CN105677984A - 一种轮廓识别滤波性能良好的桥梁施工装置 - Google Patents

一种轮廓识别滤波性能良好的桥梁施工装置 Download PDF

Info

Publication number
CN105677984A
CN105677984A CN201610012914.9A CN201610012914A CN105677984A CN 105677984 A CN105677984 A CN 105677984A CN 201610012914 A CN201610012914 A CN 201610012914A CN 105677984 A CN105677984 A CN 105677984A
Authority
CN
China
Prior art keywords
contour
points
noise
curvature
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610012914.9A
Other languages
English (en)
Inventor
韦醒妃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610012914.9A priority Critical patent/CN105677984A/zh
Publication of CN105677984A publication Critical patent/CN105677984A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Computational Mathematics (AREA)
  • Civil Engineering (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Architecture (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种轮廓识别滤波性能良好的桥梁施工装置,包括普通桥梁施工装置和安装在桥梁施工装置上的目标识别装置,识别装置包括建模模块、分段模块、合并模块和滤波模块。本发明通过在桥梁施工装置上加装目标识别装置,能够有效增强桥梁施工装置的环境适应能力,桥梁施工装置通过目标轮廓识别目标,识别过程中能有效滤除目标轮廓噪声,从而对目标种类做出正确识别。

Description

一种轮廓识别滤波性能良好的桥梁施工装置
技术领域
本发明涉及桥梁施工领域,具体涉及一种轮廓识别滤波性能良好的桥梁施工装置。
背景技术
从古到今,人类对桥梁和桥梁施工的探索就没有停止过,越来越多的桥梁施工装置被制造出来,随着社会和科学技术的进步,桥梁施工装置的应用对桥梁发展建设起到了极大的推动作用。然而,目前的桥梁施工装置在施工过程中不能对目标进行有效识别,不仅对桥梁施工装置的应用产生了限制,且影响了桥梁建设效率。
目标轮廓识别作为目标识别的重要手段,由于实际应用中受到噪声、量化误差等因素的影响,目标轮廓不可避免地会产生失真,为了准确描述轮廓特征,目标轮廓的滤波平滑处理是十分必要的。目前,学者们提出了许多含噪轮廓的滤波平滑算法,但是普遍存在计算量庞大、降噪效果不理想、容易发生过度滤波导致目标失真等问题。
发明内容
针对上述问题,本发明提供一种轮廓识别滤波性能良好的桥梁施工装置。
本发明的目的采用以下技术方案来实现:
一种轮廓识别滤波性能良好的桥梁施工装置,包括普通桥梁施工装置和安装在桥梁施工装置上的目标识别装置,该桥梁施工装置具有很强的环境适应能力,目标识别装置能够根据目标轮廓对目标进行识别,其特征是,包括建模模块、分段模块、合并模块和滤波模块;
建模模块,用于建立目标轮廓的参数化方程:对于给定的目标轮廓G(t),其弧长参数化方程表示为G(t)=(x(t),y(t)),其中x(t)和y(t)分别表示轮廓点的坐标,t表示轮廓曲线方程的参数,且t∈[0,1];
含噪轮廓的弧长参数化方程表示为:GN(t)=G(t)+N1(t)+N2(t)G(t),其中加性噪声部分N1(t)=N1(x1(t),y1(t)),乘性噪声部分N2(t)=N2(x2(t),y2(t));
分段模块,用于对轮廓的分段:目标轮廓G(t)和含噪轮廓GN(t)所对应的曲率分别为k(t)和kN(t);选宽度宽度为D的窗函数W(n),对曲率kN(t)进行邻域平均,得到平均曲率k1N(t),同时对窗口内的曲率值排序,选定中值曲率k2N(t),将平均曲率k1N(t)和中值曲率k2N(t)差的绝对值与选定的阈值T1进行比较,根据比较结果决定含噪轮廓曲率k′N(t),即:
当|k1N(t)-k2N(t)|>T1时,k′N(t)=k1N(t)
否则,k′N(t)=k2N(t);
由于曲率值较大的轮廓点通常反映了目标的显著特征,根据k′N(t)将轮廓中所有轮廓点划分为特征点或非特征点,设定可变权值TK,通过判断目标轮廓特征多少,自适应的决定TK
当|k′N(t)|<TK*max|k′N(t)|时,特征函数f(t)=0
否则,特征函数f(t)=1。
合并模块:用于剔除由于噪声干扰产生的伪特征点,以及对无法形成连续区域的特征点和非特征点进行合并操作,从而得到有效的特征区域与非特征区域:选定一个起始点O,轮廓起始点向两侧延伸合并相邻的点,以该起始点类型作为该区域预设类型,向两侧延伸各S×μ0时停止,其中S为预设的最小长度,为O点处的实时曲率修正系数,代表O点的曲率半径,代表由上述窗函数得到的O点的平均曲率半径,实时曲率修正系数μ0用于根据不同点的曲率不同,自动修正延伸长度,能有效减小合并后的失真现象;分别计算两侧区域内相异点的个数N+1和N-1,若相异点的个数小于设定的该类型相异点最小个数,则该区域与预设类型相同,否则,与预设类型相反;再以两个停止点O+1和点O-1作为起始点重新开始计算,向外侧延伸S×μO+1或S×μO-1时停止,其中μO+1和μO-1分别代表点O+1和点O-1处的实时曲率修正系数,O+1两侧区域内相异点个数为N+2,O-1两侧区域内相异点个数为N-2,根据上述判定条件,依次确定各段轮廓类型,长度不足S的部分根据其与S的比例计算相异点个数,计入相应的特征区域;对相邻的同类型区域进行合并,得到连续的特征区域和非特征区域;
滤波模块:乘性噪声由于和图像信号是相关的,随图像信号的变化而变化,采用维纳滤波来进行一级滤除,此时图像信息还包含有残余乘性噪音,通过F滤波器F(x,y)=q×exp(-(x2+y2)/β2进行二级滤除,其中q是将函数归一化的系数,即:∫∫q×exp(-(x2+y2)/β2)dxdy=1,β为图像模板参数;
乘性噪声滤除后,含噪目标轮廓的弧长参数化方程表示为GN(t)’=G(t)+N1(t);假设加性噪声为高斯白噪声:xN(t)’=x(t)+g1(t,σ2),yN(t)’=y(t)+g2(t,σ2),其中xN(t)’和yN(t)’分别表示去除乘性噪声后含噪轮廓上各点坐标,g1(t,σ2)和g2(t,σ2)分别是均值为零、方差为σ2的高斯白噪声,用于模拟含噪目标轮廓中的加性噪声;
采用函数对含噪轮廓进行平滑,命名为K滤波器,经过轮廓点分类和区域划分,含噪轮廓GN(t)’表示为不同类型轮廓分段的组合:其中表示包含特征区域的轮廓分段,表示包含非特征区域的轮廓分段,根据轮廓特征分布选取K滤波器的参数,同时考虑全局特征和局部特征因素,在特征区域,为了保留细节信息,令在非特征区域,为了提高抑制噪声的效果,令 其中σ′为先验估算得到的全局方差,σ1为所选特征区域的先验估算方差,σ0为所选非特征区域的先验估算方差,为所选特征区域的平均实时曲率修正系数,为所选非特征区域的平均实时曲率修正系数;为了达到较好的平滑效果,选取每种类型区域最小长度S的一半作为K滤波器85%置信区间的长度,从而根据两类区域的长度自适应不同参数的K滤波器。
本发明通过在桥梁施工装置上加装目标识别装置,能够有效增强桥梁施工装置的环境适应能力,桥梁施工装置通过目标轮廓识别目标,识别过程中能有效滤除目标轮廓噪声,从而对目标种类做出正确识别。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明的轮廓识别滤波性能良好的桥梁施工装置的结构框图。
具体实施方式
结合以下实施例对本发明作进一步描述。
图1是本发明的结构框图,其包括:建模模块、分段模块、合并模块、滤波模块。
实施例1:一种轮廓识别滤波性能良好的桥梁施工装置,包括普通桥梁施工装置和安装在桥梁施工装置上的目标识别装置,该桥梁施工装置具有很强的环境适应能力,目标识别装置能够根据目标轮廓对目标进行识别,其特征是,包括建模模块、分段模块、合并模块和滤波模块;
建模模块,用于建立目标轮廓的参数化方程:对于给定的目标轮廓G(t),其弧长参数化方程表示为G(t)=(x(t),y(t)),其中x(t)和y(t)分别表示轮廓点的坐标,t表示轮廓曲线方程的参数,且t∈[0,1];
含噪轮廓的弧长参数化方程表示为:GN(t)=G(t)+N1(t)+N2(t)G(t),其中加性噪声部分N1(t)=N1(x1(t),y1(t)),乘性噪声部分N2(t)=N2(x2(t),y2(t));
分段模块,用于对轮廓的分段:目标轮廓G(t)和含噪轮廓GN(t)所对应的曲率分别为k(t)和kN(t);由于受到噪声的影响,含噪轮廓GN(t)上部分特征点的曲率值kN(t)不能准确表示轮廓信息,为了得到准确的曲率,选宽度为D∈{7,9}的窗函数W(n),对曲率kN(t)进行邻域平均,得到平均曲率k1N(t),同时对窗口内的曲率值排序,选定中值曲率k2N(t),将平均曲率k1N(t)和中值曲率k2N(t)差的绝对值与选定的阈值T1=0.24进行比较,根据比较结果决定含噪轮廓曲率k′N(t),即:
当|k1N(t)-k2N(t)|>T1时,k′N(t)=k1N(t)
否则,k′N(t)=k2N(t);
由于曲率值较大的轮廓点通常反映了目标的显著特征,根据k′N(t)将轮廓中所有轮廓点划分为特征点或非特征点,设定可变权值TK,通过判断目标轮廓特征多少,自适应的决定TK
当|k′N(t)|<TK*max|k′N(t)|时,特征函数f(t)=0
否则,特征函数f(t)=1;
分类后所得到的特征点和非特征点的分布并不连续,无法选取滤波器对其进行有效的轮廓平滑。为了得到较好的轮廓平滑效果,有必要对同类型的轮廓点进行合并处理。
合并模块:用于剔除由于噪声干扰产生的伪特征点,以及对无法形成连续区域的特征点和非特征点进行合并操作,从而得到有效的特征区域与非特征区域:选定一个起始点O,轮廓起始点向两侧延伸合并相邻的点,以该起始点类型作为该区域预设类型,向两侧延伸各S×μ0时停止,其中S为预设的最小长度,在此实施例中,S=17,为O点处的实时曲率修正系数,代表O点的曲率半径,代表由上述窗函数得到的O点的平均曲率半径,实时曲率修正系数μ0用于根据不同点的曲率不同,自动修正延伸长度,曲率大的地方需要的长度小些,曲率小的地方需要的长度大些,这样能有效减小合并后的失真现象;分别计算两侧区域内相异点的个数N+1和N-1,若相异点的个数小于设定的该类型相异点最小个数,则该区域与预设类型相同,否则,与预设类型相反;再以两个停止点O+1和点O-1作为起始点重新开始计算,向外侧延伸S×μO+1或S×μO-1时停止,其中μO+1和μO-1分别代表点O+1和点O-1处的实时曲率修正系数,O+1两侧区域内相异点个数为N+2,O-1两侧区域内相异点个数为N-2,根据上述判定条件,依次确定各段轮廓类型,长度不足S的部分根据其与S的比例计算相异点个数,计入相应的特征区域;对相邻的同类型区域进行合并,得到连续的特征区域和非特征区域。
滤波模块:乘性噪声由于和图像信号是相关的,随图像信号的变化而变化,采用维纳滤波来进行一级滤除,此时图像信息还包含有残余乘性噪音,通过F滤波器F(x,y)=q×exp(-(x2+y2)/β2进行二级滤除,其中q是将函数归一化的系数,即:∫∫q×exp(-(x2+y2)/β2)dxdy=1,β为图像模板参数;
乘性噪声滤除后,含噪目标轮廓的弧长参数化方程表示为GN(t)’=G(t)+N1(t);假设加性噪声为高斯白噪声:xN(t)’=x(t)+g1(t,σ2),yN(t)’=y(t)+g2(t,σ2),其中xN(t)’和yN(t)’分别表示去除乘性噪声后含噪轮廓上各点坐标,g1(t,σ2)和g2(t,σ2)分别是均值为零、方差为σ2的高斯白噪声,用于模拟含噪目标轮廓中的加性噪声;
采用函数对含噪轮廓进行平滑,命名为K滤波器,经过轮廓点分类和区域划分,含噪轮廓GN(t)’表示为不同类型轮廓分段的组合:其中表示包含特征区域的轮廓分段,表示包含非特征区域的轮廓分段,根据轮廓特征分布选取K滤波器的参数,同时考虑全局特征和局部特征因素,在特征区域,为了保留细节信息,令在非特征区域,关注抑制噪声的效果,令其中σ′为先验估算得到的全局方差,σ1为所选特征区域的先验估算方差,σ0为所选非特征区域的先验估算方差,为所选特征区域的平均实时曲率修正系数,为所选非特征区域的平均实时曲率修正系数;为了达到较好的平滑效果,选取每种类型区域最小长度S的一半作为K滤波器85%置信区间的长度,从而根据两类区域的长度自适应不同参数的K滤波器。
在此实施例中,S=17,阈值T1=0.24,窗函数宽度D∈{7,9},对噪声强度I∈{10dB,20dB}的含噪图像有较好的平滑效果,桥梁施工装置通过目标轮廓识别目标,识别过程中能有效滤除目标轮廓噪声,对桥梁形状进行准确识别,是施工效率提高了30%。
实施例2:一种轮廓识别滤波性能良好的桥梁施工装置,包括普通桥梁施工装置和安装在桥梁施工装置上的目标识别装置,该桥梁施工装置具有很强的环境适应能力,目标识别装置能够根据目标轮廓对目标进行识别,其特征是,包括建模模块、分段模块、合并模块和滤波模块;
建模模块,用于建立目标轮廓的参数化方程:对于给定的目标轮廓G(t),其弧长参数化方程表示为G(t)=(x(t),y(t)),其中x(t)和y(t)分别表示轮廓点的坐标,t表示轮廓曲线方程的参数,且t∈[0,1];
含噪轮廓的弧长参数化方程表示为:GN(t)=G(t)+N1(t)+N2(t)G(t),其中加性噪声部分N1(t)=N1(x1(t),y1(t)),乘性噪声部分N2(t)=N2(x2(t),y2(t));
分段模块,用于对轮廓的分段:目标轮廓G(t)和含噪轮廓GN(t)所对应的曲率分别为k(t)和kN(t);由于受到噪声的影响,含噪轮廓GN(t)上部分特征点的曲率值kN(t)不能准确表示轮廓信息,为了得到准确的曲率,选宽度为D∈{10,12}的窗函数W(n),对曲率kN(t)进行邻域平均,得到平均曲率k1N(t),同时对窗口内的曲率值排序,选定中值曲率k2N(t),将平均曲率k1N(t)和中值曲率k2N(t)差的绝对值与选定的阈值T1=0.24进行比较,根据比较结果决定含噪轮廓曲率k′N(t),即:
当|k1N(t)-k2N(t)|>T1时,k′N(t)=k1N(t)
否则,k′N(t)=k2N(t);
由于曲率值较大的轮廓点通常反映了目标的显著特征,根据k′N(t)将轮廓中所有轮廓点划分为特征点或非特征点,设定可变权值TK,通过判断目标轮廓特征多少,自适应的决定TK
当|k′N(t)|<TK*max|k′N(t)|时,特征函数f(t)=0
否则,特征函数f(t)=1;
分类后所得到的特征点和非特征点的分布并不连续,无法选取滤波器对其进行有效的轮廓平滑。为了得到较好的轮廓平滑效果,有必要对同类型的轮廓点进行合并处理。
合并模块:用于剔除由于噪声干扰产生的伪特征点,以及对无法形成连续区域的特征点和非特征点进行合并操作,从而得到有效的特征区域与非特征区域:选定一个起始点O,轮廓起始点向两侧延伸合并相邻的点,以该起始点类型作为该区域预设类型,向两侧延伸各S×μ0时停止,其中S为预设的最小长度,在此实施例中S=19,为O点处的实时曲率修正系数,代表O点的曲率半径,代表由上述窗函数得到的O点的平均曲率半径,实时曲率修正系数μ0用于根据不同点的曲率不同,自动修正延伸长度,曲率大的地方需要的长度小些,曲率小的地方需要的长度大些,这样能有效减小合并后的失真现象;分别计算两侧区域内相异点的个数N+1和N-1,若相异点的个数小于设定的该类型相异点最小个数,则该区域与预设类型相同,否则,与预设类型相反;再以两个停止点O+1和点O-1作为起始点重新开始计算,向外侧延伸S×μO+1或S×μO-1时停止,其中μO+1和μO-1分别代表点O+1和点O-1处的实时曲率修正系数,O+1两侧区域内相异点个数为N+2,O-1两侧区域内相异点个数为N-2,根据上述判定条件,依次确定各段轮廓类型,长度不足S的部分根据其与S的比例计算相异点个数,计入相应的特征区域;对相邻的同类型区域进行合并,得到连续的特征区域和非特征区域。
滤波模块:乘性噪声由于和图像信号是相关的,随图像信号的变化而变化,采用维纳滤波来进行一级滤除,此时图像信息还包含有残余乘性噪音,通过F滤波器F(x,y)=q×exp(-(x2+y2)/β2进行二级滤除,其中q是将函数归一化的系数,即:∫∫q×exp(-(x2+y2)/β2)dxdy=1,β为图像模板参数;
乘性噪声滤除后,含噪目标轮廓的弧长参数化方程表示为GN(t)’=G(t)+N1(t);假设加性噪声为高斯白噪声:xN(t)’=x(t)+g1(t,σ2),yN(t)’=y(t)+g2(t,σ2),其中xN(t)’和yN(t)’分别表示去除乘性噪声后含噪轮廓上各点坐标,g1(t,σ2)和g2(t,σ2)分别是均值为零、方差为σ2的高斯白噪声,用于模拟含噪目标轮廓中的加性噪声;
采用函数对含噪轮廓进行平滑,命名为K滤波器,经过轮廓点分类和区域划分,含噪轮廓GN(t)’表示为不同类型轮廓分段的组合:其中表示包含特征区域的轮廓分段,表示包含非特征区域的轮廓分段,根据轮廓特征分布选取K滤波器的参数,同时考虑全局特征和局部特征因素,在特征区域,为了保留细节信息,令在非特征区域,关注抑制噪声的效果,令其中σ′为先验估算得到的全局方差,σ1为所选特征区域的先验估算方差,σ0为所选非特征区域的先验估算方差,为所选特征区域的平均实时曲率修正系数,为所选非特征区域的平均实时曲率修正系数;为了达到较好的平滑效果,选取每种类型区域最小长度S的一半作为K滤波器85%置信区间的长度,从而根据两类区域的长度自适应不同参数的K滤波器。
在此实施例中,S=19,阈值T1=0.24,窗函数宽度D∈{10,12},对噪声强度I∈{20dB,30dB}的含噪图像有较好的平滑效果,桥梁施工装置通过目标轮廓识别目标,识别过程中能有效滤除目标轮廓噪声,对桥梁形状进行准确识别,是施工效率提高了30%。
实施例3:一种轮廓识别滤波性能良好的桥梁施工装置,包括普通桥梁施工装置和安装在桥梁施工装置上的目标识别装置,该桥梁施工装置具有很强的环境适应能力,目标识别装置能够根据目标轮廓对目标进行识别,其特征是,包括建模模块、分段模块、合并模块和滤波模块;
建模模块,用于建立目标轮廓的参数化方程:对于给定的目标轮廓G(t),其弧长参数化方程表示为G(t)=(x(t),y(t)),其中x(t)和y(t)分别表示轮廓点的坐标,t表示轮廓曲线方程的参数,且t∈[0,1];
含噪轮廓的弧长参数化方程表示为:GN(t)=G(t)+N1(t)+N2(t)G(t),其中加性噪声部分N1(t)=N1(x1(t),y1(t)),乘性噪声部分N2(t)=N2(x2(t),y2(t));
分段模块,用于对轮廓的分段:目标轮廓G(t)和含噪轮廓GN(t)所对应的曲率分别为k(t)和kN(t);由于受到噪声的影响,含噪轮廓GN(t)上部分特征点的曲率值kN(t)不能准确表示轮廓信息,为了得到准确的曲率,选宽度为D∈{13,14}的窗函数W(n),对曲率kN(t)进行邻域平均,得到平均曲率k1N(t),同时对窗口内的曲率值排序,选定中值曲率k2N(t),将平均曲率k1N(t)和中值曲率k2N(t)差的绝对值与选定的阈值T1=0.26进行比较,根据比较结果决定含噪轮廓曲率k′N(t),即:
当|k1N(t)-k2N(t)|>T1时,k′N(t)=k1N(t)
否则,k′N(t)=k2N(t);
由于曲率值较大的轮廓点通常反映了目标的显著特征,根据k′N(t)将轮廓中所有轮廓点划分为特征点或非特征点,设定可变权值TK,通过判断目标轮廓特征多少,自适应的决定TK
当|k′N(t)|<TK*max|k′N(t)|时,特征函数f(t)=0
否则,特征函数f(t)=1;
分类后所得到的特征点和非特征点的分布并不连续,无法选取滤波器对其进行有效的轮廓平滑。为了得到较好的轮廓平滑效果,有必要对同类型的轮廓点进行合并处理。
合并模块:用于剔除由于噪声干扰产生的伪特征点,以及对无法形成连续区域的特征点和非特征点进行合并操作,从而得到有效的特征区域与非特征区域:选定一个起始点O,轮廓起始点向两侧延伸合并相邻的点,以该起始点类型作为该区域预设类型,向两侧延伸各S×μ0时停止,其中S为预设的最小长度,在此实施例中S=21,为O点处的实时曲率修正系数,代表O点的曲率半径,代表由上述窗函数得到的O点的平均曲率半径,实时曲率修正系数μ0用于根据不同点的曲率不同,自动修正延伸长度,曲率大的地方需要的长度小些,曲率小的地方需要的长度大些,这样能有效减小合并后的失真现象;分别计算两侧区域内相异点的个数N+1和N-1,若相异点的个数小于设定的该类型相异点最小个数,则该区域与预设类型相同,否则,与预设类型相反;再以两个停止点O+1和点O-1作为起始点重新开始计算,向外侧延伸S×μO+1或S×μO-1时停止,其中μO+1和μO-1分别代表点O+1和点O-1处的实时曲率修正系数,O+1两侧区域内相异点个数为N+2,O-1两侧区域内相异点个数为N-2,根据上述判定条件,依次确定各段轮廓类型,长度不足S的部分根据其与S的比例计算相异点个数,计入相应的特征区域;对相邻的同类型区域进行合并,得到连续的特征区域和非特征区域。
滤波模块:乘性噪声由于和图像信号是相关的,随图像信号的变化而变化,采用维纳滤波来进行一级滤除,此时图像信息还包含有残余乘性噪音,通过F滤波器F(x,y)=q×exp(-(x2+y2)/β2进行二级滤除,其中q是将函数归一化的系数,即:∫∫q×exp(-(x2+y2)/β2)dxdy=1,β为图像模板参数;
乘性噪声滤除后,含噪目标轮廓的弧长参数化方程表示为GN(t)’=G(t)+N1(t);假设加性噪声为高斯白噪声:xN(t)’=x(t)+g1(t,σ2),yN(t)’=y(t)+g2(t,σ2),其中xN(t)’和yN(t)’分别表示去除乘性噪声后含噪轮廓上各点坐标,g1(t,σ2)和g2(t,σ2)分别是均值为零、方差为σ2的高斯白噪声,用于模拟含噪目标轮廓中的加性噪声;
采用函数对含噪轮廓进行平滑,命名为K滤波器,经过轮廓点分类和区域划分,含噪轮廓GN(t)’表示为不同类型轮廓分段的组合:其中表示包含特征区域的轮廓分段,表示包含非特征区域的轮廓分段,根据轮廓特征分布选取K滤波器的参数,同时考虑全局特征和局部特征因素,在特征区域,为了保留细节信息,令在非特征区域,关注抑制噪声的效果,令其中σ′为先验估算得到的全局方差,σ1为所选特征区域的先验估算方差,σ0为所选非特征区域的先验估算方差,为所选特征区域的平均实时曲率修正系数,为所选非特征区域的平均实时曲率修正系数;为了达到较好的平滑效果,选取每种类型区域最小长度S的一半作为K滤波器85%置信区间的长度,从而根据两类区域的长度自适应不同参数的K滤波器。
在此实施例中,S=21,阈值T1=0.26,窗函数宽度D∈{13,14},对噪声强度I∈{30dB,40dB}的含噪图像有较好的平滑效果,计算量和细节信息保留情况均在可接受区间内且取得较佳的平衡,桥梁施工装置通过目标轮廓识别目标,识别过程中能有效滤除目标轮廓噪声,对桥梁形状进行准确识别,是施工效率提高了30%。
实施例4:一种轮廓识别滤波性能良好的桥梁施工装置,包括普通桥梁施工装置和安装在桥梁施工装置上的目标识别装置,该桥梁施工装置具有很强的环境适应能力,目标识别装置能够根据目标轮廓对目标进行识别,其特征是,包括建模模块、分段模块、合并模块和滤波模块;
建模模块,用于建立目标轮廓的参数化方程:对于给定的目标轮廓G(t),其弧长参数化方程表示为G(t)=(x(t),y(t)),其中x(t)和y(t)分别表示轮廓点的坐标,t表示轮廓曲线方程的参数,且t∈[0,1];
含噪轮廓的弧长参数化方程表示为:GN(t)=G(t)+N1(t)+N2(t)G(t),其中加性噪声部分N1(t)=N1(x1(t),y1(t)),乘性噪声部分N2(t)=N2(x2(t),y2(t));
分段模块,用于对轮廓的分段:目标轮廓G(t)和含噪轮廓GN(t)所对应的曲率分别为k(t)和kN(t);由于受到噪声的影响,含噪轮廓GN(t)上部分特征点的曲率值kN(t)不能准确表示轮廓信息,为了得到准确的曲率,选宽度为D∈{15,17}的窗函数W(n),对曲率kN(t)进行邻域平均,得到平均曲率k1N(t),同时对窗口内的曲率值排序,选定中值曲率k2N(t),将平均曲率k1N(t)和中值曲率k2N(t)差的绝对值与选定的阈值T1=0.28进行比较,根据比较结果决定含噪轮廓曲率k′N(t),即:
当|k1N(t)-k2N(t)|>T1时,k′N(t)=k1N(t)
否则,k′N(t)=k2N(t);
由于曲率值较大的轮廓点通常反映了目标的显著特征,根据k′N(t)将轮廓中所有轮廓点划分为特征点或非特征点,设定可变权值TK,通过判断目标轮廓特征多少,自适应的决定TK
当|k′N(t)|<TK*max|k′N(t)|时,特征函数f(t)=0
否则,特征函数f(t)=1;
分类后所得到的特征点和非特征点的分布并不连续,无法选取滤波器对其进行有效的轮廓平滑。为了得到较好的轮廓平滑效果,有必要对同类型的轮廓点进行合并处理。
合并模块:用于剔除由于噪声干扰产生的伪特征点,以及对无法形成连续区域的特征点和非特征点进行合并操作,从而得到有效的特征区域与非特征区域:选定一个起始点O,轮廓起始点向两侧延伸合并相邻的点,以该起始点类型作为该区域预设类型,向两侧延伸各S×μ0时停止,其中S为预设的最小长度,在此实施例中S=23,为O点处的实时曲率修正系数,代表O点的曲率半径,代表由上述窗函数得到的O点的平均曲率半径,实时曲率修正系数μ0用于根据不同点的曲率不同,自动修正延伸长度,曲率大的地方需要的长度小些,曲率小的地方需要的长度大些,这样能有效减小合并后的失真现象;分别计算两侧区域内相异点的个数N+1和N-1,若相异点的个数小于设定的该类型相异点最小个数,则该区域与预设类型相同,否则,与预设类型相反;再以两个停止点O+1和点O-1作为起始点重新开始计算,向外侧延伸S×μO+1或S×μO-1时停止,其中μO+1和μO-1分别代表点O+1和点O-1处的实时曲率修正系数,O+1两侧区域内相异点个数为N+2,O-1两侧区域内相异点个数为N-2,根据上述判定条件,依次确定各段轮廓类型,长度不足S的部分根据其与S的比例计算相异点个数,计入相应的特征区域;对相邻的同类型区域进行合并,得到连续的特征区域和非特征区域。
滤波模块:乘性噪声由于和图像信号是相关的,随图像信号的变化而变化,采用维纳滤波来进行一级滤除,此时图像信息还包含有残余乘性噪音,通过F滤波器F(x,y)=q×exp(-(x2+y2)/β2进行二级滤除,其中q是将函数归一化的系数,即:∫∫q×exp(-(x2+y2)/β2)dxdy=1,β为图像模板参数;
乘性噪声滤除后,含噪目标轮廓的弧长参数化方程表示为GN(t)’=G(t)+N1(t);假设加性噪声为高斯白噪声:xN(t)’=x(t)+g1(t,σ2),yN(t)’=y(t)+g2(t,σ2),其中xN(t)’和yN(t)’分别表示去除乘性噪声后含噪轮廓上各点坐标,g1(t,σ2)和g2(t,σ2)分别是均值为零、方差为σ2的高斯白噪声,用于模拟含噪目标轮廓中的加性噪声;
采用函数对含噪轮廓进行平滑,命名为K滤波器,经过轮廓点分类和区域划分,含噪轮廓GN(t)’表示为不同类型轮廓分段的组合:其中表示包含特征区域的轮廓分段,表示包含非特征区域的轮廓分段,根据轮廓特征分布选取K滤波器的参数,同时考虑全局特征和局部特征因素,在特征区域,为了保留细节信息,令在非特征区域,关注抑制噪声的效果,令其中σ′为先验估算得到的全局方差,σ1为所选特征区域的先验估算方差,σ0为所选非特征区域的先验估算方差,为所选特征区域的平均实时曲率修正系数,为所选非特征区域的平均实时曲率修正系数;为了达到较好的平滑效果,选取每种类型区域最小长度S的一半作为K滤波器85%置信区间的长度,从而根据两类区域的长度自适应不同参数的K滤波器。
在此实施例中,S=23,阈值T1=0.28,窗函数宽度D∈{15,17},对噪声强度I∈{40dB,50dB}的含噪图像虽然增加了部分计算量,但是对此区间的图像有优异的平滑效果,且细节信息保留情况较好,桥梁施工装置通过目标轮廓识别目标,识别过程中能有效滤除目标轮廓噪声,对桥梁形状进行准确识别,是施工效率提高了30%。
实施例5:一种轮廓识别滤波性能良好的桥梁施工装置,包括普通桥梁施工装置和安装在桥梁施工装置上的目标识别装置,该桥梁施工装置具有很强的环境适应能力,目标识别装置能够根据目标轮廓对目标进行识别,其特征是,包括建模模块、分段模块、合并模块和滤波模块;
建模模块,用于建立目标轮廓的参数化方程:对于给定的目标轮廓G(t),其弧长参数化方程表示为G(t)=(x(t),y(t)),其中x(t)和y(t)分别表示轮廓点的坐标,t表示轮廓曲线方程的参数,且t∈[0,1];
含噪轮廓的弧长参数化方程表示为:GN(t)=G(t)+N1(t)+N2(t)G(t),其中加性噪声部分N1(t)=N1(x1(t),y1(t)),乘性噪声部分N2(t)=N2(x2(t),y2(t));
分段模块,用于对轮廓的分段:目标轮廓G(t)和含噪轮廓GN(t)所对应的曲率分别为k(t)和kN(t);由于受到噪声的影响,含噪轮廓GN(t)上部分特征点的曲率值kN(t)不能准确表示轮廓信息,为了得到准确的曲率,选宽度为D∈{17,19}的窗函数W(n),对曲率kN(t)进行邻域平均,得到平均曲率k1N(t),同时对窗口内的曲率值排序,选定中值曲率k2N(t),将平均曲率k1N(t)和中值曲率k2N(t)差的绝对值与选定的阈值T1=0.26进行比较,根据比较结果决定含噪轮廓曲率k′N(t),即:
当|k1N(t)-k2N(t)|>T1时,k′N(t)=k1N(t)
否则,k′N(t)=k2N(t);
由于曲率值较大的轮廓点通常反映了目标的显著特征,根据k′N(t)将轮廓中所有轮廓点划分为特征点或非特征点,设定可变权值TK,通过判断目标轮廓特征多少,自适应的决定TK
当|k′N(t)|<TK*max|k′N(t)|时,特征函数f(t)=0
否则,特征函数f(t)=1;
分类后所得到的特征点和非特征点的分布并不连续,无法选取滤波器对其进行有效的轮廓平滑。为了得到较好的轮廓平滑效果,有必要对同类型的轮廓点进行合并处理。
合并模块:用于剔除由于噪声干扰产生的伪特征点,以及对无法形成连续区域的特征点和非特征点进行合并操作,从而得到有效的特征区域与非特征区域:选定一个起始点O,轮廓起始点向两侧延伸合并相邻的点,以该起始点类型作为该区域预设类型,向两侧延伸各S×μ0时停止,其中S为预设的最小长度,在此实施例中S=25,为O点处的实时曲率修正系数,代表O点的曲率半径,代表由上述窗函数得到的O点的平均曲率半径,实时曲率修正系数μ0用于根据不同点的曲率不同,自动修正延伸长度,曲率大的地方需要的长度小些,曲率小的地方需要的长度大些,这样能有效减小合并后的失真现象;分别计算两侧区域内相异点的个数N+1和N-1,若相异点的个数小于设定的该类型相异点最小个数,则该区域与预设类型相同,否则,与预设类型相反;再以两个停止点O+1和点O-1作为起始点重新开始计算,向外侧延伸S×μO+1或S×μO-1时停止,其中μO+1和μO-1分别代表点O+1和点O-1处的实时曲率修正系数,O+1两侧区域内相异点个数为N+2,O-1两侧区域内相异点个数为N-2,根据上述判定条件,依次确定各段轮廓类型,长度不足S的部分根据其与S的比例计算相异点个数,计入相应的特征区域;对相邻的同类型区域进行合并,得到连续的特征区域和非特征区域。
滤波模块:乘性噪声由于和图像信号是相关的,随图像信号的变化而变化,采用维纳滤波来进行一级滤除,此时图像信息还包含有残余乘性噪音,通过F滤波器F(x,y)=q×exp(-(x2+y2)/β2进行二级滤除,其中q是将函数归一化的系数,即:∫∫q×exp(-(x2+y2)/β2)dxdy=1,β为图像模板参数;
乘性噪声滤除后,含噪目标轮廓的弧长参数化方程表示为GN(t)’=G(t)+N1(t);假设加性噪声为高斯白噪声:xN(t)’=x(t)+g1(t,σ2),yN(t)’=y(t)+g2(t,σ2),其中xN(t)’和yN(t)’分别表示去除乘性噪声后含噪轮廓上各点坐标,g1(t,σ2)和g2(t,σ2)分别是均值为零、方差为σ2的高斯白噪声,用于模拟含噪目标轮廓中的加性噪声;
采用函数对含噪轮廓进行平滑,命名为K滤波器,经过轮廓点分类和区域划分,含噪轮廓GN(t)’表示为不同类型轮廓分段的组合:其中表示包含特征区域的轮廓分段,表示包含非特征区域的轮廓分段,根据轮廓特征分布选取K滤波器的参数,同时考虑全局特征和局部特征因素,在特征区域,为了保留细节信息,令在非特征区域,关注抑制噪声的效果,令其中σ′为先验估算得到的全局方差,σ1为所选特征区域的先验估算方差,σ0为所选非特征区域的先验估算方差,为所选特征区域的平均实时曲率修正系数,为所选非特征区域的平均实时曲率修正系数;为了达到较好的平滑效果,选取每种类型区域最小长度S的一半作为K滤波器85%置信区间的长度,从而根据两类区域的长度自适应不同参数的K滤波器。
在此实施例中,S=25,阈值T1=0.26,窗函数宽度D∈{17,19},对噪声强度I∈{50dB,60dB}的含噪图像有较佳的平滑效果,且细节信息保留情况较好,桥梁施工装置通过目标轮廓识别目标,识别过程中能有效滤除目标轮廓噪声,对桥梁形状进行准确识别,是施工效率提高了30%。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
数据仿真
本桥梁施工装置的有益效果为:针对噪声种类的多样性和目前去噪方法的单一性,采用一种新型的多次滤波装置,并提出了新的轮廓分段、合并手段和滤波函数;计算量相对并不复杂,同时考虑了全局特征和局部特征的因素且平滑除噪效果好;考虑了轮廓在不同类型区域之间的差异性,在抑制噪声和保留细节之间取得很好的平衡;根据不同点的曲率不同,延伸长度相应地自动适应性改变,有效减小了合并后的失真现象。
通过仿真,采用该装置在噪声强度N下进行比较,对目标的识别率如下表:

Claims (2)

1.一种轮廓识别滤波性能良好的桥梁施工装置,包括普通桥梁施工装置和安装在桥梁施工装置上的目标识别装置,该桥梁施工装置具有很强的环境适应能力,目标识别装置能够根据目标轮廓对目标进行识别,其特征是,包括建模模块、分段模块、合并模块和滤波模块;其中,
建模模块,用于建立目标轮廓的参数化方程:对于给定的目标轮廓G(t),其弧长参数化方程表示为G(t)=(x(t),y(t)),其中x(t)和y(t)分别表示轮廓点的坐标,t表示轮廓曲线方程的参数,且t∈[0,1];
含噪轮廓的弧长参数化方程表示为:GN(t)=G(t)+N1(t)+N2(t)G(t),其中加性噪声部分N1(t)=N1(x1(t),y1(t)),乘性噪声部分N2(t)=N2(x2(t),y2(t));
分段模块,用于对轮廓的分段:目标轮廓G(t)和含噪轮廓GN(t)所对应的曲率分别为k(t)和kN(t);选宽度为D的窗函数W(n),D∈{7,9},对曲率kN(t)进行邻域平均,得到平均曲率k1N(t),同时对窗口内的曲率值排序,选定中值曲率k2N(t),将平均曲率k1N(t)和中值曲率k2N(t)差的绝对值与选定的阈值T1进行比较,根据比较结果决定含噪轮廓曲率k′N(t),T1=0.2,即:
当|k1N(t)-k2N(t)|>T1时,k′N(t)=k1N(t)
否则,k′N(t)=k2N(t);
由于曲率值较大的轮廓点通常反映了目标的显著特征,根据k′N(t)将轮廓中所有轮廓点划分为特征点或非特征点,设定可变权值TK,通过判断目标轮廓特征多少,自适应的决定TK,当|k′N(t)|<TK*max|k′N(t)|时,特征函数f(t)=0
否则,特征函数f(t)=1。
2.根据权利要求1所述的桥梁施工装置,其特征还在于,合并模块:用于剔除由于噪声干扰产生的伪特征点,以及对无法形成连续区域的特征点和非特征点进行合并操作,从而得到有效的特征区域与非特征区域:选定一个起始点O,轮廓起始点向两侧延伸合并相邻的点,以该起始点类型作为该区域预设类型,向两侧延伸各S×μ0时停止,其中S为预设的最小长度,设S=15,为O点处的实时曲率修正系数,代表O点的曲率半径,代表由上述窗函数得到的O点的平均曲率半径,实时曲率修正系数μ0用于根据不同点的曲率不同,自动修正延伸长度,能有效减小合并后的失真现象;分别计算两侧区域内相异点的个数N+1和N-1,若相异点的个数小于设定的该类型相异点最小个数,则该区域与预设类型相同,否则,与预设类型相反;再以两个停止点O+1和点O-1作为起始点重新开始计算,向外侧延伸S×μO+1或S×μO-1时停止,其中μO+1和μO-1分别代表点O+1和点O-1处的实时曲率修正系数,O+1两侧区域内相异点个数为N+2,O-1两侧区域内相异点个数为N-2,根据上述判定条件,依次确定各段轮廓类型,长度不足S的部分根据其与S的比例计算相异点个数,计入相应的特征区域;对相邻的同类型区域进行合并,得到连续的特征区域和非特征区域;
滤波模块:乘性噪声由于和图像信号是相关的,随图像信号的变化而变化,采用维纳滤波来进行一级滤除,此时图像信息还包含有残余的乘性噪音,通过F滤波器F(x,y)=q×exp(-(x2+y2)/β2进行二级滤除,其中q是将函数归一化的系数,即:∫∫q×exp(-(x2+y2)/β2)dxdy=1,β为图像模板参数;
乘性噪声滤除后,含噪目标轮廓的弧长参数化方程表示为GN(t)’=G(t)+N1(t);假设加性噪声为高斯白噪声:xN(t)’=x(t)+g1(t,σ2),yN(t)’=y(t)+g2(t,σ2),其中xN(t)’和yN(t)’分别表示去除乘性噪声后含噪轮廓上各点坐标,g1(t,σ2)和g2(t,σ2)分别是均值为零、方差为σ2的高斯白噪声,用于模拟含噪目标轮廓中的加性噪声;
采用函数对含噪轮廓进行平滑,命名为K滤波器,经过轮廓点分类和区域划分,含噪轮廓GN(t)’表示为不同类型轮廓分段的组合:其中表示包含特征区域的轮廓分段,表示包含非特征区域的轮廓分段,根据轮廓特征分布选取K滤波器的参数,同时考虑全局特征和局部特征因素,在特征区域,为了保留细节信息,令在非特征区域,为了提高抑制噪声的效果,令 其中σ′为先验估算得到的全局方差,σ1为所选特征区域的先验估算方差,σ0为所选非特征区域的先验估算方差,为所选特征区域的平均实时曲率修正系数,为所选非特征区域的平均实时曲率修正系数;为了达到较好的平滑效果,选取每种类型区域最小长度S的一半作为K滤波器85%置信区间的长度,从而根据两类区域的长度自适应不同参数的K滤波器。
CN201610012914.9A 2016-01-07 2016-01-07 一种轮廓识别滤波性能良好的桥梁施工装置 Withdrawn CN105677984A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610012914.9A CN105677984A (zh) 2016-01-07 2016-01-07 一种轮廓识别滤波性能良好的桥梁施工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610012914.9A CN105677984A (zh) 2016-01-07 2016-01-07 一种轮廓识别滤波性能良好的桥梁施工装置

Publications (1)

Publication Number Publication Date
CN105677984A true CN105677984A (zh) 2016-06-15

Family

ID=56299788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610012914.9A Withdrawn CN105677984A (zh) 2016-01-07 2016-01-07 一种轮廓识别滤波性能良好的桥梁施工装置

Country Status (1)

Country Link
CN (1) CN105677984A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106101632A (zh) * 2016-06-29 2016-11-09 韦醒妃 基于视觉特征的图像处理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106101632A (zh) * 2016-06-29 2016-11-09 韦醒妃 基于视觉特征的图像处理装置

Similar Documents

Publication Publication Date Title
CN111985329A (zh) 基于FCN-8s和改进Canny边缘检测的遥感图像信息提取方法
WO2013168618A1 (ja) 画像処理装置及び画像処理方法
KR100800888B1 (ko) 패턴 정보를 이용한 영상잡음 제거방법
CN109377450B (zh) 一种边缘保护的去噪方法
CN105678262A (zh) 一种能够自主作业的隧道地质监控装置
CN104331683B (zh) 一种具有噪声鲁棒性的人脸表情识别方法
CN102298773B (zh) 一种形状自适应的非局部均值去噪方法
CN108805826B (zh) 改善去雾效果的方法
CN105414774A (zh) 一种能够自主切割的激光切割装置
CN104835127B (zh) 一种自适应平滑滤波方法
CN105528590A (zh) 一种快速报警的报警装置
CN110728185A (zh) 一种判别驾驶人存在手持手机通话行为的检测方法
CN108010035A (zh) 基于方向谷形检测的指静脉图像分割方法及其系统、终端
CN112053302A (zh) 高光谱图像的去噪方法、装置及存储介质
CN106023097B (zh) 一种基于迭代法的流场图像预处理方法
CN109636822A (zh) 一种基于新构建隶属度函数的改进Canny自适应边缘提取方法
CN105678770A (zh) 一种轮廓识别滤波性能良好的墙体裂缝检测装置
CN105677984A (zh) 一种轮廓识别滤波性能良好的桥梁施工装置
CN105447485A (zh) 一种快速检测的景观造型检测工具
CN105469394B (zh) 一种基于复杂环境的目标智能跟踪方法
CN105825514B (zh) 基于剪切波系数概率密度分布的图像边缘检测方法
CN111914749A (zh) 基于神经网络的车道线识别方法及其系统
CN105459901A (zh) 一种能够自主作业的汽车限行警示装置
CN105678841A (zh) 一种快速建模的立体地图获取装置
CN105488514A (zh) 一种具有自主焊接功能的焊接装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20160615

WW01 Invention patent application withdrawn after publication