CN105700074B - 偏振无关的级联可调光衰减器 - Google Patents
偏振无关的级联可调光衰减器 Download PDFInfo
- Publication number
- CN105700074B CN105700074B CN201610226520.3A CN201610226520A CN105700074B CN 105700074 B CN105700074 B CN 105700074B CN 201610226520 A CN201610226520 A CN 201610226520A CN 105700074 B CN105700074 B CN 105700074B
- Authority
- CN
- China
- Prior art keywords
- optical attenuator
- adjustable optical
- mzi
- level
- order
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/011—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour in optical waveguides, not otherwise provided for in this subclass
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0136—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0136—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
- G02F1/0144—TE-TM mode separation
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明公开了一种偏振无关的级联可调光衰减器,包括第一级MZI可调光衰减器和第二级MZI可调光衰减器,第一级MZI可调光衰减器的输出端与第二级MZI可调光衰减器的输入端相连,第一级MZI可调光衰减器和第二级MZI可调光衰减器的波导宽度大于波导高度。本发明通过加宽第一级MZI可调光衰减器和第二级MZI可调光衰减器的波导宽度,使第一级MZI可调光衰减器的PDL1与第二级MZI可调光衰减器的PDL2大小相等,符号相反,这样补偿了整个器件的偏振相关损耗。
Description
技术领域
本发明属于集成光学技术领域,具体涉及一种偏振无关的级联可调光衰减器。
背景技术
近年来,WDM(Wavelength Division Multiplexing)和DWDM(Dense WavelengthDivision Multiplexing)系统得到越来越广泛的应用,WDM系统中的各个信道需要功率均衡,这是可调光衰减器的主要用途。此外,光学衰减器还可以用于某些器件的过功率保护,如光学衰减器与光电探测器集成可以有效抑制光电探测器的饱和;光学衰减器还是构成其他光电功能模块的重要元件,如OADM(Optical Add-Drop Multiplexer)、MUX+VOA(Multiplexer+Variable Optical Attenuator)等;光学衰减器广泛用于有线电视网络节点处的功率均衡。
平面光波导型可调光衰减器具有制作简单,稳定性好,尺寸小,成本低,易于集成、适合大规模生产等优点,随着技术的发展和成熟,已成为光通信系统中非常关键的光器件之一。但是PLC(Planar Lightwave Circuit)型VOA(Variable Optical Attenuator)的PDL随着衰减的增大而增大,这限制了PLC型VOA的使用。
而且,目前PLC型可调光衰减器常用的技术为硅基二氧化硅技术,包层和芯区的折射率差为0.75%,芯区尺寸为6×6 μm。在该工艺下制作的对称型MZI,在相移达到π时,PDL的符号改变不明显,当做成级联VOA时,PDL补偿的效果很差。
发明内容
针对上述现有技术中描述的不足,本发明的目的是提供一种方法,该方法通过增大波导宽度,优化级联可调光衰减器的偏振相关损耗。。
为实现上述技术目的,本发明所采用的技术方案如下:
一种偏振无关的级联可调光衰减器,包括第一级MZI可调光衰减器和第二级MZI可调光衰减器,第一级MZI可调光衰减器的输出端与第二级MZI可调光衰减器的输入端相连,第一级MZI可调光衰减器和第二级MZI可调光衰减器的波导宽度大于波导高度。
所述波导宽度大于6μm,且小于8μm。
所述第一级MZI可调光衰减器的PDL1与第二级MZI可调光衰减器的PDL2大小相等,符号相反,PDL1=-PDL2。
第一级MZI可调光衰减器与第二级MZI可调光衰减器的相位差为2π。
所述第一级MZI可调光衰减器的相位为0到π之间,第二级MZI可调光衰减器的相位为2π到π之间。
所述所述第一级MZI可调光衰减器的相位为-π到0之间,第二级MZI可调光衰减器的相位为π到0之间。
对于PLC型热光可调光衰减器,其偏振相关损耗是由波导中的二次光弹效应引起的,即折射率不仅随着二氧化硅的各向同性的热光效应而变化,当波导被金属电极加热时,折射率也随着各向异性的光弹效应而变化。该二次光弹效应可以理解为当波导被加热时,由于二氧化硅的热膨胀系数远小于硅的热膨胀系数,故二氧化硅可以自由的向硅衬底膨胀,即垂直方向自由膨胀;而在水平方向,由于芯区二氧化硅的热膨胀系数略大于包层二氧化硅的热膨胀系数,二氧化硅在该方向的膨胀是受到限制的,因此在水平方向会产生一种压应力,且该应力主要影响TM模的传输,使TM模的偏移大于TE模。该压应力越大,偏移也就越大,器件的偏振相关损耗越大。本发明中提出的加宽波导宽度的方法,可以使这种压应力减小,因为波导宽度变宽时,芯区二氧化硅在水平方向受到的压应力会减小;反之当波导宽度变窄时,包层二氧化硅对芯区的限制作用更强,芯区二氧化硅在水平方向受到的压应力会增大。基于上述原理,在制作器件时加宽波导宽度,可以改善其偏振相关损耗。
本发明通过加宽第一级MZI可调光衰减器和第二级MZI可调光衰减器的波导宽度,使第一级MZI可调光衰减器的PDL1与第二级MZI可调光衰减器的PDL2大小相等,符号相反,这样补偿了整个器件的偏振相关损耗。
附图说明
图1为本发明的结构示意图。
图2为波导宽度为5μm时,对称型VOA的偏振模式。
图3为波导宽度为7 μm时,对称型VOA的偏振模式;
图4为波导宽度为5 μm时,非对称型VOA的偏振模式;
图5为波导宽度为7 μm时,非对称型VOA的偏振模式。
具体实施方式
下面结合附图,阐述本发明的具体实施方式。
如图1所示,一种偏振无关的级联可调光衰减器,包括第一级MZI可调光衰减器1和第二级MZI可调光衰减器2,第一级MZI可调光衰减器1的输出端与第二级MZI可调光衰减器2的输入端相连,第一级MZI可调光衰减器1和第二级MZI可调光衰减器2的波导宽度大于波导高度。所述波导宽度大于6μm,且小于8μm。
优选地,所述波导宽度为7μm,这种情况下,偏振补偿效果最好。
由于波导宽度的加宽,第一级MZI可调光衰减器1的PDL1与第二级MZI可调光衰减器2的PDL2大小相等,符号相反,PDL1=-PDL2。而且,第一级MZI可调光衰减器1与第二级MZI可调光衰减器2的相位差为2π。
当第一级MZI可调光衰减器1的相位为0到π之间,那么,第二级MZI可调光衰减器2的相位为2π到π之间。当,第一级MZI可调光衰减器1的相位为-π到0之间,那么,第二级MZI可调光衰减器2的相位为π到0之间。
下面以一个具体事例对本发明进行说明。
第一级MZI可调光衰减器1为对称型MZI可调光衰减器,第二级MZI可调光衰减器2为非对称型MZI可调光衰减器,即第一级MZI可调光衰减器的相位为0,第二级MZI可调光衰减器的相位为2π。
对于第一级MZI可调光衰减器1,当其芯区的波导宽度为5 μm时,随着加在调制臂上的电压的增大,其TE模和TM模随着折射率差的变化曲线如图2所示。由图2可看出,随着折射率差的增大,TM模的IL始终大于TE模;在相位差达到π时,PDL未改变符号。当其芯区波导宽度为7 μm时,随着加在调制臂上的电压的增大,其TE模和TM模随着折射率差的变化曲线如图3所示。由图3可看出,在相位差达到π时,PDL改变符号。
对于第二级MZI可调光衰减器2,当其芯区波导宽度为5 μm时,随着加在调制臂上的电压的增大,其TE模和TM模随着折射率差的变化曲线如图4所示。由图4可看出,随着折射率差的增大,TM模的IL始终大于TE模;在衰减达到最大时,PDL未改变符号。当其芯区波导宽度为7 μm时,随着加在调制臂上的电压的增大,其TE模和TM模随着折射率差的变化曲线如图5所示。由图5可看出,在衰减达到最大时,PDL改变符号。
当第一级MZI可调光衰减器1与第二级MZI可调光衰减器2级联,并采用上述的调制方式时,第一级MZI可调光衰减器与第二级MZI可调光衰减器的PDL符号相反,即PDL1=-PDL2,能达到补偿偏振相关损耗的效果。
本发明中的平面波导型可调光衰减器,使芯区的波导宽度> 6 μm,当然波导宽度也不能无限制的加宽,从已开展的工作中我们发现波导宽度为7 μm时,PDL的补偿效果较好。
Claims (4)
1.一种偏振无关的级联可调光衰减器,包括第一级MZI可调光衰减器(1)和第二级MZI可调光衰减器(2),第一级MZI可调光衰减器(1)的输出端与第二级MZI可调光衰减器(2)的输入端相连,其特征在于:第一级MZI可调光衰减器(1)和第二级MZI可调光衰减器(2)的波导宽度大于波导高度;所述波导宽度大于6μm,且小于8μm;第一级MZI可调光衰减器(1)与第二级MZI可调光衰减器(2)的相位差为2π;所述第一级MZI可调光衰减器(1)的PDL1与第二级MZI可调光衰减器(2)的PDL2大小相等,符号相反,PDL1=-PDL2。
2.根据权利要求1所述的偏振无关的级联可调光衰减器,其特征在于:所述波导宽度为7μm。
3.根据权利要求1所述的偏振无关的级联可调光衰减器,其特征在于:所述第一级MZI可调光衰减器(1)的相位为0到π之间,第二级MZI可调光衰减器(2)的相位为2π到π之间。
4.根据权利要求1所述的偏振无关的级联可调光衰减器,其特征在于:所述第一级MZI可调光衰减器(1)的相位为-π到0之间,第二级MZI可调光衰减器(2)的相位为π到0之间。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610226520.3A CN105700074B (zh) | 2016-04-13 | 2016-04-13 | 偏振无关的级联可调光衰减器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610226520.3A CN105700074B (zh) | 2016-04-13 | 2016-04-13 | 偏振无关的级联可调光衰减器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105700074A CN105700074A (zh) | 2016-06-22 |
CN105700074B true CN105700074B (zh) | 2019-09-24 |
Family
ID=56219841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610226520.3A Active CN105700074B (zh) | 2016-04-13 | 2016-04-13 | 偏振无关的级联可调光衰减器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105700074B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107764791B (zh) * | 2017-10-11 | 2021-03-23 | 河南仕佳光子科技股份有限公司 | 一种基于倏逝波的离子浓度测试芯片 |
CN108227084A (zh) * | 2018-01-16 | 2018-06-29 | 上海理工大学 | 一种基于氮化硅波导的偏振无关集成光开关及其制作方法 |
CN110595527B (zh) * | 2019-09-10 | 2021-04-20 | 中国人民解放军国防科技大学 | 光芯片上多级交错马赫曾德干涉仪中可控相移器标定方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102495449A (zh) * | 2011-12-07 | 2012-06-13 | 中国科学院半导体研究所 | 可调谐载流子诱导波导光栅 |
CN103392137A (zh) * | 2011-02-22 | 2013-11-13 | 皇家飞利浦有限公司 | 光准直器和包含这种光准直器的照明单元 |
CN103760692A (zh) * | 2014-02-25 | 2014-04-30 | 四川飞阳科技有限公司 | 平面光波导可调光衰减器及其调节方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007114253A (ja) * | 2005-10-18 | 2007-05-10 | Hitachi Cable Ltd | 導波路型光分岐素子 |
-
2016
- 2016-04-13 CN CN201610226520.3A patent/CN105700074B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103392137A (zh) * | 2011-02-22 | 2013-11-13 | 皇家飞利浦有限公司 | 光准直器和包含这种光准直器的照明单元 |
CN102495449A (zh) * | 2011-12-07 | 2012-06-13 | 中国科学院半导体研究所 | 可调谐载流子诱导波导光栅 |
CN103760692A (zh) * | 2014-02-25 | 2014-04-30 | 四川飞阳科技有限公司 | 平面光波导可调光衰减器及其调节方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105700074A (zh) | 2016-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9829640B2 (en) | Temperature insensitive DEMUX/MUX in silicon photonics | |
Yamada et al. | High-performance silicon photonics technology for telecommunications applications | |
Ding et al. | Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator | |
Ye et al. | On-chip WDM mode-division multiplexing interconnection with optional demodulation function | |
KR100724683B1 (ko) | 도파로형 가변광감쇠기 | |
CN105700074B (zh) | 偏振无关的级联可调光衰减器 | |
CN103091783A (zh) | 一种基于液晶波导的可调谐阵列波导光栅 | |
US11002913B2 (en) | Optical dispersion compensator on silicon | |
US10126629B1 (en) | Optical dispersion compensator on silicon | |
CN104317071B (zh) | 一种基于石墨烯的平面光波导偏振分束器 | |
Jones et al. | Silicon photonic tunable optical dispersion compensator | |
Costache et al. | Variable optical power splitter with field-induced waveguides in liquid crystals in paranematic phase | |
CN104991309A (zh) | 一种补偿阵列波导光栅偏振敏感性的方法 | |
Chen | Silicon photonic integrated circuits for WDM technology and optical switch | |
Yu et al. | All-optical OFDM demultiplexer based on an integrated silicon-on-insulator technique | |
Takahashi et al. | Compact 100-Gb/s DP-QPSK intradyne coherent receiver module employing Si waveguide | |
Hu et al. | A novel MZ modulator based on photonic crystal and nanowire waveguide | |
Zhou et al. | Silicon photonics for advanced optical communication systems | |
Fu et al. | Design of three-mode multi/demultiplexer based on 2-D photonic crystals for mode-division multiplexing transmission | |
Gamet et al. | C-and L-band planar delay interferometer for DPSK decoders | |
Biberman et al. | First demonstration of 80-km long-haul transmission of 12.5-Gb/s data using silicon microring resonator electro-optic modulator | |
Yamada et al. | Silicon photonic devices and their integration technology | |
Zhang et al. | Energy-efficient variable optical attenuator on SOI with folded waveguides and heaters | |
Mishra et al. | Spatially multiplexed multicore fiber communication to fuel the next information revolution | |
Zhang et al. | Novel optical add-drop multiplexer based on dual racetrack resonators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 458030 No. 201 Yanhe Road, Hebi National Economic and Technological Development Zone, Henan Province Applicant after: HENAN SHIJIA PHOTONS TECHNOLOGY CO., LTD. Address before: 458030 No. 201 Yanhe Road, Hebi National Economic and Technological Development Zone, Henan Province Applicant before: HENAN SHIJIA PHOTONS TECHNOLOGY CO., LTD. |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |