发展和成熟,已成为光通信系统中非常关键的光器件之一。但是PLC(PlanarLightwaveCircuit)型VOA(VariableOpticalAttenuator)的PDL随着衰减的增大而增大,这限制了PLC型VOA的使用。
而且,目前PLC型可调光衰减器常用的技术为硅基二氧化硅技术,包层和芯区的折射率差为0.75%,芯区尺寸为6×6μm。在该工艺下制作的对称型MZI,在相移达到π时,PDL的符号改变不明显,当做成级联VOA时,PDL补偿的效果很差。
发明内容
针对上述现有技术中描述的不足,本发明的目的是提供一种方法,该方法通过增大波导宽度,优化级联可调光衰减器的偏振相关损耗。。
为实现上述技术目的,本发明所采用的技术方案如下:
一种偏振无关的级联可调光衰减器,包括第一级MZI可调光衰减器和第二级MZI可调光衰减器,第一级MZI可调光衰减器的输出端与第二级MZI可调光衰减器的输入端相连,第一级MZI可调光衰减器和第二级MZI可调光衰减器的波导宽度大于波导高度。
所述波导宽度大于6μm,且小于8μm。
所述第一级MZI可调光衰减器的PDL1与第二级MZI可调光衰减器的PDL2大小相等,符号相反,PDL1=-PDL2。
第一级MZI可调光衰减器与第二级MZI可调光衰减器的相位差为2π。
所述第一级MZI可调光衰减器的相位为0到π之间,第二级MZI可调光衰减器的相位为2π到π之间。
所述所述第一级MZI可调光衰减器的相位为-π到0之间,第二级MZI可调光衰减器的相位为π到0之间。
对于PLC型热光可调光衰减器,其偏振相关损耗是由波导中的二次光弹效应引起的,即折射率不仅随着二氧化硅的各向同性的热光效应而变化,当波导被金属电极加热时,折射率也随着各向异性的光弹效应而变化。该二次光弹效应可以理解为当波导被加热时,由于二氧化硅的热膨胀系数远小于硅的热膨胀系数,故二氧化硅可以自由的向硅衬底膨胀,即垂直方向自由膨胀;而在水平方向,由于芯区二氧化硅的热膨胀系数略大于包层二氧化硅的热膨胀系数,二氧化硅在该方向的膨胀是受到限制的,因此在水平方向会产生一种压应力,且该应力主要影响TM模的传输,使TM模的偏移大于TE模。该压应力越大,偏移也就越大,器件的偏振相关损耗越大。本发明中提出的加宽波导宽度的方法,可以使这种压应力减小,因为波导宽度变宽时,芯区二氧化硅在水平方向受到的压应力会减小;反之当波导宽度变窄时,包层二氧化硅对芯区的限制作用更强,芯区二氧化硅在水平方向受到的压应力会增大。基于上述原理,在制作器件时加宽波导宽度,可以改善其偏振相关损耗。
本发明通过加宽第一级MZI可调光衰减器和第二级MZI可调光衰减器的波导宽度,使第一级MZI可调光衰减器的PDL1与第二级MZI可调光衰减器的PDL2大小相等,符号相反,这样补偿了整个器件的偏振相关损耗。
附图说明
图1为本发明的结构示意图。
图2为波导宽度为5μm时,对称型VOA的偏振模式。
图3为波导宽度为7μm时,对称型VOA的偏振模式;
图4为波导宽度为5μm时,非对称型VOA的偏振模式;
图5为波导宽度为7μm时,非对称型VOA的偏振模式。
具体实施方式
下面结合附图,阐述本发明的具体实施方式。
如图1所示,一种偏振无关的级联可调光衰减器,包括第一级MZI可调光衰减器1和第二级MZI可调光衰减器2,第一级MZI可调光衰减器1的输出端与第二级MZI可调光衰减器2的输入端相连,第一级MZI可调光衰减器1和第二级MZI可调光衰减器2的波导宽度大于波导高度。所述波导宽度大于6μm,且小于8μm。
优选地,所述波导宽度为7μm,这种情况下,偏振补偿效果最好。
由于波导宽度的加宽,第一级MZI可调光衰减器1的PDL1与第二级MZI可调光衰减器2的PDL2大小相等,符号相反,PDL1=-PDL2。而且,第一级MZI可调光衰减器1与第二级MZI可调光衰减器2的相位差为2π。
当第一级MZI可调光衰减器1的相位为0到π之间,那么,第二级MZI可调光衰减器2的相位为2π到π之间。当,第一级MZI可调光衰减器1的相位为-π到0之间,那么,第二级MZI可调光衰减器2的相位为π到0之间。
下面以一个具体事例对本发明进行说明。
第一级MZI可调光衰减器1为对称型MZI可调光衰减器,第二级MZI可调光衰减器2为非对称型MZI可调光衰减器,即第一级MZI可调光衰减器的相位为0,第二级MZI可调光衰减器的相位为2π。
对于第一级MZI可调光衰减器1,当其芯区的波导宽度为5μm时,随着加在调制臂上的电压的增大,其TE模和TM模随着折射率差的变化曲线如图2所示。由图2可看出,随着折射率差的增大,TM模的IL始终大于TE模;在相位差达到π时,PDL未改变符号。当其芯区波导宽度为7μm时,随着加在调制臂上的电压的增大,其TE模和TM模随着折射率差的变化曲线如图3所示。由图3可看出,在相位差达到π时,PDL改变符号。
对于第二级MZI可调光衰减器2,当其芯区波导宽度为5μm时,随着加在调制臂上的电压的增大,其TE模和TM模随着折射率差的变化曲线如图4所示。由图4可看出,随着折射率差的增大,TM模的IL始终大于TE模;在衰减达到最大时,PDL未改变符号。当其芯区波导宽度为7μm时,随着加在调制臂上的电压的增大,其TE模和TM模随着折射率差的变化曲线如图5所示。由图5可看出,在衰减达到最大时,PDL改变符号。
当第一级MZI可调光衰减器1与第二级MZI可调光衰减器2级联,并采用上述的调制方式时,第一级MZI可调光衰减器与第二级MZI可调光衰减器的PDL符号相反,即PDL1=-PDL2,能达到补偿偏振相关损耗的效果。
本发明中的平面波导型可调光衰减器,使芯区的波导宽度>6μm,当然波导宽度也不能无限制的加宽,从已开展的工作中我们发现波导宽度为7μm时,PDL的补偿效果较好。

Claims (7)

1.一种偏振无关的级联可调光衰减器,包括第一级MZI可调光衰减器(1)和第二级MZI可调光衰减器(2),第一级MZI可调光衰减器(1)的输出端与第二级MZI可调光衰减器(2)的输入端相连,其特征在于:第一级MZI可调光衰减器(1)和第二级MZI可调光衰减器(2)的波导宽度大于波导高度。
2.根据权利要求1所述的偏振无关的级联可调光衰减器,其特征在于:所述波导宽度大于6μm,且小于8μm。
3.根据权利要求2所述的偏振无关的级联可调光衰减器,其特征在于:所述波导宽度为7μm。
4.根据权利要求1或2或3所述的偏振无关的级联可调光衰减器,其特征在于:所述第一级MZI可调光衰减器(1)的PDL1与第二级MZI可调光衰减器(2)的PDL2大小相等,符号相反,PDL1=-PDL2。
5.根据权利要求4所述的偏振无关的级联可调光衰减器,其特征在于:第一级MZI可调光衰减器(1)与第二级MZI可调光衰减器(2)的相位差为2π。
6.根据权利要求5所述的偏振无关的级联可调光衰减器,其特征在于:所述第一级MZI可调光衰减器(1)的相位为0到π之间,第二级MZI可调光衰减器(2)的相位为2π到π之间。
7.根据权利要求5所述的偏振无关的级联可调光衰减器,其特征在于:所述第一级MZI可调光衰减器(1)的相位为-π到0之间,第二级MZI可调光衰减器(2)的相位为π到0之间。
CN201610226520.3A 2016-04-13 2016-04-13 偏振无关的级联可调光衰减器 Active CN105700074B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610226520.3A CN105700074B (zh) 2016-04-13 2016-04-13 偏振无关的级联可调光衰减器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610226520.3A CN105700074B (zh) 2016-04-13 2016-04-13 偏振无关的级联可调光衰减器

Publications (2)

Publication Number Publication Date
CN105700074A true CN105700074A (zh) 2016-06-22
CN105700074B CN105700074B (zh) 2019-09-24

Family

ID=56219841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610226520.3A Active CN105700074B (zh) 2016-04-13 2016-04-13 偏振无关的级联可调光衰减器

Country Status (1)

Country Link
CN (1) CN105700074B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107764791A (zh) * 2017-10-11 2018-03-06 河南仕佳光子科技股份有限公司 一种基于倏逝波的离子浓度测试芯片
CN108227084A (zh) * 2018-01-16 2018-06-29 上海理工大学 一种基于氮化硅波导的偏振无关集成光开关及其制作方法
CN110595527A (zh) * 2019-09-10 2019-12-20 中国人民解放军国防科技大学 光芯片上多级交错马赫曾德干涉仪中可控相移器标定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070086704A1 (en) * 2005-10-18 2007-04-19 Hitachi Cable, Ltd. Waveguide type optical branching device
CN102495449A (zh) * 2011-12-07 2012-06-13 中国科学院半导体研究所 可调谐载流子诱导波导光栅
CN103392137A (zh) * 2011-02-22 2013-11-13 皇家飞利浦有限公司 光准直器和包含这种光准直器的照明单元
CN103760692A (zh) * 2014-02-25 2014-04-30 四川飞阳科技有限公司 平面光波导可调光衰减器及其调节方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070086704A1 (en) * 2005-10-18 2007-04-19 Hitachi Cable, Ltd. Waveguide type optical branching device
CN103392137A (zh) * 2011-02-22 2013-11-13 皇家飞利浦有限公司 光准直器和包含这种光准直器的照明单元
CN102495449A (zh) * 2011-12-07 2012-06-13 中国科学院半导体研究所 可调谐载流子诱导波导光栅
CN103760692A (zh) * 2014-02-25 2014-04-30 四川飞阳科技有限公司 平面光波导可调光衰减器及其调节方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107764791A (zh) * 2017-10-11 2018-03-06 河南仕佳光子科技股份有限公司 一种基于倏逝波的离子浓度测试芯片
CN107764791B (zh) * 2017-10-11 2021-03-23 河南仕佳光子科技股份有限公司 一种基于倏逝波的离子浓度测试芯片
CN108227084A (zh) * 2018-01-16 2018-06-29 上海理工大学 一种基于氮化硅波导的偏振无关集成光开关及其制作方法
CN110595527A (zh) * 2019-09-10 2019-12-20 中国人民解放军国防科技大学 光芯片上多级交错马赫曾德干涉仪中可控相移器标定方法

Also Published As

Publication number Publication date
CN105700074B (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
Xiong et al. High-speed two-mode switch for mode-division multiplexing optical networks
US9335472B2 (en) Planar optical waveguide device and DP-QPSK modulator
Mulvad et al. Ultra-high-speed optical serial-to-parallel data conversion by time-domain optical Fourier transformation in a silicon nanowire
Ding et al. Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator
Brimont et al. Slow-light-enhanced silicon optical modulators under low-drive-voltage operation
CN105700074A (zh) 偏振无关的级联可调光衰减器
Nakamura et al. High extinction ratio optical switching independently of temperature with silicon photonic 1× 8 switch
CN203941311U (zh) 一种可调光学谐振装置
CN103941427A (zh) 高制作容差的平面波导型可调光衰减器
Jones et al. Silicon photonic tunable optical dispersion compensator
Hui et al. Design of polarity-preserved or polarity-inverted wavelength converters using cross-phase modulation in a highly nonlinear photonic crystal fiber with flat dispersion
Qiu et al. Design and analysis of Y-branched polymeric digital optical switch with low power consumption
Le et al. All‐optical time‐domain demultiplexing of 170.8 Gbit/s signal in chalcogenide GeAsSe microstructured fibre
Hui et al. Design of a dispersion-engineered broadband Ge11. 5As24Se64. 5-Si3N4 strip–slot hybrid waveguide with giant and flat dispersion over 350 nm for on-chip photonic networks
Chen et al. Ultra-broadband low-loss 2× 2 MZI (Mach-Zehnder interferometer)-based thermo-optic switch with bent directional couplers on silicon
Neranjith et al. MZI-based all-optical serial-to-parallel conversion circuit by free-carrier dispersion effect
Yu et al. All-optical OFDM demultiplexer based on an integrated silicon-on-insulator technique
Hui et al. Slot–slot waveguide with negative large and flat dispersion covering C+ L+ U waveband for on-chip photonic networks
Xiong et al. All-optical clock recovery from 40 Gbit/s RZ signal based on microring resonators
Gamet et al. C-and L-band planar delay interferometer for DPSK decoders
Irace et al. Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating
Suzuki et al. 50-dB extinction-ratio in 2× 2 silicon optical switch with variable splitter
Ding et al. Photonic crystal waveguide modulator with embedded pn junction
Ding et al. Carrier-depletion Mach-Zehnder silicon optical modulator for high-speed and multi-level applications
Ding et al. Low-power-consumption, 40-Gb/s Mach-Zehnder silicon optical modulator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 458030 No. 201 Yanhe Road, Hebi National Economic and Technological Development Zone, Henan Province

Applicant after: HENAN SHIJIA PHOTONS TECHNOLOGY CO., LTD.

Address before: 458030 No. 201 Yanhe Road, Hebi National Economic and Technological Development Zone, Henan Province

Applicant before: HENAN SHIJIA PHOTONS TECHNOLOGY CO., LTD.

GR01 Patent grant
GR01 Patent grant