CN103439241B - 单细胞多参数表征的微流控芯片检测系统 - Google Patents

单细胞多参数表征的微流控芯片检测系统 Download PDF

Info

Publication number
CN103439241B
CN103439241B CN201310372705.1A CN201310372705A CN103439241B CN 103439241 B CN103439241 B CN 103439241B CN 201310372705 A CN201310372705 A CN 201310372705A CN 103439241 B CN103439241 B CN 103439241B
Authority
CN
China
Prior art keywords
fluidic chip
runner
micro
cell
unicellular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310372705.1A
Other languages
English (en)
Other versions
CN103439241A (zh
Inventor
倪中华
唐文来
项楠
严岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201310372705.1A priority Critical patent/CN103439241B/zh
Publication of CN103439241A publication Critical patent/CN103439241A/zh
Application granted granted Critical
Publication of CN103439241B publication Critical patent/CN103439241B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

本发明公开了一种用于单细胞多参数表征的微流控芯片检测系统,所述系统主要包括微流控芯片、光学检测模块、电阻抗检测模块和处理器,其中,微流控芯片由三层基片依次对准键合而成,流道层上设有两条对称的输送聚焦流道和出口流道,在两条输送聚焦流道的汇合处与出口流道形成十字结构,上下层基片的电极相对设置,形成对电极结构,两条出口流道处均设有对电极结构。本发明的系统能够实现单细胞多个参数的同时表征,提高了细胞检测的准确性和灵敏度,且无需鞘液、无需复杂的免疫标记预处理,具有成本低、操作简单、通量高以及集成化、自动化程度高等优点,本发明的检测系统可广泛用于细胞周期、细胞分化、药物筛选以及疾病早期诊断与治疗等领域。

Description

单细胞多参数表征的微流控芯片检测系统
技术领域
本发明涉及微流控芯片和微纳米生物粒子操控、检测领域,具体涉及一种基于粘弹性粒子聚焦、同时进行单细胞机械性能和电学性能表征的微流控芯片检测系统。
背景技术
细胞是生命活动的基本单位,独特的生物化学和生物物理学特性使其能够实现特定的功能和适应周围环境。生物物理性能在细胞的各个生物进程中具有重要作用,参与到细胞的基因表达调控、分化、迁移和代谢活动中,且细胞内的生理变化伴随着物理改性和重组。可见,物理性能是表征细胞的有效标记物,单细胞的生物物理性能分析能够阐明细胞的结构与功能,揭示细胞之间的差异性,在细胞分化、生理病理研究及疾病早期诊断与治疗中具有重要作用。
然而,由于常规技术的检测通量低和操作流程繁琐,使得细胞的生物物理性能检测不具有实际的临床意义。与常规技术相比,微流控技术具有样品消耗少、通量高、易于集成、操作简单和响应速度快等优点,在单细胞生物物理性能检测方面具有广阔的应用前景。目前,基于微流控技术表征单细胞生物物理性能的研究主要分为两种:机械性能表征技术和电学性能表征技术。在单细胞机械性能表征方面,研究者采用微管吸吮、电学变形、光延伸、流体动力拉伸和收缩流道挤压变形等方法,分析细胞的变形能力与机械性能。而在单细胞电学性能表征方面,膜片钳、电旋转、微流控阻抗细胞仪等技术被广泛用于研究细胞的电学性能参数。这些微流控检测芯片在单细胞生物物理性能表征方面各具优势,但不能同时具有较高的检测通量和检测精度。更重要的是,已有的微流控芯片只能实现对细胞单个性能参数的分析,而细胞极具多样性,单一的表征参数不能有效的区分细胞,容易造成假阳性、假阴性等情况。
因此,如能提出一种同时保证较高通量和精度、实现单细胞多参数表征的微流控芯片检测系统必将在一定程度上克服上述局限。
发明内容
本发明所要解决的技术问题是提供一种能够实现单细胞多参数表征的微流控芯片检测系统,这种技术无需鞘液、无需复杂的免疫标记预处理,能够实现对细胞多性能参数的同时表征,具有低成本、高通量、高精度、易于实现集成化和自动化等优点。
为解决上述技术问题,本发明所采用的技术方案为:
一种单细胞多参数表征的微流控芯片检测系统,包括微流控芯片、光学检测模块、电阻抗检测模块以及处理器;
其中,所述微流控芯片由上基片、流道层和下基片依次对准键合而成,所述流道层上设两条对称设置的输送流道、聚焦流道以及出口流道,两条输送流道分别与聚焦流道两端连通,出口流道设置在聚焦流道的中心处,且与聚焦流道形成十字结构,所述上基片设顶端电极,所述下基片设底部电极,顶端电极与底部电极相互对齐设置,在两条出口流道上下两侧均形成对电极结构,两对对电极结构对称分布于聚焦流道的两侧;
其中,用于记录细胞形变的光学检测模块位于微流控芯片中十字结构的正下方,并与处理器连接;
其中,电阻抗检测模块与微流控芯片中的对电极结构连接,并将得到的电阻抗信号传输给处理器。
其中,还包括进样装置和废液收集装置,进样装置和废液收集装置分别通过微管与微流控芯片连接。
其中,所述电阻抗检测模块由相互连接的电流放大器和阻抗谱仪组成,其中,阻抗谱仪连接微流控芯片中的顶端电极,电流放大器连接微流控芯片中的底部电极。
其中,所述聚焦流道为直线型流道。
有效收益:本发明提出的单细胞多参数表征的微流控芯片检测系统,巧妙地将细胞的机械性能和电学性能检测方法集成起来,将待测细胞悬浮在具有良好生物相容性的粘弹性溶液里注入本系统中,利用本系统的微流控芯片流道结构实现了细胞的无旋转拉伸,还完成了细胞的电学性能差分检测,再通过系统中的光学检测模块和阻抗谱仪得到了细胞的图像信息和电阻抗信号,最后通过计算机处理和分析细胞的力学、电学参数。与其他细胞检测方法相比,本发明的系统能够实现单细胞多个参数的同时表征,提高了细胞检测的准确性和灵敏度,且无需鞘液、无需复杂的免疫标记预处理,具有低成本、操作简单、通量高以及集成化、自动化程度高等优点,本发明的检测系统可广泛用于细胞周期、细胞分化、药物筛选以及疾病早期诊断与治疗等领域。
附图说明
图1为本发明的单细胞多参数表征微流控芯片检测系统的结构示意图;
图2为本发明检测系统中微流控芯片的结构示意图;
图3为图2中十字结构的局部放大图;
图4为本发明实例中聚焦流道中细胞聚焦的原理示意图;
图5为本发明实例中十字结构流道处细胞流体动力拉伸变形示意图;
图6为细胞进行差分电阻抗测量的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段和实际效果,以下结合附图1-6及较佳实施例,对本发明提出的单细胞多参数表征的微流控芯片检测系统具体结构、特征及功效进行详细说明。然而所有附图仅是供参考与说明本发明之用,并非用来对本发明加以限制。且本发明所能够使用的检测仪器、芯片材料、加工方法、微结构尺寸形状以及应用对象和领域并不局限于本实施例。
如图1所示,一种单细胞多参数表征的微流控芯片检测系统,主要包括样品进样装置15、废液收集装置16、微流控芯片11、光学检测模块12、电阻抗检测模块13和计算机14;样品进样装置15和废液收集装置16通过微管17与微流控芯片11相连,分别用于样品的进样和废液的收集。光学检测模块12由物镜122和高速摄像装置123组成,位于微流控芯片11中十字结构214的正下方,用于记录细胞的形貌情况,其通过数据线19将图像信息传输到计算机14中;电阻抗检测模块13由电流放大器131和阻抗谱仪132组成,阻抗谱仪132通过电缆线18对芯片11施加交流激励信号,得到的响应信号首先经过电流放大器131将电流信号转换成电压信号,然后利用阻抗谱仪132对信号进行过滤、转换,再通过数据线19将得到的细胞阻抗信号存储到计算机14中;最后在计算机14中利用软件将得到的细胞图像信息和电阻抗信号进行分析和处理,得到细胞的大小、变形量、电阻抗幅值和相位角等参数,完成对细胞机械性能和电学性能多参数表征,进而绘制多细胞性能参数的散点图,完成具有实际意义的统计学分析,再根据得到的细胞性能参数,结合力学模型和电学模型,进一步分析得到细胞的内部组成结构和特性。
如图2~3所示,所述微流控芯片11由三层基片依次对准键合而成,自上而下分别为上基片281、流道层282和下基片283,流道层282包括进口流道211、输送流道212、聚焦流道213以及出口流道215,进口流道211在与输送流道212连接处形成两条对称的输送支流,两条输送支流分别与聚焦流道213两端连通,出口流道215设置在聚焦流道213的中心处,且与聚焦流道213形成十字结构214,上基片281设顶端电极22,下基片283设底部电极23,顶端电极22与底部电极23大小相同,相互对齐设置,形成对电极结构,在两条出口流道215上下两侧均形成对电极结构,两对对电极结构对称分布于聚焦流道213的两侧;上基片281上还设有出口连接孔24、入口连接孔26,出口连接孔24位于出口流道215的出口处,入孔连接孔26位于进口流道211的进口处。
进行单细胞检测时,分散有待测细胞的粘弹性样品液以特定流速由进口流道211进入芯片11,经过输送流道212到达聚焦流道213时,由于粘弹性流体的三维聚焦作用,使细胞41规则排列于流道中心线上,聚焦后的细胞41进入十字结构214中心时,受到两股等速流体的挤压作用发生变形,位于十字结构214正下方的光学检测模块12高速记录细胞41的形貌情况,随后细胞41离开十字结构214,进入出口流道215上的对电极区域,此时电阻抗检测模块13对细胞41的电学性能进行差分检测,最后细胞41通过出口连接孔24进入废液收集装置16。
微流控芯片11中上基片281和下基片283所用材质为透明的聚二甲基硅氧烷(PDMS)、玻璃、聚甲基丙烯酸甲酯(PMMA)或聚碳酸酯(PC)中的任意一种,流道层282所用材质为聚二甲基硅氧烷(PDMS)、玻璃、环氧树脂、聚甲基丙烯酸甲酯(PMMA)或聚碳酸酯(PC)中的任意一种,顶端电极22和底部电极23为完全相同的金属微电极,其所用材质为金或铂等。上基片281和下基片283的制作可通过结合光刻技术和磁控溅射技术实现,而流道层282则可利用光刻技术或其他刻蚀技术快速加工得到。为了防止流道内表面对细胞41的吸附,各种材质流道都需经过化学修饰等特定方式进行改性。每层基片上均设置微结构对准标记,利用体式镜进行精确堆叠操作,各层基片通过紫外/臭氧照射或氧等离子体处理等表面改性技术实现不可逆封装,也可利用各层基片的不同组份配比实现不可逆自键合。
如图4所示,细胞41在微流控芯片11的聚焦流道213内实现高通量三维聚焦。当分散在粘弹性样品液中的细胞41进入聚焦流道213时,由于粘弹性介质的第一法向应力在流道的四边角和中心位置处最小,细胞41受到弹性力43作用往流道四边角与中心线迁移。但位于边角处的细胞41同时受到细胞变形诱导的壁面升力42作用而向流道中心处迁移,最终细胞41在流道的中心线处形成唯一的平衡位置,实现细胞41的高通量三维聚焦,整个过程在直线型聚焦流道213中完成,因此无需鞘流作用。将细胞41精准聚焦在流道中心线上,排除了后续性能表征中细胞位置带来的干扰,提高了检测的精度和稳定性。细胞41的悬浮介质为具有良好生物相容性的粘弹性溶液,其可通过向等渗的磷酸盐缓冲液中添加聚乙烯吡咯烷酮或聚环氧乙烷配制。
如图5所示,细胞41在拉伸流场51作用下的变形过程如下:当经过聚焦的细胞41平稳到达十字结构214中心时,细胞41承受来自入口处流体的压缩应力52和出口处流体的拉伸应力53作用发生形变。通过调节流体流速,实现不同程度的细胞变形。位于十字结构214正下方的光学检测模块12,高速记录细胞41的变形过程。利用拉伸流场作用使细胞41发生变形,大大降低了对细胞41的损伤,同时可以方便地控制流速研究不同作用力下的细胞41变形。
图6为细胞41进行差分电阻抗测量的示意图,对电极结构的顶端电极22施加交流激励信号,从底部电极23得到相应的响应信号。当细胞41离开十字结构214流向任一出口流道215的对电极结构处时,电阻抗检测模块13实时获取细胞悬浮液的电阻抗信号,同时另一个对电极结构对纯粘弹性介质进行阻抗表征,利用差分电路直接得到细胞41电阻抗信息,必要时,可同时施加多个频率的激励信号,能够获得细胞41在不同频率下的电阻抗信号,得到细胞41的多频率阻抗谱。由于细胞与细胞之间有一定的间隔,因此当含有细胞的悬浮液流向一对对电极结构时,流向另一对对电极结构的液体为纯粘弹性液体,即里面没有细胞的液体。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。应当指出:对于任何熟悉本技术领域的相关人员来说,在不脱离本发明技术实质的前提下,还可以做出若干改进和修饰,这些改进和修饰也应视为本发明的保护范围。

Claims (3)

1.一种单细胞多参数表征的微流控芯片检测系统,其特征在于:包括待测细胞悬浮介质、微流控芯片(11)、光学检测模块(12)、电阻抗检测模块(13)以及处理器(14);
其中,待测细胞悬浮介质为粘弹性溶液,所述粘弹性溶液通过向等渗的磷酸盐缓冲液中添加聚乙烯吡咯烷酮或聚环氧乙烷配制而成;
其中,所述微流控芯片(11)由上基片(281)、流道层(282)和下基片(283)依次对准键合而成,所述流道层(282)上设两条对称设置的输送流道(212)、聚焦流道(213)以及出口流道(215),两条输送流道(212)分别与聚焦流道(213)两端连通,出口流道(215)设置在聚焦流道(213)的中心处,且与聚焦流道(213)形成十字结构(214),所述上基片(281)设顶端电极(22),所述下基片(283)设底部电极(23),顶端电极(22)与底部电极(23)相互对齐设置,在两条出口流道(215)上下两侧均形成对电极结构,两对对电极结构对称分布于聚焦流道(213)的两侧;
其中,用于记录细胞形变的光学检测模块(12)位于微流控芯片(11)中十字槽结构(214)的正下方,并与处理器(14)连接;
其中,电阻抗检测模块(13)与微流控芯片(11)中的对电极结构连接,并将得到的电阻抗信号传输给处理器(14);
其中,所述电阻抗检测模块由相互连接的电流放大器(131)和阻抗谱仪(132)组成,其中,阻抗谱仪(132)连接微流控芯片(11)中的顶端电极(22),电流放大器(131)连接微流控芯片(11)中的底部电极(23)。
2.根据权利要求1所述的单细胞多参数表征的微流控芯片检测系统,其特征在于:还包括进样装置(15)和废液收集装置(16),进样装置(15)和废液收集装置(16)分别通过微管(17)与微流控芯片(11)连接。
3.根据权利要求1所述的单细胞多参数表征的微流控芯片检测系统,其特征在于:所述聚焦流道(213)为直线型流道。
CN201310372705.1A 2013-08-23 2013-08-23 单细胞多参数表征的微流控芯片检测系统 Active CN103439241B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310372705.1A CN103439241B (zh) 2013-08-23 2013-08-23 单细胞多参数表征的微流控芯片检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310372705.1A CN103439241B (zh) 2013-08-23 2013-08-23 单细胞多参数表征的微流控芯片检测系统

Publications (2)

Publication Number Publication Date
CN103439241A CN103439241A (zh) 2013-12-11
CN103439241B true CN103439241B (zh) 2016-03-16

Family

ID=49692941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310372705.1A Active CN103439241B (zh) 2013-08-23 2013-08-23 单细胞多参数表征的微流控芯片检测系统

Country Status (1)

Country Link
CN (1) CN103439241B (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103789206B (zh) * 2014-02-18 2015-06-24 中国科学院电子学研究所 基于微流控技术的成骨细胞电刺激系统的操作方法
CN104069757B (zh) * 2014-07-07 2017-01-11 东南大学 一种双重微乳液快速制备装置
DE102016211038A1 (de) * 2016-06-21 2017-12-21 Cytena Gmbh Vorrichtung und Verfahren zum Detektieren von Zellen oder Partikeln in einem Fluidbehälter
CN106198361B (zh) * 2016-08-30 2019-03-29 北京化工大学 Cd4+t淋巴细胞自动计数检测装置
CN106925358B (zh) * 2017-03-15 2019-05-24 东南大学 一种能实现细胞中心位置聚焦和检测的微流控芯片
CN107044950B (zh) * 2017-03-19 2019-10-18 北京化工大学 Cd4+t淋巴细胞计数检测微流控装置
CN107607608A (zh) * 2017-09-08 2018-01-19 武汉大学 一种单细胞检测方法
CN108344678B (zh) * 2018-04-25 2021-03-26 北京怡天佳瑞科技有限公司 一种颗粒物检测装置及检测方法
CN108760494A (zh) * 2018-05-29 2018-11-06 清华大学 单细胞多参数表征微流控器件
CN109136081A (zh) * 2018-07-30 2019-01-04 上海大学 基于细胞形变量和声表面波的癌细胞分离装置及控制系统
CN109100286A (zh) * 2018-10-31 2018-12-28 江苏卓微生物科技有限公司 细胞计数仪
CN109590037B (zh) * 2018-12-29 2021-01-26 天津大学 亚微米流道微流控芯片的制作方法
CN111643079B (zh) * 2020-04-26 2022-06-10 南京航空航天大学 基于生物阻抗谱与电阻抗成像互为补偿的肿瘤细胞精准电阻抗检测方法
CN111735853B (zh) * 2020-06-16 2022-03-29 东南大学 一种集成预分选的细胞机械和电学多参数联合检测的装置
CN112111385B (zh) * 2020-08-19 2021-10-26 东南大学 一种癌细胞分选与检测装置
WO2022045980A1 (en) * 2020-08-25 2022-03-03 Singapore University Of Technology And Design Device and method for determining a mechanical property of a particle
CN112326978B (zh) * 2020-09-16 2022-07-22 东南大学 一种具有多级自校核功能的细胞变形性检测芯片
CN112268934B (zh) * 2020-09-16 2022-06-28 东南大学 一种针对循环肿瘤细胞的检测芯片及其检测方法
CN112461751B (zh) * 2020-10-16 2022-04-26 江苏大学 基于多粘附强度融合的癌细胞活性检测评估装置与方法
CN112730560B (zh) * 2020-12-10 2023-09-22 东南大学 微流控阻抗细胞仪及其制备方法
CN112899140B (zh) * 2021-01-21 2022-05-13 中国科学技术大学 一种用于水体多参数检测的微流控芯片
EP4083607A1 (en) * 2021-04-26 2022-11-02 ETH Zurich Method and microfluidic device for studying cell deformations
CN113155688A (zh) * 2021-05-18 2021-07-23 南京智能高端装备产业研究院有限公司 一种检测细胞参数的多功能电学检测芯片
EP4347128A2 (en) * 2021-05-28 2024-04-10 Nanyang Technological University Method and system for single-cell biophysical profiling using a microfluidic device
CN113567326A (zh) * 2021-07-19 2021-10-29 清华大学 一种高通量实时单细胞电学本征参数测量系统及方法
CN113533178B (zh) * 2021-07-30 2022-11-11 东南大学 多物理特性融合感知的细胞流式检测方法
CN113791018B (zh) * 2021-09-10 2022-07-15 清华大学 基于电阻抗信号的单细胞机械本征参数测量系统和方法
CN113866074A (zh) * 2021-09-27 2021-12-31 四川成电医联科技咨询有限公司 基于位置补偿的电阻抗法的白细胞分类计数微流控芯片
CN114870913B (zh) * 2022-04-18 2024-02-02 东南大学 一种集成弹性-惯性聚焦和虚拟流道的微流控器件及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786165A (en) * 1986-07-10 1988-11-22 Toa Medical Electronics Co., Ltd. Flow cytometry and apparatus therefor
WO2005105292A1 (en) * 2004-04-30 2005-11-10 Gatlik Gmbh High throughput storage-retrieval and screening platform for research applications based on electro or acoustic sensors
CN201532352U (zh) * 2009-11-06 2010-07-21 东南大学 微纳米单粒子阻抗谱测量芯片
CN102059161A (zh) * 2009-11-18 2011-05-18 中国科学院化学研究所 一种微流控芯片及其制备方法
CN102183504A (zh) * 2011-01-25 2011-09-14 山东师范大学 一种微流控单细胞活性氧自动分析仪
CN202356108U (zh) * 2011-12-09 2012-08-01 东南大学 微米级粒子高通量分选的微流控器件
CN202951486U (zh) * 2012-10-10 2013-05-29 凯晶生物科技(苏州)有限公司 微腔室动态pcr与毛细管电泳ce功能集成微流控芯片

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328942A1 (de) * 2003-06-27 2005-01-27 Lts Lohmann Therapie-Systeme Ag Transmukosale Darreichungsformen mit verminderter Schleimhautirritation
EP1755783A1 (en) * 2004-06-04 2007-02-28 Crystal Vision Microsystems LLC Device and process for continuous on-chip flow injection analysis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786165A (en) * 1986-07-10 1988-11-22 Toa Medical Electronics Co., Ltd. Flow cytometry and apparatus therefor
WO2005105292A1 (en) * 2004-04-30 2005-11-10 Gatlik Gmbh High throughput storage-retrieval and screening platform for research applications based on electro or acoustic sensors
CN201532352U (zh) * 2009-11-06 2010-07-21 东南大学 微纳米单粒子阻抗谱测量芯片
CN102059161A (zh) * 2009-11-18 2011-05-18 中国科学院化学研究所 一种微流控芯片及其制备方法
CN102183504A (zh) * 2011-01-25 2011-09-14 山东师范大学 一种微流控单细胞活性氧自动分析仪
CN202356108U (zh) * 2011-12-09 2012-08-01 东南大学 微米级粒子高通量分选的微流控器件
CN202951486U (zh) * 2012-10-10 2013-05-29 凯晶生物科技(苏州)有限公司 微腔室动态pcr与毛细管电泳ce功能集成微流控芯片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry;David Holmes et al.;《Lab on a Chip》;20091021;第9卷(第20期);第2882页左栏System overview、第2883页左栏倒数第16行-右栏倒数第9行和Fig.1 *

Also Published As

Publication number Publication date
CN103439241A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
CN103439241B (zh) 单细胞多参数表征的微流控芯片检测系统
Vembadi et al. Cell cytometry: Review and perspective on biotechnological advances
CN103923825B (zh) 一种集成细胞分选及检测的微流控芯片系统
Daguerre et al. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: Origin, challenges and opportunities
Honrado et al. A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry
US11229907B2 (en) Microchip and particulate analyzing device
Oakey et al. Particle focusing in staged inertial microfluidic devices for flow cytometry
US9074978B2 (en) Optical space-time coding technique in microfluidic devices
Cheung et al. Microfluidic impedance‐based flow cytometry
Lincoln et al. High‐throughput rheological measurements with an optical stretcher
CN104941704A (zh) 一种集成细胞聚焦与检测的方法及其微型化系统
Faustino et al. Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells
TW200426107A (en) Chip-type micro-fluid particle 3-D focusing and detection device
CN101726585A (zh) 一种基于微流控芯片的流式细胞仪
CN201548547U (zh) 一种基于微流控芯片的流式细胞分析装置
Zhang et al. Recent advances in electrical impedance sensing technology for single-cell analysis
Zhang et al. Design of a single-layer microchannel for continuous sheathless single-stream particle inertial focusing
CN109136081A (zh) 基于细胞形变量和声表面波的癌细胞分离装置及控制系统
Xie et al. Particle self-aligning, focusing, and electric impedance microcytometer device for label-free single cell morphology discrimination and yeast budding analysis
Xiang et al. Combining inertial microfluidics with cross-flow filtration for high-fold and high-throughput passive volume reduction
Chen et al. Label-free microfluidics for single-cell analysis
Guo et al. A compact optofluidic cytometer for detection and enumeration of tumor cells
CN101281163A (zh) 用于确定多种细胞介电响应和分离条件的检测系统
Jeon et al. Rapid and label-Free classification of blood leukocytes for immune state monitoring
An et al. Measuring cell deformation by microfluidics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant