CN105665042B - 微流控芯片的使用方法 - Google Patents

微流控芯片的使用方法 Download PDF

Info

Publication number
CN105665042B
CN105665042B CN201610017616.9A CN201610017616A CN105665042B CN 105665042 B CN105665042 B CN 105665042B CN 201610017616 A CN201610017616 A CN 201610017616A CN 105665042 B CN105665042 B CN 105665042B
Authority
CN
China
Prior art keywords
micro
fluidic chip
parallel pole
electrode plate
capacitive dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610017616.9A
Other languages
English (en)
Other versions
CN105665042A (zh
Inventor
郭小英
卫勇
常若葵
吴海云
刘华
单慧勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Agricultural University
Original Assignee
Tianjin Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Agricultural University filed Critical Tianjin Agricultural University
Priority to CN201610017616.9A priority Critical patent/CN105665042B/zh
Priority claimed from CN201510027591.6A external-priority patent/CN104668003B/zh
Publication of CN105665042A publication Critical patent/CN105665042A/zh
Application granted granted Critical
Publication of CN105665042B publication Critical patent/CN105665042B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/061Counting droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开微流控芯片的使用方法,微流控芯片为密封腔式结构,内部设置有微流通道,在微流通道的两端分别设置有入液口和出液口,沿入液口到出液口的方向依次设置有镜头孔、背光孔、平行电极、平面波导式梳式电极和电容式介电电极,在微流控芯片侧面还设置有光纤通孔。使用时,微生物检测试液从入液口进入,经过微流通道,从出液口流出。镜头孔与显微高光谱仪相连,并打开背景光源,透过背光孔为显微高光谱仪提供背景光,以实现对微生物显微高光谱图像信息的采集;电容式介电电极、平面波导式梳式电极和平行电极分别连接介电谱测试设备,实现对微生物的介电特性和数量进行检测;光纤通孔与光纤光谱仪相连,实现对微生物的光谱特性进行检测。

Description

微流控芯片的使用方法
本发明申请是母案申请“微流控芯片”的分案申请,母案申请的申请号为2015100275916,母案申请的申请日为2015年1月20日。
技术领域
本发明属于微流控技术领域,尤其是一种用于微生物显微图像采集以及介电和光谱特性同步测试的微流控芯片。
背景技术
微流控芯片(microfluidic chip)是一种以在微米尺度空间对流体进行操控为主要特征的科学技术。作为一门新兴技术已经与化学、生物学、工程学和物理学等诸学科形成交叉,展示出了广泛的应用前景。微生物检测尤其是食品中有毒微生物的直接测量一直是食品微生物检测的研究热点,现有的微流控芯片,大多仅是对微生物的单一特性或少数几个特性进行分析检测,不能实现对微生物多特性的综合分析检测,使得检测效率较低。
发明内容
本发明的目的在于克服现有技术的不足,在微流控技术的基础上,提供一种用于微生物显微图像采集、介电特性和光谱特性同步测试的微流控芯片。本发明结构简单、设计科学合理、可高效率的实现对微生物样品的多特性、多参数的综合同步分析检测。
本发明解决其技术问题是通过以下技术方案实现的:
一种用于微生物显微图像采集以及介电和光谱特性同步测试的微流控芯片(以下简称为微流控芯片),包括微流通道、电容式介电电极、平面波导式梳式电极、平行电极、光纤通孔、背光孔和镜头孔。
所述微流控芯片为密封腔式结构,其内部设置有微流通道,在微流通道的两端分别设置有入液口和出液口;沿入液口到出液口的方向依次设置有镜头孔、背光孔、平行电极、平面波导式梳式电极和电容式介电电极;所述镜头孔和背光孔分别对称设置在微流控芯片的正面和背面,通过镜头孔显微系统可以采集流道内的微生物的图像信息,通过背光孔,背景光源可照进微流通道,从而为显微系统提供背景光源;
所述平行电极包括上平行电极和下平行电极,其对称设置在微流控芯片的两侧,上平行电极由上平行电极的检测电极板和上平行电极的检测接头组成,下平行电极由下平行电极的检测电极板和下平行电极的检测接头组成,上平行电极的检测电极板和下平行电极的检测电极板等间距设置在流道的底面上,相互平行且与流动方向垂直,上平行电极的检测接头和下平行电极的检测接头设置在流道外,并分别与上平行电极的检测电极板、下平行电极的检测电极板相连;
所述平面波导式梳式电极包括上平面波导式梳式电极和下平面波导式梳式电极,其对称设置在微流控芯片的两侧,上平面波导式梳式电极由上平面波导式梳式电极的检测电极板和上平面波导式梳式电极的检测接头组成,下平面波导式梳式电极由下平面波导式梳式电极的检测电极板和下平面波导式梳式电极的检测接头组成,上平面波导式梳式电极的检测电极板和下平面波导式梳式电极的检测电极板等间距设置在流道的底面上,相互平行且与流动方向垂直,上平面波导式梳式电极的检测接头和下平面波导式梳式电极的检测接头设置在流道外,并分别与上平面波导式梳式电极的检测电极板和下平面波导式梳式电极的检测电极板相连;
所述电容式介电电极包括上电容式介电电极和下电容式介电电极,其对称设置在微流控芯片的两侧,上电容式介电电极由上电容式介电电极的检测电极板和上电容式介电电极的检测接头组成,下电容式介电电极由下电容式介电电极的检测电极板和下电容式介电电极的检测接头组成,且上电容式介电电极的检测电极板和下电容式介电电极的检测电极板对称设置在流道内表面上,上电容式介电电极的检测接头和下电容式介电电极的检测接头设置在流道外,并分别与上电容式介电电极的检测电极板和下电容式介电电极的检测电极板相连;
所述光纤通孔设置在微流控芯片的侧面,用于光谱检测。
在上述技术方案中,所述上平行电极的检测电极板的数量为1—3个;所述下平行电极的检测电极板为1—3个。
在上述技术方案中,所述上平面波导式梳式电极的检测电极板的数量为2—3个;所述下平面波导式梳式电极的检测电极板的数量为2—3个。
在上述技术方案中,所述光纤通孔设置在微流控芯片侧面的中央位置。
使用时,微生物检测试液从入液口进入,经过微流通道,从出液口流出。镜头孔与显微高光谱仪相连,并打开背景光源,透过背光孔为显微高光谱仪提供背景光,以实现对微生物显微高光谱图像信息的采集;电容式介电电极、平面波导式梳式电极和平行电极分别连接介电谱测试设备,实现对微生物的介电特性和数量进行检测;光纤通孔与光纤光谱仪相连,实现对微生物的光谱特性进行检测。
在上述技术方案中,所述镜头孔和背光孔均采用石英片密封。
与现有技术相比,本发明统结构简单,可以方便的对微生物的显微高光谱图像信息进行采集,以及对微生物的介电特性和光谱特性进行同步测试,从而实现高效地对微生物多特性的综合分析检测。
附图说明
图1为本发明的结构示意图;
图2为图1的俯视图;
图3为图1的仰视图;
图4为图1的剖视图;
其中1为出液口,2-1为上电容式介电电极,2-2为下电容式介电电极,2-3为上电容式介电电极的检测电极板,2-4为下电容式介电电极的检测电极板,2-5为上电容式介电电极的检测接头,2-6为下电容式介电电极的检测接头,3-1为上平面波导式梳式电极,3-2为下平面波导式梳式电极,3-3为上平面波导式梳式电极的检测电极板,3-4为下平面波导式梳式电极的检测电极板,3-5为上平面波导式梳式电极的检测接头,3-6为下平面波导式梳式电极的检测接头,4-1为上平行电极,4-2为下平行电极,4-3为上平行电极的检测电极板,4-4为下平行电极的检测电极板,4-5为上平行电极的检测接头,4-6为下平行电极的检测接头,5为入液口,6为背光孔,7为镜头孔,8为光纤通孔。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
参见附图1—4,一种用于微生物显微图像采集以及介电和光谱特性同步测试的微流控芯片(以下简称为微流控芯片),包括微流通道、电容式介电电极、平面波导式梳式电极、平行电极、光纤通孔、背光孔和镜头孔。
所述微流控芯片整体上为密封腔式结构,其内部设置有微流通道,在微流通道的两端分别设置有入液口5和出液口1;沿入液口到出液口的方向依次设置有镜头孔7、背光孔6、平行电极、平面波导式梳式电极和电容式介电电极;所述镜头孔和背光孔对称设置在微流控芯片的正面和背面,通过镜头孔显微系统可以采集流道内的微生物的图像信息,通过背光孔,背景光源可照进微流通道,从而为显微系统提供背景光源,所述镜头孔和背光孔均采用石英片密封;
所述平行电极包括上平行电极4-1和下平行电极4-2,其对称设置在微流控芯片的两侧,上平行电极由上平行电极的检测电极板4-3和上平行电极的检测接头4-5组成,下平行电极由下平行电极的检测电极板4-4和下平行电极的检测接头4-6组成,上平行电极的检测电极板4-3和下平行电极的检测电极板4-4等间距设置在流道的底面上,相互平行且与流动方向垂直,上平行电极的检测接头4-5和下平行电极的检测接头4-6设置在流道外,并分别与上平行电极的检测电极板4-3、下平行电极的检测电极板4-4相连;
所述平面波导式梳式电极包括上平面波导式梳式电极3-1和下平面波导式梳式电极3-2,其对称设置在微流控芯片的两侧,上平面波导式梳式电极由上平面波导式梳式电极的检测电极板3-3和上平面波导式梳式电极的检测接头3-5组成,下平面波导式梳式电极由下平面波导式梳式电极的检测电极板3-4和下平面波导式梳式电极的检测接头3-6组成,上平面波导式梳式电极的检测电极板3-3和下平面波导式梳式电极的检测电极板3-4等间距设置在流道的底面上,相互平行且与流动方向垂直,上平面波导式梳式电极的检测接头3-5和下平面波导式梳式电极的检测接头3-6设置在流道外,并分别与上平面波导式梳式电极的检测电极板3-3和下平面波导式梳式电极的检测电极板3-4相连;
所述电容式介电电极包括上电容式介电电极2-1和下电容式介电电极2-2,其对称设置在微流控芯片的两侧,上电容式介电电极由上电容式介电电极的检测电极板2-3和上电容式介电电极的检测接头2-5组成,下电容式介电电极由下电容式介电电极的检测电极板2-4和下电容式介电电极的检测接头2-6组成,且上电容式介电电极的检测电极板2-3和下电容式介电电极的检测电极板2-4对称设置在流道内表面上,上电容式介电电极的检测接头2-5和下电容式介电电极的检测接头2-6设置在流道外,并分别与上电容式介电电极的检测电极板2-3和下电容式介电电极的检测电极板2-4相连;
所述光纤通孔8设置在微流控芯片的侧面,用于光谱检测。
在上述技术方案中,所述上平行电极的检测电极板的数量为1—3个;所述下平行电极的检测电极板为1—3个。
在上述技术方案中,所述上平面波导式梳式电极的检测电极板的数量为2—3个;所述下平面波导式梳式电极的检测电极板的数量为2—3个。
在上述技术方案中,所述光纤通孔设置在微流控芯片侧面的中央位置。
在进行使用时,微生物检测试液从入液口进入,从出液口流出,镜头孔与显微高光谱仪相连,并打开背景光源,透过背光孔为显微高光谱仪提供背景光,以实现对微生物显微高光谱图像信息的采集;电容式介电电极、平面波导式梳式电极和平行电极分别连接介电谱测试设备,实现对微生物的介电特性和数量进行检测;光纤通孔与光纤光谱仪相连,实现对微生物的光谱特性进行检测。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (7)

1.微流控芯片的使用方法,其特征在于,所述微流控芯片,包括微流通道、电容式介电电极、平面波导式梳式电极、平行电极、光纤通孔、背光孔和镜头孔;
所述微流控芯片为密封腔式结构,其内部设置有微流通道,在微流通道的两端分别设置有入液口和出液口;沿入液口到出液口的方向依次设置有镜头孔、背光孔、平行电极、平面波导式梳式电极和电容式介电电极;所述镜头孔和背光孔分别对称设置在微流控芯片的正面和背面;所述光纤通孔设置在微流控芯片的侧面,用于光谱检测;所述平行电极包括上平行电极和下平行电极,其对称设置在微流控芯片的两侧,上平行电极由上平行电极的检测电极板和上平行电极的检测接头组成,下平行电极由下平行电极的检测电极板和下平行电极的检测接头组成,上平行电极的检测电极板和下平行电极的检测电极板等间距设置在流道的底面上,相互平行且与流动方向垂直,上平行电极的检测接头和下平行电极的检测接头设置在流道外,并分别与上平行电极的检测电极板、下平行电极的检测电极板相连;
所述平面波导式梳式电极包括上平面波导式梳式电极和下平面波导式梳式电极,其对称设置在微流控芯片的两侧,上平面波导式梳式电极由上平面波导式梳式电极的检测电极板和上平面波导式梳式电极的检测接头组成,下平面波导式梳式电极由下平面波导式梳式电极的检测电极板和下平面波导式梳式电极的检测接头组成,上平面波导式梳式电极的检测电极板和下平面波导式梳式电极的检测电极板等间距设置在流道的底面上,相互平行且与流动方向垂直,上平面波导式梳式电极的检测接头和下平面波导式梳式电极的检测接头设置在流道外,并分别与上平面波导式梳式电极的检测电极板和下平面波导式梳式电极的检测电极板相连;所述电容式介电电极包括上电容式介电电极和下电容式介电电极,其对称设置在微流控芯片的两侧,上电容式介电电极由上电容式介电电极的检测电极板和上电容式介电电极的检测接头组成,下电容式介电电极由下电容式介电电极的检测电极板和下电容式介电电极的检测接头组成,且上电容式介电电极的检测电极板和下电容式介电电极的检测电极板对称设置在流道内表面上,上电容式介电电极的检测接头和下电容式介电电极的检测接头设置在流道外,并分别与上电容式介电电极的检测电极板和下电容式介电电极的检测电极板相连;
使用时,微生物检测试液从入液口进入,经过微流通道,从出液口流出,镜头孔与显微高光谱仪相连,并打开背景光源,透过背光孔为显微高光谱仪提供背景光,以实现对微生物显微高光谱图像信息的采集;电容式介电电极、平面波导式梳式电极和平行电极分别连接介电谱测试设备,实现对微生物的介电特性和数量进行检测;光纤通孔与光纤光谱仪相连,实现对微生物的光谱特性进行检测。
2.根据权利要求1所述的微流控芯片的使用方法,其特征在于,所述上平行电极的检测电极板的数量为1—3个。
3.根据权利要求1所述的微流控芯片的使用方法,其特征在于,所述下平行电极的检测电极板为1—3个。
4.根据权利要求1所述的微流控芯片的使用方法,其特征在于,所述上平面波导式梳式电极的检测电极板的数量为2—3个。
5.根据权利要求1所述的微流控芯片的使用方法,其特征在于,所述下平面波导式梳式电极的检测电极板的数量为2—3个。
6.根据权利要求1所述的微流控芯片的使用方法,其特征在于,所述光纤通孔设置在微流控芯片侧面的中央位置。
7.根据权利要求1所述的微流控芯片的使用方法,其特征在于,所述镜头孔和背光孔均采用石英片密封。
CN201610017616.9A 2015-01-20 2015-01-20 微流控芯片的使用方法 Expired - Fee Related CN105665042B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610017616.9A CN105665042B (zh) 2015-01-20 2015-01-20 微流控芯片的使用方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510027591.6A CN104668003B (zh) 2015-01-20 2015-01-20 微流控芯片
CN201610017616.9A CN105665042B (zh) 2015-01-20 2015-01-20 微流控芯片的使用方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201510027591.6A Division CN104668003B (zh) 2015-01-20 2015-01-20 微流控芯片

Publications (2)

Publication Number Publication Date
CN105665042A CN105665042A (zh) 2016-06-15
CN105665042B true CN105665042B (zh) 2017-06-27

Family

ID=56300131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610017616.9A Expired - Fee Related CN105665042B (zh) 2015-01-20 2015-01-20 微流控芯片的使用方法

Country Status (1)

Country Link
CN (1) CN105665042B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088517A2 (en) * 2006-02-01 2007-08-09 Ecole Polytechnique Federale De Lausanne (Epfl) Apparatus for manipulating, modifying and characterizing particles in a micro channel
CN201016953Y (zh) * 2007-01-30 2008-02-06 中山大学 微流控芯片多道电化学检测装置
CN102527450A (zh) * 2010-12-30 2012-07-04 国家纳米技术与工程研究院 一种可以测量流体性质的微流控芯片及其工作方法
CN102788780A (zh) * 2012-05-24 2012-11-21 浙江大学 一种用于生物化学发光检测的微流控芯片及其制作方法
CN103323502A (zh) * 2012-03-22 2013-09-25 中国科学院理化技术研究所 用于流式检测的微流控芯片检测系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW577855B (en) * 2003-05-21 2004-03-01 Univ Nat Cheng Kung Chip-type micro-fluid particle 3-D focusing and detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088517A2 (en) * 2006-02-01 2007-08-09 Ecole Polytechnique Federale De Lausanne (Epfl) Apparatus for manipulating, modifying and characterizing particles in a micro channel
CN201016953Y (zh) * 2007-01-30 2008-02-06 中山大学 微流控芯片多道电化学检测装置
CN102527450A (zh) * 2010-12-30 2012-07-04 国家纳米技术与工程研究院 一种可以测量流体性质的微流控芯片及其工作方法
CN103323502A (zh) * 2012-03-22 2013-09-25 中国科学院理化技术研究所 用于流式检测的微流控芯片检测系统
CN102788780A (zh) * 2012-05-24 2012-11-21 浙江大学 一种用于生物化学发光检测的微流控芯片及其制作方法

Also Published As

Publication number Publication date
CN105665042A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
Dudani et al. Pinched-flow hydrodynamic stretching of single-cells
CN103439241B (zh) 单细胞多参数表征的微流控芯片检测系统
CN104668003B (zh) 微流控芯片
CN105062866B (zh) 用于外周血循环肿瘤细胞的一次性分离芯片模块及其使用方法
CN103323502B (zh) 用于流式检测的微流控芯片检测系统
Kemna et al. Label-free, high-throughput, electrical detection of cells in droplets
Tajik et al. Simple, cost-effective, and continuous 3D dielectrophoretic microchip for concentration and separation of bioparticles
CN108226547A (zh) 包括微流控芯片的循环肿瘤细胞检测仪器
Ren et al. Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis
Muratore et al. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy
Huang et al. Rapid and precise tumor cell separation using the combination of size-dependent inertial and size-independent magnetic methods
CN1200111C (zh) 一种基于微流控技术的流式细胞仪
CN104694372A (zh) 一种垂直捕获裂殖酵母细胞的微流控芯片及方法
Zhang et al. Electrokinetic gated injection-based microfluidic system for quantitative analysis of hydrogen peroxide in individual HepG2 cells
Rozitsky et al. Quantifying continuous-flow dielectrophoretic trapping of cells and micro-particles on micro-electrode array
CN101281163A (zh) 用于确定多种细胞介电响应和分离条件的检测系统
CN105665042B (zh) 微流控芯片的使用方法
CN206666547U (zh) 一种用于筛选定位及检测血液中稀有细胞的生物芯片
CN204412284U (zh) 微流控芯片
CN109603932A (zh) 一种双聚焦微流体芯片
Fazelkhah et al. Parallel single‐cell optical transit dielectrophoresis cytometer
CN110468027A (zh) 一种基于同轴双波导光纤的细胞分选微流芯片
Lin et al. Glass capillary assembled microfluidic three-dimensional hydrodynamic focusing device for fluorescent particle detection
Khan et al. Microfluidics add-on technologies for single-cell analysis
Akagi et al. Microflow cytometry in studies of programmed tumor cell death

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170627

Termination date: 20210120

CF01 Termination of patent right due to non-payment of annual fee