CN105658763A - 无机发光材料 - Google Patents

无机发光材料 Download PDF

Info

Publication number
CN105658763A
CN105658763A CN201480057704.0A CN201480057704A CN105658763A CN 105658763 A CN105658763 A CN 105658763A CN 201480057704 A CN201480057704 A CN 201480057704A CN 105658763 A CN105658763 A CN 105658763A
Authority
CN
China
Prior art keywords
formula
compound
mixture
germanium
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480057704.0A
Other languages
English (en)
Inventor
T·沃斯格罗内
H·温克勒
R·派特里
C·汉佩尔
A·本克尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of CN105658763A publication Critical patent/CN105658763A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77744Aluminosilicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及铈掺杂的石榴石无机发光材料。本发明还涉及制备铈掺杂的石榴石无机发光材料的方法,和这些石榴石无机发光材料作为转换无机发光材料的用途。本发明还涉及包含本发明铈掺杂的石榴石无机发光材料的发光器件。

Description

无机发光材料
本发明涉及铈掺杂的石榴石无机发光材料。此外,本发明涉及制备铈掺杂的石榴石无机发光材料的方法,和这些石榴石无机发光材料作为转换无机发光材料的用途。此外,本发明涉及包含本发明的铈掺杂的石榴石无机发光材料的发光器件。
可在蓝色和/或UV光谱区中激发的无机荧光粉末作为无机发光材料转换LED(简称pc-LED)的转换无机发光材料的重要性持续增加。目前已知许多转换无机发光材料体系,例如碱土金属原硅酸盐、硫代镓酸盐、氮化物和石榴石,它们掺杂有Ce3+或Eu2+。最后提到的石榴石无机发光材料,特别是具有通式M3Al5O12:Ce3+的(其中M表示Y、Lu、Tb或Gd)那些,在蓝色光谱区中具有强烈的吸收,非常有效地转换成黄色(YAG:Ce)或黄绿色(LuAG:Ce)发射。出于该原因以及由于它们的高化学稳定性,这些材料是被普遍接受的。
石榴石无机发光材料的合成特别作为固态合成由氧化物,即例如由Lu2O3、Al2O3和Eu2O3进行。此外,由溶液的合成方法也是已知的。在这些中,通常使用融合剂进行合成。这些具有各种作用;尤其是它们促进较低的反应温度和/或加速晶体生长,或者它们抑制外来相的形成。也可能的是融合剂至少以痕量合并到所得石榴石无机发光材料中。各种物质,特别是BaF2和其它氟化物已知作为合成石榴石无机发光材料中的融合剂。
这些融合剂对所得石榴石无机发光材料的发光性能的积极效果是不明显的。此外,尽管使用上述融合剂,合成中的必需反应温度仍是非常高的,高达约1800℃。这造成对炉和所用设备如坩埚等相当大的需求。此外,由于高温,该方法是非常能源密集的。
US6,409,938描述了使用AlF3作为融合剂合成YAG:Ce和其它石榴石。由此实现较高的量子效率。另外,对反应而言不太强的还原气氛是足够的,这简化了反应管理。所得石榴石无机发光材料还可包含少量来自融合剂的氟。固体方法以及湿化学方法均有描述。所用反应温度为1500℃。
一般而言,现有技术中所述氟化物融合剂是腐蚀性的,因此难以在工业规模上处置。
在所有这些方法中,理想的是制得的石榴石无机发光材料具有甚至更高的量子效率。此外,理想的是甚至更低的反应温度在合成中是足够的。另外,理想的是能够避免使用腐蚀性氟化物作为融合剂,这会使得合成的工业实施简化。
因此,本发明的目的是提供合成石榴石无机发光材料的方法,借助所述方法可提高石榴石的量子效率和/或在该方法中比现有技术更低的反应温度是足够的。本发明的另一目的是提供合成石榴石无机发光材料的方法,所述方法避免使用含氟融合剂,但仍得到良好结果。本发明的另一目的是提供与根据现有技术的石榴石无机发光材料相比具有更高的量子效率的石榴石无机发光材料。
令人惊讶地,已发现该目的通过湿化学方法制备石榴石无机发光材料而实现,其中所用融合剂为碱土金属卤化物和二氧化硅悬浮液的混合物。因此,本发明还涉及可通过这类方法得到的石榴石无机发光材料。
因此,本发明涉及式(1)化合物:
(Lu1-vM’v)3-x-z(EA)z(Al1-yGay)5-z(Si1-wGew)zO12:Ce3+ x式(1)
其中以下适用于所用的符号和指数:
M‘为Y、Tb、Gd或这些金属的混合物;
EA为Ca、Sr、Ba或这些金属的混合物;
0<x<0.50;
0≤y≤0.40;
0.01≤z≤0.5;
0≤w≤1;
0≤v<1。
在本发明一个优选实施方案中,v=0。因此,这优选为下式(1a)的化合物:
Lu3-x-z(EA)z(Al1-yGay)5-z(Si1-wGew)zO12:Ce3+ x式(1a)
其中所用符号和指数具有上文给出的含义。
在本发明另一优选实施方案中,y=0。因此,这优选为下式(1b)的化合物:
(Lu1-vM’v)3-x-z(EA)zAl5-z(Si1-wGew)zO12:Ce3+ x式(1b)
其中所用符号和指数具有上文给出的含义。
在本发明又一优选实施方案中,w=0。因此,这优选为下式(1c)的化合物:
(Lu1-vM’v)3-x-z(EA)z(Al1-yGay)5-zSizO12:Ce3+ x式(1c)
其中所用符号和指数具有上文给出的含义。
特别优选上述优选含义同时出现。因此,这些特别优选为下式(2a)和(2b)的化合物:
(Lu1-vM’v)3-x-z(EA)zAl5-zSizO12:Ce3+ x式(2a)
Lu3-x-z(EA)zAl5-zSizO12:Ce3+ x式(2b)
其中所用符号和指数具有上文给出的含义且式(2a)中的v优选为>0。
在上述化合物的一个优选实施方案中,EA选自Sr和/或Ba,特别优选Sr。
在本发明另一优选实施方案中,以下关系式适用于x,即Ce的比例:0.01≤x≤0.15。
在本发明又一优选的实施方案中,以下关系式适用于z,即碱土金属和硅或锗的比例:0.01≤z≤0.25,特别优选0.01≤z≤0.15,特别是0.05≤z≤0.10。
在再一实施方案中,本发明化合物可以为涂覆的。本领域技术人员根据现有技术已知的用于无机发光材料的所有涂覆方法都适于该目的。用于涂覆的合适材料特别是金属氧化物,例如Al2O3、TiO2、ZrO2或ZnO2,和氮化物,例如AlN,以及SiO2。此处,涂覆可例如通过流化床方法进行。其它合适的涂覆方法由JP04-304290、WO91/10715、WO99/27033、US2007/0298250、WO2009/065480和WO2010/075908已知。
此外,本发明涉及制备铈掺杂的石榴石的方法,其特征在于该方法借助通过湿化学方法制备的前体进行,并加入含硅或含锗化合物和碱土金属卤化物。
在本发明的意义上,铈掺杂的石榴石为下式(3)的化合物:
M3-x(Al1-yGay)5O12:Ce3+ x式(3)
其中以下适用于所用符号和指数:
M为Lu、Y、Tb、Gd或这些金属的混合物;
0<x<0.50;
0≤y≤0.40;
这里,一些离子M也可被选自Mg、Ca、Sr和/或Ba的碱土金属替代,同时相同比例的Al或Ga可被Si或Ge替代。
在本发明一个优选实施方案中,铈掺杂的石榴石为下式(4)的化合物:
M3-x-z(EA)z(Al1-yGay)5-z(Si1-wGew)zO12:Ce3+ x式(4)
其中M、x和y具有上文给出的含义,且以下适用于所用其它符号和指数:
EA为Mg、Ca、Sr、Ba或这些金属的混合物;
0.01≤z≤0.5;
0≤w≤1。
式(4)化合物的优选实施方案为上文所示式(1)、(1a)、(1b)、(1c)和(2)的化合物。
在本发明一个优选实施方案中,所述方法包括制备二氧化硅悬浮液。适于该目的的合适原料为水解提供二氧化硅的所有含硅化合物。合适的含硅原料为原硅酸四烷基酯,其中烷基每次出现时相同或不同地具有1-10个C原子,优选每次出现时相同或不同地具有1-4个C原子,特别是原硅酸四甲酯、原硅酸四乙酯、原硅酸四正丙酯、原硅酸四异丙酯和原硅酸四丁酯,以及硅卤化物,特别是SiCl4和SiBr4。特别优选原硅酸四甲酯(TMOS)和原硅酸四乙酯(TEOS)。
类似地,该方法可包括制备二氧化锗悬浮液。适于该目的的合适原料为水解提供二氧化锗的所有含锗化合物。合适的含锗原料为原锗酸四烷基酯,其中烷基每次出现时相同或不同地具有1-10个C原子,优选每次出现时相同或不同地具有1-4个C原子,特别是原锗酸四甲酯、原锗酸四乙酯、原锗酸四正丙酯、原锗酸四异丙酯和原锗酸四丁酯,以及锗卤化物,特别是GeCl4和GeBr4。特别优选原锗酸四甲酯和原锗酸四乙酯。
这些化合物作为二氧化硅或二氧化锗前体用于制备胶态溶胶-凝胶体系。由于TMOS、TEOS和相应的Ge化合物基本不溶于水,所用反应介质优选为醇和水的混合物,所述醇优选具有1-4个C原子,特别优选甲醇或乙醇。这些化合物水解提供原硅酸H4SiO4或者提供H4GeO4和乙醇或甲醇在中性水中非常慢地进行。形成的H4SiO4或H4GeO4分别通过形成Si--O-Si或Ge-O-Ge键并释放水而进一步分解成二氧化硅或二氧化锗。水解在酸性或碱性介质中明显更快地进行,因为二者明显催化反应。在本发明一个优选实施方案中,SiO2或GeO2悬浮液的制备因此在碱性溶液中,特别是在氨性溶液中进行。特别优选在制备SiO2或GeO2悬浮液后将其中和,特别是通过加入酸如盐酸来中和。
根据本发明,还添加碱土金属卤化物进行该方法。此处,碱土金属选自Mg、Ca、Sr和/或Ba,优选Ca、Sr和/或Ba,特别优选Sr和/或Ba,特别是Sr。因为氟化物的腐蚀性以及因此所需的更复杂的反应管理,卤离子优选不是氟。卤离子优选为氯或溴,特别是氯。因此优选加入CaCl2、SrCl2和/或BaCl2,特别优选SrCl2和/或BaCl2,特别是SrCl2
在本发明方法的一个实施方案中,制备一种或多种含M的盐、铈盐、铝盐、碱土金属盐和任选镓盐的溶液。溶液优选在水中制备。
作为选择,可制备多种溶液,各溶液仅含一种或者一些金属。
溶液和悬浮液中M、Ce、Al、EA、Si或Ge和任选Ga的比例由产物中所需的这些元素比例决定。此处,以下关系式优选适于EA和Si或Ge的比例:0.01≤z≤0.25,特别优选0.01≤z≤0.15,特别是0.05≤z≤0.1。
合适的盐为相应金属的任何所需盐,只要它们充分可溶于水中。
合适的金属M、Ce、Al和任选Ga的盐为卤化物,特别是氯化物、溴化物和碘化物、硝酸盐和碳酸盐,其任选为相应的水合物的形式。优选氯化物MCl3、CeCl3和AlCl3,以及对于Ga,特别还有Ga(NO3)3,每种情况下为水合物的形式。
将上述溶液或包含M、Ce、Al、EA和任选Ga的溶液与SiO2或GeO2悬浮液合并。此处优选将沉淀试剂,例如碳酸氢铵溶液加入SiO2或GeO2悬浮液中。这用于使离子以碳酸盐的形式沉淀。此处优选将包含M、Ce、Al、EA和任选Ga的一种或多种溶液加入SiO2或GeO2悬浮液中,其中该添加优选缓慢地,例如逐滴进行。由于特别是如果金属以卤化物的形式使用,卤化物,例如氯化物为酸性的,可能明智的是在反应期间将混合物中和或者使其呈碱性,例如通过加入氨溶液进行。
将形成的混合物搅拌例如1分钟至24小时,优选10分钟至10小时,特别优选15分钟至1小时的时间。在此期间形成固体。
在下一工艺步骤中,分离出固体,例如通过过滤分离(有或没有抽吸),并干燥。固体的干燥可在真空中和/或在升高的温度下,优选在60-200℃,特别优选在100-150℃进行。
优选将这样得到的前体通过两个煅烧步骤转化成产物。第一煅烧步骤在此处优选在800-1400℃,特别优选1000-1200℃的温度下进行。该第一煅烧步骤优选在空气中进行。
第二煅烧步骤优选在1000-1600℃,特别优选1200-1500℃,非常特别优选1200-1400℃的温度下进行。
此处,第二煅烧步骤优选在非氧化条件下,即在基本或完全无氧条件下,特别是在还原条件下进行。非氧化条件意指任何可能的非氧化气氛,特别是基本无氧气氛,即最大氧含量为<100ppm,特别是<10ppm的气氛。非氧化气氛可例如通过使用保护气体,特别是氮气或氩气产生。优选的非氧化气氛为还原气氛。还原气氛定义为包含具有还原作用的气体。具有还原作用的气体是本领域技术人员已知的。合适还原气体的实例为氢气、一氧化碳、氨或乙烯,优选氢气,其中这些气体还可与其它非氧化气体混合。还原气氛特别优选通过氮气或氩气与氢气的混合物产生,优选H2:N2或H2:Ar之比为5:95-50:50,优选约10:90,每种情况下基于体积。
可优选的是在第一与第二煅烧步骤之间将预煅烧的产物冷却并粉碎,粉碎例如通过研磨进行。
第一和第二煅烧步骤的反应持续时间每种情况下相互独立地优选为1-18小时,特别优选3-8小时。
每种情况下煅烧优选通过将所得混合物引入高温炉,例如容器中的高温炉中而进行,高温炉例如由氮化硼、Al2O3或陶瓷制成。高温炉为例如包含钼箔盘的管式炉。
在煅烧以后,产物通常通过研磨、洗涤和/或筛分进行后处理。洗涤可例如用水和/或酸,例如盐酸或硝酸进行。
已惊讶地发现所得产物的量子效率高于通过另一方法或者通过添加另外的融合剂制得的可比化合物的量子效率,而无机发光材料的其它性能未受损。
此外,本发明涉及可通过本发明方法得到的化合物。通过本发明方法制备的化合物与根据现有技术制备的具有相同或类似组成的化合物不同的是其具有更高的发射效率。由于本发明化合物的复杂结构,本发明化合物不能明确地由结构特征表征。然而,它可与由现有技术已知的化合物明确区分之处在于它具有更高的辐射引发发射效率或强度以及可能具有最大发射的色移。因此通过本发明制备方法的步骤表征本发明化合物是合理的。
此外,本发明涉及本发明化合物,特别是式(1)、(1a)、(1b)、(1c)、(2)、(2a)或(2b)化合物作为无机发光材料,特别是作为转换无机发光材料的用途。
此外,本发明涉及包含本发明化合物的发射转换材料。该发射转换材料可由本发明化合物组成,在这种情况下,等同于术语“转换无机发光材料”。
本发明发射转换材料还可包含除本发明化合物外的其它转换无机发光材料。在这种情况下,本发明发射转换材料包含至少两种转换无机发光材料的混合物,其中一种为本发明化合物。特别优选至少两种转换无机发光材料为发射彼此互补的不同波长的光的无机发光材料。由于本发明化合物为黄、绿或黄/绿光发射化合物,因此其优选与橙或红光发射化合物和蓝光发射LED或者与橙或红光发射化合物、蓝光发射化合物和UV发射LED组合使用。因此,可优选本发明转换无机发光材料与一种或多种其它转换无机发光材料组合用于本发明发射转换材料中,因此它们一起优选发射白光。
在本申请的上下文中,蓝光表示其最大发射在400-459nm之间的光,蓝绿光表示其最大发射在460-505nm之间的光,绿光表示其最大发射在506-545nm之间的光,黄光表示其最大发射在546-565nm之间的光,橙光表示其最大发射在566-600nm之间的光,红光表示其最大发射在601-670nm之间的光。
可与本发明化合物一起使用的其它转换无机发光材料通常可以为任何可能的转换无机发光材料。在本文中例如以下材料是合适的:
Ba2SiO4:Eu2+,BaSi2O5:Pb2+,BaxSr1-xF2:Eu2+,
BaSrMgSi2O7:Eu2+,BaTiP2O7,(Ba,Ti)2P2O7:Ti,Ba3WO6:U,
BaY2F8:Er3+,Yb+,Be2SiO4:Mn2+,Bi4Ge3O12,CaAl2O4:Ce3+,CaLa4O7:Ce3+,
CaAl2O4:Eu2+,CaAl2O4:Mn2+,CaAl4O7:Pb2+,Mn2+,CaAl2O4:Tb3+,
Ca3Al2Si3O12:Ce3+,Ca3Al2Si3Oi2:Ce3+,Ca3Al2Si3O2:Eu2+,Ca2B5O9Br:Eu2+,
Ca2B5O9Cl:Eu2+,Ca2B5O9Cl:Pb2+,CaB2O4:Mn2+,Ca2B2O5:Mn2+,
CaB2O4:Pb2+,CaB2P2O9:Eu2+,Ca5B2SiO10:Eu3+,
Ca0.5Ba0.5Al12O19:Ce3+,Mn2+,Ca2Ba3(PO4)3Cl:Eu2+,CaBr2;Eu2+inSiO2,
CaCl2;Eu2+inSiO2,CaCl2:Eu2+,Mn2+inSiO2,CaF2:Ce3+,CaF2:Ce3+,Mn2+,
CaF2:Ce3+,Tb3+,CaF2:Eu2+,CaF2:Mn2+,CaF2:U,CaGa2O4:Mn2+,
CaGa4O7:Mn2+,CaGa2S4:Ce3+,CaGa2S4:Eu2+,CaGa2S4:Mn2+,
CaGa2S4:Pb2+,CaGeO3:Mn2+,Cal2:Eu2+inSiO2,Cal2:Eu2+,Mn2+in
SiO2,CaLaBO4:Eu3+,CaLaB3O7:Ce3+,Mn2+,Ca2La2BO6.5:Pb2+,Ca2MgSi2O7
Ca2MgSi2O7:Ce3+,CaMgSi2O6:Eu2+,Ca3MgSi2O8:Eu2+,Ca2MgSi2O7:Eu2+,
CaMgSi2O6:Eu2+,Mn2+,Ca2MgSi2O7:Eu2+,Mn2+,CaMoO4,CaMoO4:Eu3+,
CaO:Bi3+,CaO:Cd2+,CaO:Cu+,CaO:Eu3+,CaO:Eu3+,Na+,CaO:Mn2+,
CaO:Pb2+,CaO:Sb3+,CaO:Sm3+,CaO:Tb3+,CaO:Tl,CaO:Zn2+,
Ca2P2O7:Ce3+,α-Ca3(PO4)2:Ce3+,β-Ca3(PO4)2:Ce3+,Ca5(PO4)3Cl:Eu2+,
Ca5(PO4)3Cl:Mn2+,Ca5(PO4)3Gl:Sb3+,Ca5(PO4)3Cl:Sn2+,
β-Ca3(PO4)2:Eu2+,Mn2+,Ca5(PO4)3F:Mn2+,Cas(PO4)3F:Sb3+,Cas(PO4)3F:Sn2+,
α-Ca3(PO4)2:Eu2+,β-Ca3(PO4)2:Eu2+,Ca2P2O7:Eu2+,Ca2P2O7:Eu2+,Mn2+,
CaP2O6:Mn2+,a-Ca3(PO4)2:Pb2+,a-Ca3(PO4)2:Sn2+,β-Ca3(PO4)2:Sn2+,
β-Ca2P2O7:Sn,Mn,a-Ca3(PO4)2:Tr,CaS:Bi3+,CaS:Bi3+,Na,CaS:Ce3+,
CaS:Eu2+,CaS:Cu+,Na+,CaS:La3+,CaS:Mn2+,CaSO4:Bi,CaSO4:Ce3+,
CaSO4:Ce3+,Mn2+,CaSO4:Eu2+,CaSO4:Eu2+,Mn2+,CaSO4:Pb2+,CaS:Pb2+,
CaS:Pb2+,Cl,CaS:Pb2+,Mn2+,CaS:Pr3+,Pb2+,Cl,CaS:Sb3+,CaS:Sb3+,Na,
CaS:Sm3+,CaS:Sn2+,CaS:Sn2+,F,CaS:Tb3+,CaS:Tb3+,Cl,CaS:Y3+,
CaS:Yb2+,CaS:Yb2+,Cl,CaSiO3:Ce3+,Ca3SiO4Cl2:Eu2+,Ca3SiO4Cl2:Pb2+,
CaSiO3:Eu2+,CaSiO3:Mn2+,Pb,CaSiO3:Pb2+,CaSiO3:Pb2+,Mn2+,CaSiO3:Ti4+,
CaSr2(PO4)2:Bi3+,β-(Ca,Sr)3(PO4)2:Sn2+Mn2+,CaTi0.9Al0.1O3:Bi3+,
CaTiO3:Eu3+,CaTiO3:Pr3+,Ca5(VO4)3Cl,CaWO4,CaWO4:Pb2+,CaWO4:W,
Ca3WO6:U,CaYAlO4:Eu3+,CaYBO4:Bi3+,CaYBO4:Eu3+,CaYB0.8O3.7:Eu3+,
CaY2ZrO6:Eu3+,(Ca,Zn,Mg)3(PO4)2:Sn,CeF3,(Ce,Mg)BaAl11O18:Ce,
(Ce,Mg)SrAl11O18:Ce,CeMgAl11O19:Ce:Tb,Cd2B6O11:Mn2+,CdS:Ag+,Cr,
CdS:ln,CdS:ln,CdS:ln,Te,CdS:Te,CdWO4,CsF,Csl,Csl:Na+,Csl:Tl,
(ErCl3)0.25(BaCl2)0.75,GaN:Zn,Gd3Ga5O12:Cr3+,Gd3Ga5O12:Cr,Ce,
GdNbO4:Bi3+,Gd2O2S:Eu3+,Gd2O2Pr3+,Gd2O2S:Pr,Ce,F,Gd2O2S:Tb3+,
Gd2SiO5:Ce3+,KAl11O17:Tl+,KGa11O17:Mn2+,K2La2Ti3O10:Eu,KMgF3:Eu2+,
KMgF3:Mn2+,K2SiF6:Mn4+,LaAl3B4O12:Eu3+,LaAlB2O6:Eu3+,LaAlO3:Eu3+,
LaAlO3:Sm3+,LaAsO4:Eu3+,LaBr3:Ce3+,LaBO3:Eu3+,(La,Ce,Tb)PO4:Ce:Tb,
LaCl3:Ce3+,La2O3:Bi3+,LaOBr:Tb3+,LaOBr:Tm3+,LaOCl:Bi3+,LaOCl:Eu3+,
LaOF:Eu3+,La2O3:Eu3+,La2O3:Pr3+,La2O2S:Tb3+,LaPO4:Ce3+,LaPO4:Eu3+,
LaSiO3Cl:Ce3+,LaSiO3Cl:Ce3+,Tb3+,LaVO4:Eu3+,La2W3O12:Eu3+,
LiAlF4:Mn2+,LiAl5O8:Fe3+,LiAlO2:Fe3+,LiAlO2:Mn2+,LiAl5O8:Mn2+,
Li2CaP2O7:Ce3+,Mn2+,LiCeBa4Si4O14:Mn2+,LiCeSrBa3Si4O14:Mn2+,
LilnO2:Eu3+,LilnO2:Sm3+,LiLaO2:Eu3+,LuAlO3:Ce3+,(Lu,Cd)2SiO5:Ce3+,
Lu2SiO5:Ce3+,Lu2Si2O7:Ce3+,LuTaO4:Nb5+,Lu1-xYxAlO3:Ce3+,MgAl2O4:Mn2+,
MgSrAl10O17:Ce,MgB2O4:Mn2+,MgBa2(PO4)2:Sn2+,MgBa2(PO4)2:U,
MgBaP2O7:Eu2+,MgBaP2O7:Eu2+,Mn2+,MgBa3Si2O8:Eu2+,MgBa(SO4)2:Eu2+,
Mg3Ca3(PO4)4:Eu2+,MgCaP2O7:Mn2+,Mg2Ca(SO4)3:Eu2+,
Mg2Ca(SO4)3:Eu2+,Mn2,MgCeAlnO19:Tb3+,Mg4(F)GeO6:Mn2+,
Mg4(F)(Ge,Sn)O6:Mn2+,MgF2:Mn2+,MgGa2O4:Mn2+,Mg8Ge2O11F2:Mn4+,
MgS:Eu2+,MgSiO3:Mn2+,Mg2SiO4:Mn2+,Mg3SiO3F4:Ti4+,MgSO4:Eu2+,
MgSO4:Pb2+,MgSrBa2Si2O7:Eu2+,MgSrP2O7:Eu2+,MgSr5(PO4)4:Sn2+,
MgSr3Si2O8:Eu2+,Mn2+,Mg2Sr(SO4)3:Eu2+,Mg2TiO4:Mn4+,MgWO4
MgYBO4:Eu3+,Na3Ce(PO4)2:Tb3+,Nal:Tl,Na1.23Ko.42Eu0.12TiSi4O11:Eu3+,
Na1.23K0.42Eu0.12TiSi5O13·xH2O:Eu3+,Na1.29K0.46Er0.08TiSi4O11:Eu3+,
Na2Mg3Al2Si2O10:Tb,Na(Mg2-xMnx)LiSi4O10F2:Mn,NaYF4:Er3+,Yb3+,
NaYO2:Eu3+,P46(70%)+P4T(30%),SrAl12O19:Ce3+,Mn2+,SrAl2O4:Eu2+,
SrAl4O7:Eu3+,SrAl12O19:Eu2+,SrAl2S4:Eu2+,Sr2B5O9Cl:Eu2+,
SrB4O7:Eu2+(F,Cl,Br),SrB4O7:Pb2+,SrB4O7:Pb2+,Mn2+,SrB8O13:Sm2+,
SrxBayClzAl2O4-z/2:Mn2+,Ce3+,SrBaSiO4:Eu2+,Sr(Cl,Br,l)2:Eu2+inSiO2,
SrCl2:Eu2+inSiO2,Sr5Cl(PO4)3:Eu,SrwFxB4O6.5:Eu2+,SrwFxByOz:Eu2+,Sm2+,
SrF2:Eu2+,SrGa12O19:Mn2+,SrGa2S4:Ce3+,SrGa2S4:Eu2+,SrGa2S4:Pb2+,
Srln2O4:Pr3+,Al3+,(Sr,Mg)3(PO4)2:Sn,SrMgSi2O6:Eu2+,Sr2MgSi2O7:Eu2+,
Sr3MgSi2O8:Eu2+,SrMoO4:U,SrO·3B2O3:Eu2+,Cl,β-SrO·3B2O3:Pb2+,
β-SrO·3B2O3:Pb2+,Mn2+,α-SrO.3B2O3:Sm2+,Sr6P5BO20:Eu,
Sr5(PO4)3Cl:Eu2+,Sr5(PO4)3Cl:Eu2+,Pr3+,Sr5(PO4)3Cl:Mn2+,Sr5(PO4)3Cl:Sb3+,
Sr2P2O7:Eu2+,β-Sr3(PO4)2:Eu2+,Sr5(PO4)3F:Mn2+,Sr5(PO4)3F:Sb3+,
Sr5(PO4)3F:Sb3+,Mn2+,Sr5(PO4)3F:Sn2+,Sr2P2O7:Sn2+,β-Sr3(PO4)2:Sn2+,
β-Sr3(PO4)2:Sn2+,Mn2+(Al),SrS:Ce3+,SrS:Eu2+,SrS:Mn2+,SrS:Cu+,Na,
SrSO4:Bi,SrSO4:Ce3+,SrSO4:Eu2+,SrSO4:Eu2+,Mn2+,Sr5Si4O10Cl6:Eu2+,
Sr2SiO4:Eu2+,SrTiO3:Pr3+,SrTiO3:Pr3+,Al3+,Sr3WO6:U,SrY2O3:Eu3+,
ThO2;Eu 3+,ThO2:Pr3+,ThO2:Tb3+,YAl3B4O12:Bi3+,YAl3B4O12:Ce3+,
YAl3B4O12:Ce3+,Mn,YAl3B4O12:Ce3+,Tb3+,YAl3B4O12:Eu3+,
YAl3B4O12:Eu3+,Cr3+,YAl3B4O12:Th4+,Ce3+,Mn2+,YAlO3:Ce3+,Y3Al5O12:Ce3+,
Y3Al5O12:Cr3+,YAlO3:Eu3+,Y3Al5O12:Eu3r,Y4Al2O9:Eu3+,Y3Al5O12:Mn4+,
YAlO3:Sm3+,YAlO3:Tb3+,Y3Al5O12:Tb3+,YAsO4:Eu3+,YBO3:Ce3+,YBO3:Eu3+,
YF3:Er3+,Yb3+,YF3:Mn2+,YF3:Mn2+,Th4+,YF3:Tm3+,Yb3+,(Y,Gd)BO3:Eu,
(Y,Gd)BO3:Tb,(Y,Gd)2O3:Eu3+,Y1.34Gd0.60O3(Eu,Pr),Y2O3:Bi3+,YOBr:Eu3+,
Y2O3:Ce,Y2O3:Er3+,Y2O3:Eu3+(YOE),Y2O3:Ce3+,Tb3+,YOCl:Ce3+,
YOCl:Eu3+,YOF:Eu3+,YOF:Tb3+,Y2O3:Ho3+,Y2O2S:Eu3+,Y2O2S:Pr3+,
Y2O2S:Tb3+,Y2O3:Tb3+,YPO4:Ce3+,YPO4:Ce3+,Tb3+,YPO4:Eu3+,
YPO4:Mn2+,Th4+,YPO4:V5+,Y(P,V)O4:Eu,Y2SiO5:Ce3+,YTaO4,YTaO4:Nb5+,
YVO4:Dy3+,YVO4:Eu3+,ZnAl2O4:Mn2+,ZnB2O4:Mn2+,ZnBa2S3:Mn2+,
(Zn,Be)2SiO4:Mn2+,Zn0.4Cd0.6S:Ag,Zn0.6Cd0.4S:Ag,(Zn,Cd)S:Ag,Cl,
(Zn,Cd)S:Cu,ZnF2:Mn2+,ZnGa2O4,ZnGa2O4:Mn2+,ZnGa2S4:Mn2+,
Zn2GeO4:Mn2+,(Zn,Mg)F2:Mn2+,ZnMg2(PO4)2:Mn2+,(Zn,Mg)3(PO4)2:Mn2+,
ZnO:Al3+,Ga3+,ZnO:Bi3+,ZnO:Ga3+,ZnO:Ga,ZnO-CdO:Ga,ZnO:S,ZnO:Se,
ZnO:Zn,ZnS:Ag+,Cl-,ZnS:Ag,Cu,Cl,ZnS:Ag,Ni,ZnS:Au,In,ZnS-CdS(25-
75),ZnS-CdS(50-50),ZnS-CdS(75-25),ZnS-CdS:Ag,Br,Ni,ZnS-
CdS:Ag+,Cl,ZnS-CdS:Cu,Br,ZnS-CdS:Cu,l,ZnS:Cl-,ZnS:Eu2+,ZnS:Cu,
ZnS:Cu+,Al3+,ZnS:Cu+,Cl-,ZnS:Cu,Sn,ZnS:Eu2+,ZnS:Mn2+,ZnS:Mn,Cu,
ZnS:Mn2+,Te2+,ZnS:P,ZnS:P3-,Gl-,ZnS:Pb2+,ZnS:Pb2+,Cl-,ZnS:Pb,Cu,
Zn3(PO4)2:Mn2+,Zn2SiO4:Mn2+,Zn2SiO4:Mn2+,As5+,Zn2SiO4:Mn,Sb2O2,
Zn2SiO4:Mn2+,P,Zn2SiO4:Ti4+,ZnS:Sn2+,ZnS:Sn,Ag,ZnS:Sn2+,Li+,
ZnS:Te,Mn,ZnS-ZnTe:Mn2+,ZnSe:Cu+,Cl或ZnWO4.
此外,本发明涉及本发明发射转换材料在光源中的用途。光源特别优选为LED,特别是无机发光材料转换LED(简称为pc-LED)。此处特别优选发射转换材料包含至少一种除本发明转换无机发光材料外的其它转换无机发光材料,特别是使得光源发射白光或者具有特定色点的光(按需色彩原则)。“按需色彩原则(Colour-on-demand)”意指通过使用一种或多种转换无机发光材料的pc-LED来产生具有特定色点的光。
因此,本发明还涉及包含初级光源和发射转换材料的光源。
此处还特别优选的是发射转换材料包含至少一种除本发明转换无机发光材料外的其它转换无机发光材料,使得光源优选发射白光或者具有特定色点的光。
本发明光源优选为pc-LED。pc-LED通常包含初级光源和发射转换材料。为此,取决于应用,可将本发明发射转换材料分散于树脂(例如环氧树脂或硅树脂)中,或者在合适尺寸比的情况下,直接置于初级光源上或者远程设置(后一种设置还包括“远程无机发光材料技术”)。
初级光源可以为半导体芯片、发光光源如ZnO、所谓的TCO(透明导电氧化物)、ZnSe-或SiC基装置、基于有机发光层(OLED)的装置,或者等离子体或放电光源,最优选半导体芯片。这类初级光源的可能形式是本领域技术人员已知的。
如果初级光源为半导体芯片,则它优选为如现有技术已知的发光氮化镓铝铟(InAlGaN)。
为用于光源,特别是pc-LED中,也可将本发明发射转换材料转变成任何所需外部形状,例如球形颗粒、微片以及规整材料和陶瓷。这些形状概括为术语“成型体”。因此,成型体为发射转换成型体。
此外,本发明涉及包含至少一个本发明光源的照明装置。这类照明装置主要用于具有背光的显示器件,特别是液晶显示器件(LC显示器)中。因此,本发明还涉及这类显示器件。
在本发明照明装置中,发射转换材料与初级光源(特别是半导体芯片)之间的光耦联优选通过光导装置进行。这使得将初级光源安装在中心位置并通过光导装置如光纤而与发射转换材料光耦联成为可能。这样,可实现适于照明需求的灯,其由可排列形成光屏的一种或多种不同转换无机发光材料和与初级光源耦联的光波导组成。这使得将强初级光源置于有利于电安装的位置上,并且不用其它电缆,仅通过在任何所需位置铺设光波导从而安装包含与光波导耦联的发射转换材料的灯成为可能。
以下实施例和图意欲说明本发明。然而,它们不应被视为是限制性的。
附图说明
图1:根据实施例制得的LuAG:Ce的发射光谱:根据实施例1未添加融合剂(曲线1),根据实施例4用本发明融合剂组合SrCl2+SiO2(曲线2),根据实施例2用AlF3作为融合剂(曲线3),根据实施例3用BaF2作为融合剂(曲线4)。此处,取决于制备方法,LuAG:Ce的晶格结构中仍包含融合剂离子,即例如在实施例4中为Sr和Si(曲线2)。
图2:实施例6和7的pc-LED的发射光谱。
实施例:
测量发射的一般程序
粉末发射光谱通过以下一般方法测量:将具有5mm深度且表面已用玻璃板平滑化的无机发光材料粉末床在EdinburghInstrumentsFL920荧光光谱仪的积分球中用氙灯作为激发光源以450nm的波长照射,并以1nm步长测量465-800nm范围内的所发射荧光辐射的强度。
实施例1:不加入融合剂制备LuAG:Ce(图1和2中的曲线1,对比例)
将657.9g碳酸氢铵在25℃下溶于6800mlDI水中。将241.6g六水合氯化镥、1.47g七水合氯化铈和258.7g六水合氯化铝溶于1020mlDI水中。将形成的溶液经45分钟逐滴加入预先制备的碳酸氢盐溶液中,并将混合物搅拌另外60分钟。随后将所得沉淀物吸滤出来并在真空中在120℃下干燥。将这样制备的前体在辊台上粉碎4小时。随后将材料在1200℃下预煅烧8小时。在预煅烧以后,将产物在1M盐酸中洗涤。每g预煅烧前体加入4mlHCl,并将混合物搅拌20分钟。再次将固体吸滤出来,并用12mlDI水/g冲洗。在再干燥以后,将50g材料在1350℃的温度和氩气/氢气气氛下经4小时转化成无机发光材料。
实施例2:加入AlF3而制备LuAG:Ce(图2中的曲线3,对比例)
将50g的在1.)下制备的预煅烧和洗过的前体与0.5gAlF3混合并在1350℃的温度和氩气/氢气气氛下经4小时转化成无机发光材料。
实施例3:加入BaF2而制备LuAG:Ce(图2中的曲线4,对比例)
将50g的在1.)下制备的预煅烧和洗过的前体与1.75gBaF2混合并在1350℃的温度和氩气/氢气气氛下经4小时转化成无机发光材料。
实施例4:使用本发明融合剂组合制备LuAG:Ce或Lu2.88Ce0.02Sr0.1Al4.9Si0.1O12(图1和2中的曲线2)
初始引入363ml乙醇、136mlDI水和54.4ml原硅酸四乙酯。随着搅拌经30秒添加84.8ml的25%氨溶液。将形成的SiO2悬浮液搅拌另外60分钟。随后通过添加100ml的25%盐酸pH设为7。随着加热和搅拌将860.2g碳酸氢铵溶于4800mlDI水中,随后添加SiO2悬浮液。将207.7g六水合氯化镥、4.1g七水合氯化铈、262.7g六水合氯化铝和72.5g六水合氯化锶溶于960mlDI水中。将形成的溶液经40分钟逐滴添加碳酸氢盐/SiO2悬浮液中,并将混合物搅拌另外30分钟。随后将固体吸滤出来并在真空中在120℃下干燥。将这样制备的前体在空气中在1100℃下预煅烧4小时。在预煅烧以后,将产物简短地研磨,随后在1350℃的温度和氩气/氢气气氛(90:10v:v)下经4小时转化成无机发光材料。产物具有组成Lu2.88Ce0.02Sr0.1Al4.9Si0.1O12,其中阳离子的重量含量借助ICP-OES测定。
实施例5:一般程序:pcLED的制造和测量
称出质量为mp(以g表示)的相应LED实施例中所示的无机发光材料,与m聚硅氧烷(以g表示)的光学透明聚硅氧烷混合,随后在行星式离心混合器中混合得到均匀混合物,使得总物质中的无机发光材料浓度为cp(以重量%表示)。将这样得到的聚硅氧烷/无机发光材料混合物借助自动分配器施涂于蓝半导体LED片上并随着热的供应而固化。在实施例中用于LED表征的蓝半导体LED具有442nm的发射波长,并以350mA的电流强度操作。LED的光度表征使用InstrumentSystemsCAS140光谱仪和连接的ISP250积分球进行。通过测定波长相关光谱功率密度来表征LED。LED所发射的光的所得光谱用于计算色点坐标CIEx和y以及光通量Φv(以lm表示)。
实施例6:使用实施例4的本发明LuAG:Ce无机发光材料制造pc-LED
mp: 1.9g
m聚硅氧烷: 8.1g
cp: 19重量%
CIE(1931)x: 0.293
CIE(1931)y: 0.370
Φv: 69lm
实施例7:使用实施例1的LuAG:Ce无机发光材料制造pc-LED(对比例)
mp: 1.5g
m聚硅氧烷: 8.5g
cp: 15重量%
CIE(1931)x: 0.271
CIE(1931)y: 0.370
Φv: 63lm
无机发光材料浓度在上文所示LED实施例6和7中不能相同地选择,因为可相互比较的类似色坐标仅在不同的无机发光材料浓度下得到。
可以看出,实施例6的LED在相当色坐标下具有更高的光通量Φv(以lm表示),因此具有更高的效率。

Claims (15)

1.式(1)化合物:
(Lu1-vMv)3-x-z(EA)z(Al1-yGay)5-z(Si1-wGew)zO12:Ce3+ x式(1)
其中以下适用于所用的符号和指数:
M‘为Y、Tb、Gd或这些金属的混合物;
EA为Ca、Sr、Ba或这些金属的混合物;
0<x<0.50;
0≤y≤0.40;
0.01≤z≤0.5;
0≤w≤1;
0≤v<1。
2.根据权利要求1的化合物,具有式(1a)、(1b)或(1c):
Lu3-x-z(EA)z(Al1-yGay)5-z(Si1-wGew)zO12:Ce3+ x式(1a)
(Lu1-vM'v)3-x-z(EA)zAl5-z(Si1-wGew)zO12:Ce3+ x式(1b)
(Lu1-vM'v)3-x-z(EA)z(Al1-yGay)5-zSizO12:Ce3+ x式(1c)
其中所用符号和指数具有权利要求1中给出的含义。
3.根据权利要求1或2的化合物,具有式(2a)或(2b):
(Lu1-vM'v)3-x-z(EA)zAl5-zSizO12:Ce3+ x式(2a)
Lu3-x-z(EA)zAl5-zSizO12..Ce3+ x式(2b)
其中所用符号和指数具有权利要求1中给出的含义。
4.根据权利要求1-3中一项或多项的化合物,其特征在于EA选自Sr和/或Ba。
5.根据权利要求1-4中一项或多项的化合物,其特征在于以下适用于x:0.01≤x≤0.15。
6.根据权利要求1-5中一项或多项的化合物,其特征在于以下适用于z:0.01≤z≤0.25。
7.制备铈掺杂的石榴石的方法,其特征在于所述方法借助通过湿化学方法制备的前体进行,以及添加含硅或含锗化合物和碱土金属卤化物。
8.根据权利要求7的方法,其特征在于铈掺杂的石榴石为式(3)或(4)的化合物:
M3-x(Al1-yGay)5O12:Ce3+ x式(3)
M3-x-z(EA)z(Al1-yGay)5-z(Si1-wGew)zO12:Ce3+ x式(4)
其中以下适用于所用符号和指数:
M为Lu、Y、Tb、Gd或这些金属的混合物;
EA为Mg、Ca、Sr、Ba或这些金属的混合物;
0<x<0.50;
0≤y≤0.40;
0.01≤z≤0.5;
0≤w≤1;
式(3)中的一些离子M也可被选自Mg、Ca、Sr和/或Ba的碱土金属替代,同时相同比例的Al或Ga可被Si或Ge替代。
9.根据权利要求7或8的方法,其特征在于含硅或含锗化合物为二氧化硅或二氧化锗悬浮液或者其前体,所述前体选自:原硅酸四烷基酯,其中烷基每次出现时相同或不同地具有1-10个C原子;或者硅卤化物;或者原锗酸四烷基酯,其中烷基每次出现时相同或不同地具有1-10个C原子;或者锗卤化物。
10.根据权利要求7-9中一项或多项的方法,其特征在于所用碱土金属卤化物为CaCl2、SrCl2和/或BaCl2
11.可通过根据权利要求7-10中一项或多项的方法得到的化合物。
12.发射转换材料,其包含根据权利要求1-6中一项或多项或权利要求11的化合物和任选包含一种或多种其它转换无机发光材料。
13.根据权利要求1-6中一项或多项或权利要求11的化合物或者根据权利要求12的发射转换材料作为无机发光材料或转换无机发光材料用于将光部分或完全转换成具有更长波长的光的用途。
14.光源,其包含初级光源和至少一种根据权利要求1-6中一项或多项或权利要求11的化合物或者根据权利要求12的发射转换材料。
15.根据权利要求14的光源,其特征在于初级光源为发光氮化镓铝铟,特别是式IniGajAlkN的氮化镓铝铟,其中0≤i,0≤j,0≤k,且i+j+k=1,或者为基于ZnO、TCO(透明导电氧化物)或SiC的发光装置,或者为等离子体或放电光源。
CN201480057704.0A 2013-10-21 2014-09-23 无机发光材料 Pending CN105658763A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13005028 2013-10-21
EP13005028.9 2013-10-21
PCT/EP2014/002573 WO2015058825A1 (de) 2013-10-21 2014-09-23 Leuchtstoffe

Publications (1)

Publication Number Publication Date
CN105658763A true CN105658763A (zh) 2016-06-08

Family

ID=49447917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480057704.0A Pending CN105658763A (zh) 2013-10-21 2014-09-23 无机发光材料

Country Status (5)

Country Link
US (1) US20160244665A1 (zh)
CN (1) CN105658763A (zh)
DE (1) DE112014004801A5 (zh)
TW (1) TW201527489A (zh)
WO (1) WO2015058825A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116323860A (zh) * 2020-10-28 2023-06-23 株式会社日立高新技术 荧光体、使用其的光源、生物化学分析装置和荧光体的制造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
WO2015076944A1 (en) 2013-10-07 2015-05-28 Quantumscape Corporation Garnet materials for li secondary batteries
DE102013113382A1 (de) * 2013-12-03 2015-06-03 Osram Gmbh Leuchtstoffmischung, Licht emittierendes Halbleiterbauelement mit einer Leuchtstoffmischung und Straßenlaterne mit einer Leuchtstoffmischung
KR20240059640A (ko) 2015-04-16 2024-05-07 퀀텀스케이프 배터리, 인코포레이티드 고체 전해질 제조를 위한 리튬 함유 가넷 세터 플레이트
EP3326223A4 (en) 2015-07-21 2018-12-19 QuantumScape Corporation Processes and materials for casting and sintering green garnet thin films
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
WO2017197406A1 (en) 2016-05-13 2017-11-16 Quantumscape Corporation Solid electrolyte separator bonding agent
WO2018027200A1 (en) 2016-08-05 2018-02-08 Quantumscape Corporation Translucent and transparent separators
US11916200B2 (en) 2016-10-21 2024-02-27 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
US10347937B2 (en) 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions
WO2018236394A1 (en) 2017-06-23 2018-12-27 Quantumscape Corporation LITHIUM-FILLED GRENATE ELECTROLYTES WITH SECONDARY PHASE INCLUSIONS
US10720554B2 (en) * 2017-09-20 2020-07-21 General Electric Company Green-emitting phosphors and devices thereof
US11600850B2 (en) 2017-11-06 2023-03-07 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
WO2019163983A1 (ja) * 2018-02-23 2019-08-29 京セラ株式会社 発光装置および照明装置
JP7465217B2 (ja) 2018-06-06 2024-04-10 クアンタムスケープ バッテリー,インコーポレイテッド 全固体電池
US20200161506A1 (en) * 2018-11-21 2020-05-21 Osram Opto Semiconductors Gmbh Method for Producing a Ceramic Converter Element, Ceramic Converter Element, and Optoelectronic Component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062699A1 (en) * 2002-09-25 2004-04-01 Matsushita Electric Industrial Co. Inorganic oxide and phosphor
US20080246005A1 (en) * 2007-04-04 2008-10-09 Soshchin Naum Phosphor for blue-light led, blue-light led using same
JP2009079094A (ja) * 2007-09-25 2009-04-16 Toshiba Corp 蛍光体およびそれを用いたledランプ
CN102517016A (zh) * 2011-11-16 2012-06-27 中国科学院长春应用化学研究所 用于蓝光激发的固溶体荧光发光材料及其制备方法
CN102757788A (zh) * 2012-07-06 2012-10-31 江苏博睿光电有限公司 一种led用镧基绿色荧光粉
CN103003389A (zh) * 2010-07-21 2013-03-27 默克专利有限公司 铝酸盐无机发光材料
CN104250555A (zh) * 2013-06-27 2014-12-31 宁波升谱光电半导体有限公司 黄色荧光粉及其制备方法和使用该荧光粉的发光器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062699A1 (en) * 2002-09-25 2004-04-01 Matsushita Electric Industrial Co. Inorganic oxide and phosphor
US20080246005A1 (en) * 2007-04-04 2008-10-09 Soshchin Naum Phosphor for blue-light led, blue-light led using same
JP2009079094A (ja) * 2007-09-25 2009-04-16 Toshiba Corp 蛍光体およびそれを用いたledランプ
CN103003389A (zh) * 2010-07-21 2013-03-27 默克专利有限公司 铝酸盐无机发光材料
CN102517016A (zh) * 2011-11-16 2012-06-27 中国科学院长春应用化学研究所 用于蓝光激发的固溶体荧光发光材料及其制备方法
CN102757788A (zh) * 2012-07-06 2012-10-31 江苏博睿光电有限公司 一种led用镧基绿色荧光粉
CN104250555A (zh) * 2013-06-27 2014-12-31 宁波升谱光电半导体有限公司 黄色荧光粉及其制备方法和使用该荧光粉的发光器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
洪广言: "《稀土发光材料-基础与应用》", 30 April 2011, 科学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116323860A (zh) * 2020-10-28 2023-06-23 株式会社日立高新技术 荧光体、使用其的光源、生物化学分析装置和荧光体的制造方法

Also Published As

Publication number Publication date
WO2015058825A1 (de) 2015-04-30
DE112014004801A5 (de) 2016-08-25
TW201527489A (zh) 2015-07-16
US20160244665A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
CN105658763A (zh) 无机发光材料
US9580649B2 (en) Process for production of phosphors
TWI716401B (zh) 磷光體及磷光體轉換發光裝置
US20170051201A1 (en) Phosphors
CN105264043B (zh) 发光材料
CN105814171A (zh) Eu2+激活的发光材料
US20160200973A1 (en) Phosphors
US20160108311A1 (en) Phosphors
US20160152891A1 (en) Phosphors
US20170306223A1 (en) Phosphors
KR20160042021A (ko) 발광 물질
TWI814793B (zh) 用在以led為主之固態光源作為轉換發光體之經錳活化的氧鹵化物
Li et al. Influence of nitridation on optical properties of Sr2MgSi2O7: Eu2+ phosphors
US20200194625A1 (en) Mn4+-activated luminescent material as conversion phosphor for led solid-state light sources
US20170107426A1 (en) Europium- or samarium-doped terbium molybdates
TW201533219A (zh) 磷光體
TW201414802A (zh) 銪摻雜磷光體的製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160608