CN105665821A - 数控带锯设备锯切工艺与控制系统 - Google Patents

数控带锯设备锯切工艺与控制系统 Download PDF

Info

Publication number
CN105665821A
CN105665821A CN201610104506.6A CN201610104506A CN105665821A CN 105665821 A CN105665821 A CN 105665821A CN 201610104506 A CN201610104506 A CN 201610104506A CN 105665821 A CN105665821 A CN 105665821A
Authority
CN
China
Prior art keywords
main
enter
parameter
sawing
saw band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610104506.6A
Other languages
English (en)
Other versions
CN105665821B (zh
Inventor
陈国金
朱妙芬
陈昌
陈慧鹏
龚友平
苏少辉
黄操
黎川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201610104506.6A priority Critical patent/CN105665821B/zh
Publication of CN105665821A publication Critical patent/CN105665821A/zh
Application granted granted Critical
Publication of CN105665821B publication Critical patent/CN105665821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D55/00Sawing machines or sawing devices working with strap saw blades, characterised only by constructional features of particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sawing (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

本发明公开了数控带锯设备锯切工艺与控制系统。需要一种自动变换锯切效率高、精度高和综合效果好三种模式的锯切工艺。本发明的锯切工艺:工艺运行和控制参数初始化,设定工艺参数的阈值:整机总功率的允许值、锯切效率差的允许值、总功率差的允许值、锯带振动的允许值和优化标志;选择效率模式、精度模式或综合模式,并在各自的模式下进行参数优化使其处于工艺参数的阈值内。本发明的数控带锯设备控制系统包括三种模式参数优化控制器、主运动控制回路、进给运动控制回路、锯带振动消除回路、锯切误差补偿回路和光电断齿检测装置。本发明能实现锯切效率最高、锯切精度最高、综合效果最好三种模式的锯切加工,以及进行三种模式的自动切换控制。

Description

数控带锯设备锯切工艺与控制系统
技术领域
本发明属于机电一体化技术领域,涉及一种数控带锯设备的锯切工艺以及实现该工艺的控制系统。
背景技术
数控带锯设备是汽车、飞机和船舶等现代机械制造业中零部件初加工的首选设备之一,该设备的加工精度、效率、可靠性和自动化程度直接影响到整个零部件的生产效益和质量。在零部件的锯切加工中,不同场合有不同的要求。有的要求锯切效率高;有的要求锯切精度高;也有的要求综合效果好,即在满足锯切精度要求前提下,锯切效率尽量高。为此,需要一种能自动变换的锯切工艺,以及实现该工艺的控制系统。通过该自动变换的锯切工艺和控制系统,能在一台数控锯切设备上实现锯切效率最高、锯切精度最高、综合效果最好等三种模式的锯切加工。
发明内容
本发明针对零部件的不同锯切加工要求,提供了一种能在一台数控锯切设备上实现锯切效率最高、锯切精度最高、综合效果最好等三种模式的锯切加工工艺,以及满足三种模式锯切加工工艺自动切换要求的控制系统。
本发明所采取的技术方案为:
本发明的数控带锯设备锯切工艺,具体如下:
开机后,进行工艺运行和控制参数的初始化,设定工艺参数的阈值:设备整机的总功率N的允许值N总许、锯切效率差的允许值△q、总功率差的允许值△N、锯带振动的允许值B和优化标志;其中,优化标志为0,表示所有运行和控制参数未经优化处理;优化标志为1时,即参数已优化;N=N+N,N为主运动功率,N为进给运动功率;B为锯带的振动值;锯切效率为q,运行参数修改前后两次的锯切效率差△q=q-q;△N=N总本-N总前,即为运行参数修改前后两次的总功率差。然后,选择锯切工作模式,包括效率模式、精度模式和综合模式。
效率模式锯切工艺流程如下:当优化标志为0时,执行工艺运行和控制参数的优化任务;当优化标志为1时,按优化的参数运行。参数优化过程如下:设定初始工艺参数,即主运动速度初始值V主0、进给运动速度初始值V进0、每次主运动速度调整值△V、每次进给运动速度调整值△V。调整主运动和进给运动速度,即V=V主0+△V,V=V进0+△V。延时5s后,通过截面图像检测装置测量切割截面积,通过压力传感器测量主运动力F、进给力F,通过主运动伺服电机和进给伺服电机的光电测速装置分别测量主运动速度V、进给运动速度V;计算N=N+N,其中,N=F×V,N=F×V;计算切割效率q、运行参数修改前后两次的锯切效率差△q=q-q;计算运行参数修改前后两次的总功率差△N=N总本-N总前,如果N>N总许或△N>△N且△q<△q,这时确定前次工艺参数V、V作为优化的运行参数,置优化标志为1,完成了工艺参数优化任务。接下来按优化的工艺参数运行。当接收到停机信号,则停机。否则通过锯带的光电断齿检测装置实时检测,进行故障判定,如果(1)连续断齿≥2、或(2)不连续断齿≥5、或(3)F>C×V×α条件满足,说明锯带断齿数超过允许值或锯齿钝化,必须停机检查。否则,继续按优化的工艺参数运行。其中,C为同时锯切的齿数;α为与锯切工件的材料和形状有关的系数,根据实验确定。
精度模式锯切工艺流程如下:当优化标志为0时,执行工艺运行和控制参数的优化任务。当优化标志为1时,按优化的参数运行。参数优化过程如下:设定初始工艺参数,即主运动速度V主0、进给运动速度V进0、每次主运动速度调整值△V、每次进给运动速度调整值△V。调整主运动和进给运动速度,即V=V主0+△V,V=V进0+△V。延时5s后,通过锯带的电涡流位移传感器测量锯带位移变化值,通过工作台与压力传感器座之间的压力传感器测量主运动力F和进给力F,通过主运动伺服电机和进给伺服电机的光电测速装置分别测量主运动速度V、进给运动速度V;计算锯带振动值B;计算N=N+N,其中,N=F×V,N=F×V;如果N>N总许,则确定N>N总许且锯带振动值B最小时的工艺参数V、V作为优化的运行参数,置优化标志为1,完成参数优化任务。接下来按优化的参数运行。当接收到停机信号,则停机。否则通过锯带的光电断齿检测装置实时检测,进行故障判定,如果(1)连续断齿≥2、或(2)不连续断齿≥5、或(3)F>C×V×α条件满足,说明锯带断齿数超过允许值或锯齿钝化,必须停机检查。否则,继续按优化的参数运行。
综合模式锯切工艺流程如下:当优化标志为0时,执行工艺运行和控制参数的优化任务;当优化标志=1时,按优化的参数运行。参数优化过程如下:设定初始工艺参数,即主运动速度V主0、进给运动速度V进0、每次主运动速度调整值△V、每次进给运动速度调整值△V。调整主运动和进给运动速度,即V=V主0+△V,V=V进0+△V。延时5s后,通过截面图像检测装置测量切割截面积,通过锯带的电涡流位移传感器测量锯带位移变化值,通过工作台与压力传感器座之间的压力传感器测量主运动力F和进给力F,通过主运动伺服电机和进给伺服电机的光电测速装置分别测量主运动速度V、进给运动速度V;计算切割效率q、锯带振动值B;计算N=N+N,其中,N=F×V,N=F×V。如果N>N总许,则说明已达到总功率的允许值,这时确定锯带振动值B≤B且切割效率q最大时的工艺参数V、V作为优化的运行参数,置优化标志为1,完成了参数优化任务。接下来按优化的参数运行。当接收到停机信号,则停机。否则通过锯带的光电断齿检测装置实时检测,进行故障判定,如果(1)连续断齿≥2、或(2)不连续断齿≥5、或(3)F>C×V×α条件满足,说明锯带断齿数超过允许值或锯齿钝化,必须停机检查。否则,继续按优化的参数运行。
本发明的控制系统包括用于确定最佳运行和控制参数的三种模式参数优化控制器、主运动控制回路、进给运动控制回路、锯带振动消除回路、锯切误差补偿回路和光电断齿检测装置。三种模式参数优化控制器将优化后的参数值输给主运动控制回路、进给运动控制回路、锯带振动消除回路和锯切误差补偿回路;主运动控制回路中,光电测速装置测量锯带轮的速度,并将测量的速度值输给主运动控制器,主运动控制器通过控制主运动伺服电机进而对锯带轮的速度进行控制。进给运动控制回路中,光电测速装置测量锯架的速度,并将速度值输给通过进给运动控制器,进给运动控制器通过控制进给伺服电机进而对锯架的速度进行控制。锯带振动消除回路中,超声波控制器和超声波换能装置组成超声波控制与换能装置,通过电涡流位移传感器对锯带两端进行电涡流位移检测,并将位移检测值输入超声波控制器计算振动值,超声波控制器控制超声波换能装置产生超声脉冲信号,超声波换能装置作用在锯带上,实现锯带振动消除。锯切误差补偿回路中,通过电涡流位移传感器对锯带两端进行电涡流位移检测,并将位移检测值输入导向控制器计算误差值,导向控制器控制锯带导向机构,实现锯切误差补偿。通过锯带两端的光电断齿检测装置实时检测,完成故障判定。如有故障,则由停机控制器实施停机操作,如无故障,则继续按优化的参数运行。
本发明的有益效果:本发明提供的数控带锯设备的锯切工艺以及实现该工艺的控制系统方案,能实现锯切效率最高、锯切精度最高、综合效果最好等三种模式的锯切加工工艺,以及在一台数控锯切设备上进行三种模式锯切加工工艺的自动切换控制。这样有利于提高零部件的锯切效率和锯切质量,充分发挥数控锯切设备的效能,因此,具有显著的经济、社会和环境效益。
附图说明
图1为本发明的数控锯切设备示意图;
图2为本发明的锯切工艺总体框图;
图3为本发明的效率模式锯切工艺流程图;
图4为本发明的精度模式锯切工艺流程图;
图5为本发明的综合模式锯切工艺流程图;
图6为本发明的控制系统框图。
具体实施方式
下面结合附图对本发明进一步描述。
如图1所示,本发明的数控锯切设备包括从动锯带轮1、张紧机构2、夹紧机构4、压力传感器座5、床身6、进给机构9、工作台10、主运动伺服电机12、主动锯带轮13、进给导向柱14、锯架15、锯带17和控制系统。锯切作业的工作原理是:进给机构9由进给伺服电机8和丝杆螺母传动副组成;锯架15由两个进给机构9的丝杆螺母传动副支撑,并与进给导向柱14构成滑动副;锯架15上安装有主动锯带轮13和从动锯带轮1;锯带17缠绕在主动、从动锯带轮上,并由靠近从动锯带轮处的张紧机构2(张紧液压缸和滑块组成)张紧;压力传感器座5设置在床身6的工作台10上用于支撑工件3;夹紧机构4夹紧工件3;进给伺服电机8驱动丝杆螺母传动副,以及主运动伺服电机12驱动主动锯带轮,使锯带17产生主运动,从而实现工件的锯切作业。上述工作原理与现有的带锯设备无异。本发明的不同之处是:为了实现本发明的工艺,控制系统增设了进给伺服电机8和主运动伺服电机12的光电测速装置7、锯带的电涡流位移传感器21、锯带的光电断齿检测装置20、截面图像检测装置19、超声波控制与换能装置18和锯带导向机构16,以及设置在压力传感器座5与工作台10之间测量主运动力和进给力的压力传感器11;锯带导向机构16对锯带起导向作用;超声波控制与换能装置18作用在锯带上,实现锯带振动消除。
图2是本发明的锯切工艺总体框图。开机后,进行工艺运行和控制参数的初始化,设定工艺参数的阈值:设备整机的总功率N的允许值N总许、锯切效率差的允许值△q、总功率差的允许值△N、锯带振动的允许值B和优化标志(优化标志=0,表示所有运行和控制参数未经优化处理)。其中,N=N+N,N为主运动功率,N为进给运动功率;B为锯带的振动值;锯切效率q(m2/s),运行参数修改前后两次的锯切效率差△q=q-q;△N=N总本-N总前,即为运行参数修改前后两次的总功率差。然后,选择锯切工作模式,包括效率模式、精度模式和综合模式。
图3是本发明的效率模式锯切工艺流程图。当优化标志=0时,说明工艺运行和控制参数未经优化处理,接下来执行工艺运行和控制参数的优化任务。当优化标志=1时,即参数已优化,接下来按优化的参数运行。参数优化过程如下:设定初始工艺参数,即主运动速度初始值V主0、进给运动速度初始值V进0、每次主运动速度调整值△V、每次进给运动速度调整值△V。调整主运动和进给运动速度,即V=V主0+△V,V=V进0+△V。延时5s后,通过截面图像检测装置19测量切割截面积,通过压力传感器11测量主运动力F、进给力F,通过主运动伺服电机12和进给伺服电机8的光电测速装置7分别测量主运动速度V、进给运动速度V;计算N=N+N,其中,N=F×V,N=F×V;计算切割效率q(m2/s)、运行参数修改前后两次的锯切效率差△q=q-q;计算运行参数修改前后两次的总功率差△N=N总本-N总前,如果N>N总许或△N>△N且△q<△q,则说明已达到总功率的允许值,或者锯切效率变化不大(即小于锯切效率差的允许值△q),这时确定前次工艺参数V、V作为优化的运行参数,置优化标志=1,完成了参数优化任务。接下来按优化的参数运行。当接收到停机信号,则停机。否则通过锯带的光电断齿检测装置20实时检测,进行故障判定,如果(1)连续断齿≥N1(一般N1=2)、或(2)不连续断齿≥N2(一般N2=5)、或(3)F>C×V×α(C为同时锯切的齿数、α为与锯切工件的材料和形状等有关的系数,根据实验确定)条件满足,说明锯带断齿数超过允许值或锯齿钝化,必须停机检查。否则,继续按优化的参数运行。
图4是本发明的精度模式锯切工艺流程图。当优化标志=0时,说明工艺运行和控制参数未经优化处理,接下来执行工艺运行和控制参数的优化任务。当优化标志=1时,即参数已优化,接下来按优化的参数运行。参数优化过程如下:设定初始工艺参数,即主运动速度V主0、进给运动速度V进0、每次主运动速度调整值△V、每次进给运动速度调整值△V。调整主运动和进给运动速度,即V=V主0+△V,V=V进0+△V。延时5s后,通过锯带的电涡流位移传感器21测量锯带位移变化值,通过工作台与压力传感器座之间的压力传感器11测量主运动力F和进给力F,通过主运动伺服电机12和进给伺服电机8的光电测速装置7分别测量主运动速度V、进给运动速度V;计算锯带振动值B;计算N=N+N,其中,N=F×V,N=F×V;如果N>N总许,则说明已达到总功率的允许值,这时确定N>N总许且锯带振动值B最小时的工艺参数V、V作为优化的运行参数,置优化标志=1,完成了参数优化任务。接下来按优化的参数运行。当接收到停机信号,则停机。否则通过锯带的光电断齿检测装置20实时检测,进行故障判定,如果(1)连续断齿≥N1(一般N1=2)、或(2)不连续断齿≥N2(一般N2=5)、或(3)F>C×V×α(C为同时锯切的齿数、α为与锯切工件的材料和形状等有关的系数,根据实验确定)条件满足,说明锯带断齿数超过允许值或锯齿钝化,必须停机检查。否则,继续按优化的参数运行。
图5是本发明的综合模式锯切工艺流程图。当优化标志=0时,说明工艺运行和控制参数未经优化处理,接下来执行工艺运行和控制参数的优化任务。当优化标志=1时,即参数已优化,接下来按优化的参数运行。参数优化过程如下:设定初始工艺参数,即主运动速度V主0、进给运动速度V进0、每次主运动速度调整值△V、每次进给运动速度调整值△V。调整主运动和进给运动速度,即V=V主0+△V,V=V进0+△V。延时5s后,通过截面图像检测装置19测量切割截面积,通过锯带的电涡流位移传感器21测量锯带位移变化值,通过工作台与压力传感器座之间的压力传感器11测量主运动力F和进给力F,通过主运动伺服电机12和进给伺服电机8的光电测速装置7分别测量主运动速度V、进给运动速度V;计算切割效率q(m2/s)、锯带振动值B;计算N=N+N,其中,N=F×V,N=F×V。如果N>N总许,则说明已达到总功率的允许值,这时确定锯带振动值B≤B且切割效率q最大时的工艺参数V、V作为优化的运行参数,置优化标志=1,完成了参数优化任务。接下来按优化的参数运行。当接收到停机信号,则停机。否则通过锯带的光电断齿检测装置20实时检测,进行故障判定,如果(1)连续断齿≥N1(一般N1=2)、或(2)不连续断齿≥N2(一般N2=5)、或(3)F>C×V×α(C为同时锯切的齿数、α为与锯切工件的材料和形状等有关的系数,根据实验确定)条件满足,说明锯带断齿数超过允许值或锯齿钝化,必须停机检查。否则,继续按优化的参数运行。
图6是本发明的控制系统框图。开机后,通过三种模式参数优化控制器确定最佳的运行和控制参数。主运动控制回路,通过主运动控制器、光电测速装置7和主运动伺服电机,对锯带轮的速度进行控制,以保证在优化的参数范围内运行。进给运动控制回路,通过进给运动控制器、光电测速装置7和进给伺服电机,对锯架的速度进行控制,以保证在优化的参数范围内运行。锯带振动消除回路,超声波控制器和超声波换能装置组成超声波控制与换能装置18,通过电涡流位移传感器21对锯带两端进行电涡流位移检测,并将位移检测值输入超声波控制器计算振动值,超声波控制器控制超声波换能装置产生超声脉冲信号,超声波换能装置作用在锯带上,实现锯带振动消除的功能。锯切误差补偿回路,通过电涡流位移传感器21对锯带两端进行电涡流位移检测,并将位移检测值输入导向控制器计算误差值,导向控制器控制锯带导向机构,实现锯切误差的补偿功能。整个锯切过程,通过锯带两端的光电断齿检测装置20进行实时检测,完成故障判定。如有故障,则由停机控制器实施停机操作,如无故障,则继续按优化的参数运行。

Claims (2)

1.数控带锯设备锯切工艺,其特征在于:该工艺具体如下:开机后,进行工艺运行和控制参数的初始化,设定工艺参数的阈值:设备整机的总功率N的允许值N总许、锯切效率差的允许值△q、总功率差的允许值△N、锯带振动的允许值B和优化标志;其中,优化标志为0,表示所有运行和控制参数未经优化处理;优化标志为1时,即参数已优化;N=N+N,N为主运动功率,N为进给运动功率;B为锯带的振动值;锯切效率为q,运行参数修改前后两次的锯切效率差△q=q-q;△N=N总本-N总前,即为运行参数修改前后两次的总功率差;然后,选择锯切工作模式,包括效率模式、精度模式和综合模式;
效率模式锯切工艺流程如下:当优化标志为0时,执行工艺运行和控制参数的优化任务;当优化标志为1时,按优化的参数运行;参数优化过程如下:设定初始工艺参数,即主运动速度初始值V主0、进给运动速度初始值V进0、每次主运动速度调整值△V、每次进给运动速度调整值△V;调整主运动和进给运动速度,即V=V主0+△V,V=V进0+△V;延时5s后,通过截面图像检测装置测量切割截面积,通过压力传感器测量主运动力F、进给力F,通过主运动伺服电机和进给伺服电机的光电测速装置分别测量主运动速度V、进给运动速度V;计算N=N+N,其中,N=F×V,N=F×V;计算切割效率q、运行参数修改前后两次的锯切效率差△q=q-q;计算运行参数修改前后两次的总功率差△N=N总本-N总前,如果N>N总许或△N>△N且△q<△q,这时确定前次工艺参数V、V作为优化的运行参数,置优化标志为1,完成了工艺参数优化任务;接下来按优化的工艺参数运行;当接收到停机信号,则停机;否则通过锯带的光电断齿检测装置实时检测,进行故障判定,如果(1)连续断齿≥2、或(2)不连续断齿≥5、或(3)F>C×V×α条件满足,说明锯带断齿数超过允许值或锯齿钝化,必须停机检查;否则,继续按优化的工艺参数运行;其中,C为同时锯切的齿数;α为与锯切工件的材料和形状有关的系数,根据实验确定;
精度模式锯切工艺流程如下:当优化标志为0时,执行工艺运行和控制参数的优化任务;当优化标志为1时,按优化的参数运行;参数优化过程如下:设定初始工艺参数,即主运动速度V主0、进给运动速度V进0、每次主运动速度调整值△V、每次进给运动速度调整值△V;调整主运动和进给运动速度,即V=V主0+△V,V=V进0+△V;延时5s后,通过锯带的电涡流位移传感器测量锯带位移变化值,通过工作台与压力传感器座之间的压力传感器测量主运动力F和进给力F,通过主运动伺服电机和进给伺服电机的光电测速装置分别测量主运动速度V、进给运动速度V;计算锯带振动值B;计算N=N+N,其中,N=F×V,N=F×V;如果N>N总许,则确定N>N总许且锯带振动值B最小时的工艺参数V、V作为优化的运行参数,置优化标志为1,完成参数优化任务;接下来按优化的参数运行;当接收到停机信号,则停机;否则通过锯带的光电断齿检测装置实时检测,进行故障判定,如果(1)连续断齿≥2、或(2)不连续断齿≥5、或(3)F>C×V×α条件满足,说明锯带断齿数超过允许值或锯齿钝化,必须停机检查;否则,继续按优化的参数运行;
综合模式锯切工艺流程如下:当优化标志为0时,执行工艺运行和控制参数的优化任务;当优化标志=1时,按优化的参数运行;参数优化过程如下:设定初始工艺参数,即主运动速度V主0、进给运动速度V进0、每次主运动速度调整值△V、每次进给运动速度调整值△V;调整主运动和进给运动速度,即V=V主0+△V,V=V进0+△V;延时5s后,通过截面图像检测装置测量切割截面积,通过锯带的电涡流位移传感器测量锯带位移变化值,通过工作台与压力传感器座之间的压力传感器测量主运动力F和进给力F,通过主运动伺服电机和进给伺服电机的光电测速装置分别测量主运动速度V、进给运动速度V;计算切割效率q、锯带振动值B;计算N=N+N,其中,N=F×V,N=F×V;如果N>N总许,则说明已达到总功率的允许值,这时确定锯带振动值B≤B且切割效率q最大时的工艺参数V、V作为优化的运行参数,置优化标志为1,完成了参数优化任务;接下来按优化的参数运行;当接收到停机信号,则停机;否则通过锯带的光电断齿检测装置实时检测,进行故障判定,如果(1)连续断齿≥2、或(2)不连续断齿≥5、或(3)F>C×V×α条件满足,说明锯带断齿数超过允许值或锯齿钝化,必须停机检查;否则,继续按优化的参数运行。
2.实现如权利要求1所述的数控带锯设备锯切工艺的控制系统,包括用于确定最佳运行和控制参数的三种模式参数优化控制器、主运动控制回路、进给运动控制回路、锯带振动消除回路、锯切误差补偿回路和光电断齿检测装置,其特征在于:三种模式参数优化控制器将优化后的参数值输给主运动控制回路、进给运动控制回路、锯带振动消除回路和锯切误差补偿回路;主运动控制回路中,光电测速装置测量锯带轮的速度,并将测量的速度值输给主运动控制器,主运动控制器通过控制主运动伺服电机进而对锯带轮的速度进行控制;进给运动控制回路中,光电测速装置测量锯架的速度,并将速度值输给通过进给运动控制器,进给运动控制器通过控制进给伺服电机进而对锯架的速度进行控制;锯带振动消除回路中,超声波控制器和超声波换能装置组成超声波控制与换能装置,通过电涡流位移传感器对锯带两端进行电涡流位移检测,并将位移检测值输入超声波控制器计算振动值,超声波控制器控制超声波换能装置产生超声脉冲信号,超声波换能装置作用在锯带上,实现锯带振动消除;锯切误差补偿回路中,通过电涡流位移传感器对锯带两端进行电涡流位移检测,并将位移检测值输入导向控制器计算误差值,导向控制器控制锯带导向机构,实现锯切误差补偿;通过锯带两端的光电断齿检测装置实时检测,完成故障判定;如有故障,则由停机控制器实施停机操作,如无故障,则继续按优化的参数运行。
CN201610104506.6A 2016-02-25 2016-02-25 数控带锯设备锯切工艺与控制系统 Active CN105665821B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610104506.6A CN105665821B (zh) 2016-02-25 2016-02-25 数控带锯设备锯切工艺与控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610104506.6A CN105665821B (zh) 2016-02-25 2016-02-25 数控带锯设备锯切工艺与控制系统

Publications (2)

Publication Number Publication Date
CN105665821A true CN105665821A (zh) 2016-06-15
CN105665821B CN105665821B (zh) 2017-10-03

Family

ID=56305988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610104506.6A Active CN105665821B (zh) 2016-02-25 2016-02-25 数控带锯设备锯切工艺与控制系统

Country Status (1)

Country Link
CN (1) CN105665821B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106295140A (zh) * 2016-07-29 2017-01-04 南京海威机械有限公司 一种数控推台锯工件斜切时的误差补偿方法
CN110653416A (zh) * 2019-10-25 2020-01-07 佛山市众禾铝业有限公司 一种自动锯齿机
CN110919090A (zh) * 2019-12-12 2020-03-27 佛山市澳科自动化工程有限公司 一种牵引机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058150A (ja) * 1991-07-05 1993-01-19 Hitachi Seiko Ltd 数値制御工作機械における制御方法
JP4169831B2 (ja) * 1998-06-11 2008-10-22 株式会社アマダ 横型帯鋸盤
CN102063086A (zh) * 2010-11-02 2011-05-18 杭州电子科技大学 带锯床恒功率锯切控制装置
CN202207928U (zh) * 2011-08-03 2012-05-02 杭州电子科技大学 金属带锯床全程线速度实时检测装置
CN102672526A (zh) * 2012-04-30 2012-09-19 苏州赛特尔集团机械有限公司 一种用于数控锯床的次供电回路
CN103394971A (zh) * 2013-07-23 2013-11-20 杭州电子科技大学 一种锯床金属锯带传动过程的动态包角检测装置及方法
CN103447617A (zh) * 2013-07-23 2013-12-18 杭州电子科技大学 一种基于主振模态预测的带锯条振动主动抑制装置及方法
CN103752945A (zh) * 2013-12-25 2014-04-30 郭益村 一种锯带自动复位的带锯床及其控制方法
CN105033352A (zh) * 2015-03-12 2015-11-11 浙江晨龙锯床股份有限公司 带锯床恒功率锯切的控制方法及其智能带锯床

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058150A (ja) * 1991-07-05 1993-01-19 Hitachi Seiko Ltd 数値制御工作機械における制御方法
JP4169831B2 (ja) * 1998-06-11 2008-10-22 株式会社アマダ 横型帯鋸盤
CN102063086A (zh) * 2010-11-02 2011-05-18 杭州电子科技大学 带锯床恒功率锯切控制装置
CN202207928U (zh) * 2011-08-03 2012-05-02 杭州电子科技大学 金属带锯床全程线速度实时检测装置
CN102672526A (zh) * 2012-04-30 2012-09-19 苏州赛特尔集团机械有限公司 一种用于数控锯床的次供电回路
CN103394971A (zh) * 2013-07-23 2013-11-20 杭州电子科技大学 一种锯床金属锯带传动过程的动态包角检测装置及方法
CN103447617A (zh) * 2013-07-23 2013-12-18 杭州电子科技大学 一种基于主振模态预测的带锯条振动主动抑制装置及方法
CN103752945A (zh) * 2013-12-25 2014-04-30 郭益村 一种锯带自动复位的带锯床及其控制方法
CN105033352A (zh) * 2015-03-12 2015-11-11 浙江晨龙锯床股份有限公司 带锯床恒功率锯切的控制方法及其智能带锯床

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106295140A (zh) * 2016-07-29 2017-01-04 南京海威机械有限公司 一种数控推台锯工件斜切时的误差补偿方法
CN110653416A (zh) * 2019-10-25 2020-01-07 佛山市众禾铝业有限公司 一种自动锯齿机
CN110919090A (zh) * 2019-12-12 2020-03-27 佛山市澳科自动化工程有限公司 一种牵引机

Also Published As

Publication number Publication date
CN105665821B (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
CN105665822B (zh) 带消振与纠偏控制装置的数控带锯床
CN204736026U (zh) 具有实时检测功能的数控车床
US9360849B2 (en) Numerical control method
CN105665821A (zh) 数控带锯设备锯切工艺与控制系统
CN103112139B (zh) 一种开模定位控制方法及系统
CN102248446B (zh) 坡口机智能控制系统
CN101414185A (zh) 精密伺服线性驱动系统性能试验装置及其试验方法
CN206898809U (zh) 一种用于阀体内斜面加工的工装夹具
CN103909445B (zh) 带锯床自适应切削控制装置
CN101428363B (zh) 一种大型蜂窝环电火花磨削加工自动测量装置及应用方法
CN105081889B (zh) 一种传感器在数控机床中的应用
CN205465502U (zh) 一种内圆磨削装置
JPS59205264A (ja) 自動研削装置
CN202702299U (zh) 一种全自动在线切割机
KR20100083473A (ko) 공작기계의 채터진동 보상장치
CN204944468U (zh) 一种机床液体静压导轨油膜厚度检测试验台
CN102350541A (zh) 三轴随动在线切割数控铣床及其三轴随动控制方法
US3561301A (en) Machine tool control systems
CN206373409U (zh) 一种用于加工阀体的一体化加工机床
CN211053700U (zh) 一种满足ndt探伤要求的铸钢件表面机器人切削装置
CN209189809U (zh) 卧式精密双头数控车床
CN111308954A (zh) 一种热锯机的恒功率控制系统
RU160357U1 (ru) Устройство управления точностью обработки деталей
CN210678023U (zh) 一种基于无线电通讯的数控机床在线测量装置
CN202114540U (zh) 坡口机智能控制系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant