CN105656318A - Alternating current/direct current energy reclaiming type electronic simulation loading device and control method thereof - Google Patents
Alternating current/direct current energy reclaiming type electronic simulation loading device and control method thereof Download PDFInfo
- Publication number
- CN105656318A CN105656318A CN201610073920.5A CN201610073920A CN105656318A CN 105656318 A CN105656318 A CN 105656318A CN 201610073920 A CN201610073920 A CN 201610073920A CN 105656318 A CN105656318 A CN 105656318A
- Authority
- CN
- China
- Prior art keywords
- output
- input
- control
- igbt
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000004088 simulation Methods 0.000 title abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims abstract description 60
- 238000004891 communication Methods 0.000 claims abstract description 12
- 230000009466 transformation Effects 0.000 claims description 10
- 239000003990 capacitor Substances 0.000 claims description 8
- 238000005457 optimization Methods 0.000 claims description 8
- 238000002955 isolation Methods 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 16
- 238000011160 research Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC
- H02M5/42—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters
- H02M5/44—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC
- H02M5/453—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M5/4585—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/40—Testing power supplies
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/219—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Rectifiers (AREA)
- Inverter Devices (AREA)
Abstract
一种交直流馈能型电子模拟负载装置及其控制方法,由控制器、输入侧变换单元、输入侧H桥逆变单元、隔离高频变压器、输出侧H桥整流单元、输出侧变换单元、显示单元、输入电压互感器、输入电流互感器、输出电压互感器、输出电流互感器、直流电压互感器、输入交流端子、输出交流端子和输出直流端子构成,它是一个能量反馈的电子模拟负载,输出反馈到交流或直流电源。输入侧可以模拟恒功率、恒电流、恒阻抗三种模式,此外,可以模拟各种负荷特性曲线、功率因数可调,通过显示单元面板进行设置,也可以通过通讯由上位机进行设置。本发明负载测试研究节电优势明显,具有灵活模拟各种负载特性、交直流反馈的特点。
An AC/DC feed type electronic analog load device and a control method thereof, comprising a controller, an input-side conversion unit, an input-side H-bridge inverter unit, an isolated high-frequency transformer, an output-side H-bridge rectifier unit, an output-side conversion unit, Composed of display unit, input voltage transformer, input current transformer, output voltage transformer, output current transformer, DC voltage transformer, input AC terminal, output AC terminal and output DC terminal, it is an electronic analog load for energy feedback , the output is fed back to an AC or DC power supply. The input side can simulate three modes of constant power, constant current and constant impedance. In addition, it can simulate various load characteristic curves, and the power factor can be adjusted. It can be set through the display unit panel, or it can be set by the host computer through communication. The invention has obvious power-saving advantages in load test research, and has the characteristics of flexible simulation of various load characteristics and AC/DC feedback.
Description
技术领域technical field
本发明涉及电力电子技术领域,特别是一种交直流馈能型电子模拟负载装置及其控制方法。The invention relates to the technical field of power electronics, in particular to an AC/DC energy feeding electronic analog load device and a control method thereof.
背景技术Background technique
随着电力电子装置应用的日益广泛,新产品、新技术越来越多。目前,各种电力电子装置出厂实验、使用前的可靠性实验(主要是老化实验)一般都是采用电阻能耗放电的办法进行物理实验,同时对其它负荷特性难以进行测试与试验。为克服这一问题,需要通过电子模拟功率负载进行试验。它是一种利用电力电子技术、计算机控制技术及电力系统自动化技术设计实现的,用于对各种直流电源进行考核试验的实验装置。With the increasingly widespread application of power electronic devices, there are more and more new products and new technologies. At present, various power electronic device factory tests and reliability tests before use (mainly aging tests) generally use the method of resistive energy discharge to conduct physical experiments, and it is difficult to test and test other load characteristics. To overcome this problem, it is necessary to test by electronically simulating a power load. It is an experimental device designed and realized by using power electronics technology, computer control technology and power system automation technology, and is used for checking and testing various DC power supplies.
本设计与一般电子负载的区别在于:一方面,它从被试电源吸收的电能最大量的可为被试电源循环使用,其损耗仅仅是PWM变流器的开关损耗和线路损耗,从而最大限度的节约了能量;另一方面,由于所采用的PWM变流器工作在开关状态,与一般工作在放大状态的电子负载相比它很容易实现大功率应用的要求,从而具有更广阔的应用领域。The difference between this design and the general electronic load is that: on the one hand, the maximum amount of electric energy it absorbs from the tested power supply can be recycled by the tested power supply, and its loss is only the switching loss and line loss of the PWM converter, so as to maximize On the other hand, because the PWM converter used works in the switch state, it is easy to meet the requirements of high-power applications compared with the electronic loads that generally work in the amplified state, so it has a wider application field. .
本发明用于替代传统电阻型功率负载进行相关的功率实验,也可应用于仪器设备的测试实验,并且满足IEEE-519标准。本发明与电阻型负载相比它有以下的优点:①因为它的工作方式是利用电力电子变换技术在完成测试功率实验的前提下,将待试设备的输出能量反馈到电网,节约了能源,另一方面又不产生大量的热量,避免了试验场所环境温度升高的问题;②体积小、重量轻。由于该电子负载没有把试验的功率变成热量,因此不必使用体积庞大的电阻箱及冷却设备,因而节约了安装空间;③所模拟的功率连续可调。众所周知,电阻负载在功率较高时不得不采用有级调节,在使用时受到很大限制,用户在具体使用时可通过计算机界面设定所需要的功率(或电源输出电流)-时间变化曲线,设备起动后其负载大小就严格按设定运行;④由于采用的是能量回馈方式,因此,试验场所不必配备较大的电源容量。已有的电子反馈负载功能单一,难以满足高速发展的电力电子技术需求。The invention is used to replace the traditional resistive power load for related power experiments, and can also be applied to the test experiments of instruments and equipment, and meets the IEEE-519 standard. Compared with the resistive load, the present invention has the following advantages: ①Because its working mode is to use power electronic conversion technology to feed back the output energy of the equipment to be tested to the power grid under the premise of completing the test power experiment, which saves energy, On the other hand, it does not generate a lot of heat, which avoids the problem of rising ambient temperature in the test site; ②Small size and light weight. Since the electronic load does not turn the test power into heat, it is not necessary to use a bulky resistance box and cooling equipment, thus saving installation space; ③ The simulated power is continuously adjustable. As we all know, the resistive load has to be adjusted stepwise when the power is high, and it is very limited in use. The user can set the required power (or power output current)-time change curve through the computer interface during specific use. After the equipment is started, its load will run strictly according to the setting; ④Because the energy feedback method is adopted, the test site does not need to be equipped with a large power supply capacity. The existing electronic feedback load has a single function, and it is difficult to meet the needs of the rapid development of power electronics technology.
发明内容Contents of the invention
针对上述问题,本发明的目的是提供一种交直流馈能型电子模拟负载装置及其控制方法,该装置负载测试研究节电优势明显,具有灵活模拟各种负载特性、交直流反馈的特点。In view of the above problems, the object of the present invention is to provide an AC/DC feed type electronic analog load device and its control method. The device has obvious advantages in power saving in load testing and research, and has the characteristics of flexibly simulating various load characteristics and AC/DC feedback.
本发明的技术解决方案如下:Technical solution of the present invention is as follows:
一种交直流馈能型电子模拟负载装置,其特点在于该装置包括:控制器、输入侧变换单元、输入侧H桥逆变单元、隔离高频变压器、输出侧H桥整流单元、输出侧变换单元、输入电压互感器、输入电流互感器、输出电压互感器、输出电流互感器、直流电压互感器、输入交流端子、输出交流端子、输出直流端子和显示单元,An AC/DC feed type electronic analog load device is characterized in that the device includes: a controller, an input side conversion unit, an input side H bridge inverter unit, an isolated high frequency transformer, an output side H bridge rectifier unit, an output side conversion unit unit, input voltage transformer, input current transformer, output voltage transformer, output current transformer, DC voltage transformer, input AC terminal, output AC terminal, output DC terminal and display unit,
所述的输入侧变换单元的输入端与所述的输入交流端子相连,该输入侧变换单元的输出端与所述的输入侧H桥逆变单元的输入端相连,该输入侧H桥逆变单元的输出端与所述的隔离高频变压器的输入端相连,该隔离高频变压器的输出端与所述的输出侧H桥整流单元的输入端相连,所述的输出侧H桥整流单元的输出端和所述的输出侧变换单元的输入端相连,所述的输出侧变换单元的输出端与所述的输出交流端子相连;所述的输出直流端子接所述的输出侧H桥整流单元的输出端;所述的直流电压传感器的输入侧与所述的输出侧H桥整流单元的输出端相连;The input end of the input-side conversion unit is connected to the input AC terminal, the output end of the input-side conversion unit is connected to the input end of the input-side H-bridge inverter unit, and the input-side H-bridge inverter The output end of the unit is connected to the input end of the isolated high-frequency transformer, the output end of the isolated high-frequency transformer is connected to the input end of the H-bridge rectifier unit on the output side, and the H-bridge rectifier unit on the output side is The output end is connected to the input end of the output-side conversion unit, the output end of the output-side conversion unit is connected to the output AC terminal; the output DC terminal is connected to the output-side H-bridge rectifier unit the output end of the DC voltage sensor; the input side of the DC voltage sensor is connected to the output end of the H-bridge rectifier unit on the output side;
所述的输入电压互感器的输入侧与所述的输入侧变换单元的输入端的主电路相连,所述的输入电压互感器的电压信号输出端与所述的控制器对应的输入电压信号输入端口相连;所述的输入电流互感器串接在所述的输入侧变换单元和所述的输入交流端子之间的电路中,该输入电流互感器的交流电流信号输出端与所述的控制器的交流输入电流信号的输入端口相连;The input side of the input voltage transformer is connected to the main circuit of the input end of the conversion unit at the input side, and the voltage signal output end of the input voltage transformer is connected to the corresponding input voltage signal input port of the controller connected; the input current transformer is connected in series in the circuit between the input side conversion unit and the input AC terminal, the AC current signal output terminal of the input current transformer is connected to the controller The input port of the AC input current signal is connected;
所述的输出电压互感器的输入侧与所述的输出侧变换单元的输出端的主电路相连,所述的输出电压互感器的电压信号输出端与所述的控制器的输出交流电压信号的输入端口相连;所述的输出电流互感器串接在所述的输出侧变换单元的输出端的电路中,该输出电流互感器的电流信号输出端与所述的控制器的输出电流信号输入端口相连;所述的直流电压传感器的电压信号输出端与所述的控制器的直流电压信号输入端口相连;The input side of the output voltage transformer is connected to the main circuit of the output end of the output side conversion unit, and the voltage signal output end of the output voltage transformer is connected to the input of the output AC voltage signal of the controller The ports are connected; the output current transformer is connected in series in the circuit of the output end of the output-side conversion unit, and the current signal output end of the output current transformer is connected to the output current signal input port of the controller; The voltage signal output end of the DC voltage sensor is connected to the DC voltage signal input port of the controller;
所述的控制器的输出脉宽调制信号PWMS123、PWMO123端口分别与所述的输入侧变换单元的PWM控制信号端、所述的输出侧变换单元的PWM控制信号端相连;所述的控制器的本地通讯端口与所述的显示单元的通讯端口相连,所述的控制器的远端通讯端口与上位机通讯相连。The output pulse width modulation signal PWM S123 and PWM O123 ports of the controller are respectively connected to the PWM control signal end of the input side conversion unit and the PWM control signal end of the output side conversion unit; the control The local communication port of the controller is connected with the communication port of the display unit, and the remote communication port of the controller is connected with the host computer.
所述输入侧变换单元与输出侧变换单元均包括与交流三相连接的三相逆变结构和公共直流母线电容,其中每相逆变结构都包括:第一绝缘栅双极型晶体管(简称为IGBT)和第二IGBT,所述的第一IGBT的发射极连接所述的第二IGBT的集电极,所述的第一IGBT的集电极通过所述公共直流母线电容与所述的第二IGBT的发射极连接,作为逆变单元的控制端的所述的第一IGBT和第二IGBT的控制端,其与对应相逆变单元PWM信号对应的控制单元的逆变单元PWM信号输出端相连,所述第一IGBT和第二IGBT的控制端的信号相反,第二IGBT的集电极为逆变单元的交流输出端,所述公共直流母线电容两端为逆变单元的直流输入端,其电压为逆变单元的直流电压UDC;Both the input-side conversion unit and the output-side conversion unit include a three-phase inverter structure connected to the three-phase AC and a common DC bus capacitor, wherein each phase inverter structure includes: a first insulated gate bipolar transistor (abbreviated as IGBT) and the second IGBT, the emitter of the first IGBT is connected to the collector of the second IGBT, the collector of the first IGBT is connected to the second IGBT through the common DC bus capacitance The emitter is connected to the control terminal of the first IGBT and the second IGBT as the control terminal of the inverter unit, which is connected to the PWM signal output terminal of the inverter unit of the control unit corresponding to the PWM signal of the corresponding phase inverter unit, so The signals of the control terminals of the first IGBT and the second IGBT are opposite, the collector of the second IGBT is the AC output terminal of the inverter unit, the two ends of the common DC bus capacitor are the DC input terminals of the inverter unit, and its voltage is inverse DC voltage U DC of the transformer unit;
由于第一IGBT的控制端和第二IGBT的控制端的控制信号相反,控制单元的逆变单元PWM信号输出端输出的逆变单元PWM信号可经外部反相器或者由控制单元内部生成相反的逆变单元PWM信号,然后将逆变单元PWM信号和相反的逆变单元PWM信号对应输入第一IGBT的控制端和第二IGBT的控制端。Since the control signals of the control terminal of the first IGBT and the control terminal of the second IGBT are opposite, the PWM signal of the inverter unit output by the output terminal of the inverter unit PWM signal of the control unit can generate the opposite inverter through an external inverter or internally by the control unit. The PWM signal of the inverter unit, and then input the PWM signal of the inverter unit and the opposite PWM signal of the inverter unit to the control terminal of the first IGBT and the control terminal of the second IGBT correspondingly.
所述的输入侧H桥逆变单元和输出侧H桥逆变单元均包括:第一IGBT、第二IGBT、第三IGBT、第四IGBT,所述的第一IGBT的发射极连接所述第三IGBT的集电极,第一IGBT的集电极通过公共直流母线电容与所述的第三IGBT的发射极连接;所述的第二IGBT的发射极连接所述的第四IGBT的集电极,所述的第二IGBT的集电极通过所述公共直流母线电容与所述第四IGBT的发射极连接;Both the input-side H-bridge inverter unit and the output-side H-bridge inverter unit include: a first IGBT, a second IGBT, a third IGBT, and a fourth IGBT, and the emitter of the first IGBT is connected to the first IGBT. For the collectors of the three IGBTs, the collector of the first IGBT is connected to the emitter of the third IGBT through a common DC bus capacitance; the emitter of the second IGBT is connected to the collector of the fourth IGBT, so The collector of the second IGBT is connected to the emitter of the fourth IGBT through the common DC bus capacitance;
所述的第一IGBT的控制端和第三IGBT的控制端的控制信号相反,第二IGBT的控制端和第四IGBT的控制端的控制信号相反;第一IGBT的控制端和第四IGBT的控制端的控制信号相同,第二IGBT的控制端和第三IGBT的控制端的控制信号相同,所述的控制信号由本地产生,为10k~50kHz频率、50%占空比的信号。The control signals of the control terminal of the first IGBT and the control terminal of the third IGBT are opposite, the control signals of the control terminal of the second IGBT and the control terminal of the fourth IGBT are opposite; the control signals of the control terminal of the first IGBT and the control terminal of the fourth IGBT The control signals are the same, the control signals of the control terminal of the second IGBT and the control terminal of the third IGBT are the same, and the control signal is generated locally, and is a signal with a frequency of 10k-50kHz and a duty cycle of 50%.
所述的交直流馈能型电子模拟负载装置的控制方法,其特点在于该方法包括输出侧变换单元控制方法、输入侧变换单元控制方法和能量反馈优化方法。The control method of the AC/DC energy-feeding electronic analog load device is characterized in that the method includes an output-side conversion unit control method, an input-side conversion unit control method and an energy feedback optimization method.
于所述的输出侧变换单元控制方法包括下列步骤:The control method for the conversion unit on the output side includes the following steps:
①给定第1比例积分器、第2比例积分器、第3比例积分器的控制参数:1<kp1<100、0.1<ki1<10、1<kp2<100、0.1<ki2<10、1<kp3<100、0.1<ki3<10,测量输出侧交流电压uo、交流电流io,并由此得到输出侧交流电压幅值Us、输出侧交流电流幅值Id、Iq以及输出侧交流电压与交流电流的功角θ;① Given the control parameters of the first proportional integrator, the second proportional integrator, and the third proportional integrator: 1<k p1 <100, 0.1<k i1 <10, 1<k p2 <100, 0.1<k i2 < 10. 1<k p3 <100, 0.1<k i3 <10, measure the output side AC voltage u o and AC current i o , and obtain the output side AC voltage amplitude U s and the output side AC current amplitude I d , I q and the power angle θ of the AC voltage and AC current at the output side;
②设定直流电压给定值UDCref,测量直流电压UDC,将设定直流电压给定值UDCref和测量的直流电压UDC之差经第1比例积分器控制的输出值ud0为:②Set the given value of DC voltage U DCref , measure the DC voltage U DC , and control the output value u d0 of the difference between the given value of DC voltage U DCref and the measured DC voltage U DC through the first proportional integrator as follows:
ud0=kp1*(UDCref-UDC)+ki1*∫(UDCref-UDC)dtu d0 =k p1 *(U DCref -U DC )+k i1 *∫(U DCref -U DC )dt
其中,UDCref是直流电压给定值,标幺值为1~1.2;Among them, U DCref is the given value of DC voltage, and the per unit value is 1~1.2;
③将第1比例积分器的输出值,结合测量得到的输出侧交流电压US与电流Id,经第2比例积分器得到逆变单元的有功功率控制量ud,具体公式如下:③Combine the output value of the first proportional integrator with the measured AC voltage U S and current I d at the output side to obtain the active power control value u d of the inverter unit through the second proportional integrator. The specific formula is as follows:
ud=kp2*(ud0-Id)+ki2*∫(ud0-Id)dt+US u d =k p2 *(u d0 -I d )+k i2 *∫(u d0 -I d )dt+U S
④测量得到的输出侧交流电流Iq,经过第3比例积分器,得到逆变单元的无功功率控制量uq,具体公式如下:④The AC current I q on the output side measured is passed through the third proportional integrator to obtain the reactive power control value u q of the inverter unit. The specific formula is as follows:
uq=kp3*Iq+ki3*∫Iqdt;u q =k p3 *I q +k i3 *∫I q dt;
⑤根据所述的无功功率控制量uq、有功功率控制量ud,经过dq-abc派克反变换后,得到三相逆变单元脉宽调制PWM信号:⑤According to the reactive power control quantity u q and active power control quantity u d , after dq-abc Parker inverse transformation, the pulse width modulation PWM signal of the three-phase inverter unit is obtained:
调节输出侧变换单元的输出电压。The output voltage of the conversion unit at the output side is adjusted.
所述的输入侧变换单元控制方法包括下列步骤:The control method of the conversion unit on the input side includes the following steps:
步骤1,恒功率控制:Step 1, constant power control:
选择恒功率控制下,则恒功率控制如下:Under constant power control, the constant power control is as follows:
①给定第4比例积分器、第5比例积分器、第6比例积分器的控制参数:1<kp4<100、0.1<ki4<10、1<kp5<100、0.1<ki5<10、1<kp6<100、0.1<ki6<10、1<kp7<100、0.1<ki7<10,测量输入侧交流电压us、交流电流is,并由此得到输入侧交流电压幅值US1、输入侧交流电流幅值Id1、Iq1以及输入侧交流电压与交流电流的功角θ2,计算有功功率P=US1×Id1,无功功率Q=US1×Iq1;① Given the control parameters of the 4th proportional integrator, the 5th proportional integrator, and the 6th proportional integrator: 1<k p4 <100, 0.1<k i4 <10, 1<k p5 <100, 0.1<k i5 < 10. 1<k p6 <100, 0.1<k i6 <10, 1<k p7 <100, 0.1<k i7 <10, measure the input side AC voltage u s and AC current i s , and obtain the input side AC Voltage amplitude U S1 , input side AC current amplitude I d1 , I q1 and power angle θ 2 between input side AC voltage and AC current, calculate active power P=U S1 ×I d1 , reactive power Q=U S1 × I q1 ;
②设定有功功率给定值Pref,将Pref和计算得到的P之差进行第4比例积分器控制,按下列公式计算中间控制量ud20:② Set the given value of active power P ref , control the difference between P ref and the calculated P by the fourth proportional integrator, and calculate the intermediate control variable u d20 according to the following formula:
ud20=kp4*(Pref-P)+ki4*∫(Pref-P)dtu d20 =k p4 *(P ref -P)+k i4 *∫(P ref -P)dt
③根据第4比例积分器输出的中间控制量ud20,结合测量得到的输入侧交流电压US1与电流Id1,经过下述公式,得到逆变单元控制量ud2:③According to the intermediate control variable u d20 output by the fourth proportional integrator, combined with the measured input-side AC voltage U S1 and current I d1 , the control variable u d2 of the inverter unit is obtained through the following formula:
ud2=kp5*(ud20-Id1)+ki5*∫(ud20-Id1)dt+US1 u d2 =k p5 *(u d20 -I d1 )+k i5 *∫(u d20 -I d1 )dt+U S1
④设定无功功率给定值Qref,将Qref和计算得到的无功功率Q之差经第6比例积分器控制,按下列公式计算得到中间控制量uq20:④ Set the given value of reactive power Q ref , control the difference between Q ref and the calculated reactive power Q through the sixth proportional integrator, and calculate the intermediate control quantity u q20 according to the following formula:
uq20=kp6*(Qref-Q)+ki6*∫(Qref-Q)dtu q20 =k p6 *(Q ref -Q)+k i6 *∫(Q ref -Q)dt
⑤根据第6比例积分器的输出值,结合测量得到的输入侧交流电流Iq1,经过第7比例积分控制,按下列公式计算得到逆变单元控制量uq2:⑤According to the output value of the sixth proportional integrator, combined with the measured AC current I q1 on the input side, after the seventh proportional-integral control, the control quantity u q2 of the inverter unit is calculated according to the following formula:
uq2=kp7*(uq20-Iq1)+ki7*∫(uq20-Iq1)dtu q2 =k p7 *(u q20 -I q1 )+k i7 *∫(u q20 -I q1 )dt
⑥根据所述的控制量ud2、uq2,经过dq-abc派克反变换后,得到三相逆变单元脉宽调制PWM信号:⑥According to the control variables u d2 and u q2 , after dq-abc Parker inverse transformation, the pulse width modulation PWM signal of the three-phase inverter unit is obtained:
调节输入侧变换单元的输出电压。The output voltage of the conversion unit at the input side is adjusted.
步骤2,恒电流控制:Step 2, constant current control:
选择恒电流控制下,恒电流控制如下:给定有功电流值Idref,上述步骤中,ud20=Idref;Under constant current control, the constant current control is as follows: given the active current value I dref , in the above steps, u d20 =I dref ;
步骤3,恒电阻控制:Step 3, constant resistance control:
选择恒电阻控制下,恒电阻控制如下:给定电阻参考值Rref,上述步骤1中,ud20=Us1/Idref。Under constant resistance control, the constant resistance control is as follows: Given a resistance reference value R ref , in the above step 1, u d20 =U s1 /I dref .
所述的能量反馈优化方法的能量反馈优化模型函数:The energy feedback optimization model function of the described energy feedback optimization method:
其中,为UDC的平均值。in, is the average value of U DC .
本发明的特点如下:Features of the present invention are as follows:
1.本发明是一个能量反馈的电子模拟负载,通过交流或直流电源进行能量反馈。1. The present invention is an electronic analog load for energy feedback, which performs energy feedback through an AC or DC power supply.
2.本发明可以模拟恒功率、恒电流、恒阻抗三种模式,功率因数可调。2. The present invention can simulate three modes of constant power, constant current and constant impedance, and the power factor is adjustable.
3.本发明可以模拟各种负荷特性曲线,通过显示单元面板进行设置,也可以通过通讯由上位机进行设置。3. The present invention can simulate various load characteristic curves, which can be set through the panel of the display unit, or can be set by the upper computer through communication.
4.本发明负载试验节电优势明显。4. The present invention has obvious advantages in saving electricity in the load test.
附图说明Description of drawings
图1是本发明交直流馈能型电子模拟负载装置的结构示意图。Fig. 1 is a schematic structural diagram of an AC/DC feed type electronic analog load device of the present invention.
图2是本发明输入/输出侧变换单元拓扑示意图。Fig. 2 is a schematic diagram of the topology of the conversion unit at the input/output side of the present invention.
图3是本发明输入/输出侧H桥逆变单元示意图。Fig. 3 is a schematic diagram of an H-bridge inverter unit at the input/output side of the present invention.
图4是本发明输出侧变换单元控制框图。Fig. 4 is a control block diagram of the conversion unit at the output side of the present invention.
图5是本发明输入侧变换单元控制框图。Fig. 5 is a control block diagram of the conversion unit at the input side of the present invention.
具体实施方式detailed description
下面结合实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。The present invention will be further described below in conjunction with the embodiments and accompanying drawings, but the protection scope of the present invention should not be limited thereby.
先请参阅图1,图1是本发明交直流馈能型电子模拟负载装置的结构示意图。由图可见,本发明交直流馈能型电子模拟负载装置,包括:控制器2、输入侧变换单元3、输入侧H桥逆变单元4、隔离高频变压器5、输出侧H桥整流单元6、输出侧变换单元7、显示单元16、输入电压互感器8、输入电流互感器9、输出电压互感器10、输出电流互感器11、直流电压互感器12、输入交流端子13、输出交流端子14、输出直流端子15。Please refer to FIG. 1 first. FIG. 1 is a schematic structural diagram of an AC/DC feed type electronic analog load device according to the present invention. It can be seen from the figure that the AC/DC energy feeding electronic analog load device of the present invention includes: a controller 2, an input side conversion unit 3, an input side H-bridge inverter unit 4, an isolation high-frequency transformer 5, and an output side H-bridge rectifier unit 6 , output side conversion unit 7, display unit 16, input voltage transformer 8, input current transformer 9, output voltage transformer 10, output current transformer 11, DC voltage transformer 12, input AC terminal 13, output AC terminal 14 , Output DC terminal 15.
所述的输入侧变换单元3的输入端与所述的输入交流端子13相连,所述的输入侧变换单元3的输出端与所述的输入侧H桥逆变单元4的输入端相连;所述的输入侧H桥逆变单元4的输出端与所述的隔离高频变压器5的输入端相连;所述的隔离高频变压器5的输出端与所述的输出侧H桥整流单元6的输入端相连;所述的输出侧H桥整流单元6的输出端与所述的输出侧变换单元7的输入端相连;所述的输出侧变换单元7的输出端与所述的输出交流端子14相连;所述的输出直流端子15接所述的输出侧H桥整流单元6的输出端;The input end of the input-side conversion unit 3 is connected to the input AC terminal 13, and the output end of the input-side conversion unit 3 is connected to the input end of the input-side H-bridge inverter unit 4; The output end of the H-bridge inverter unit 4 on the input side is connected to the input end of the isolated high-frequency transformer 5; the output end of the isolated high-frequency transformer 5 is connected to the H-bridge rectifier unit 6 on the output side. The input end is connected; the output end of the output side H-bridge rectifier unit 6 is connected with the input end of the output side conversion unit 7; the output end of the output side conversion unit 7 is connected with the output AC terminal 14 connected; the output DC terminal 15 is connected to the output end of the H-bridge rectifier unit 6 on the output side;
所述的输入电压互感器8的输入侧与所述的输入侧变换单元3的输入端主电路相连,所述的输入电压互感器8的电压信号输出端与所述的控制器2对应的输入电压信号输入端口相连;所述的输入电流互感器9串接在所述的输入侧变换单元3的输入主电路中,所述的输入电流互感器9的电流信号输出端与所述的控制器2对应的输入电流信号输入端口相连;The input side of the input voltage transformer 8 is connected to the main circuit of the input end of the input side transformation unit 3, and the voltage signal output end of the input voltage transformer 8 is connected to the corresponding input of the controller 2 The voltage signal input port is connected; the input current transformer 9 is connected in series in the input main circuit of the input side transformation unit 3, and the current signal output terminal of the input current transformer 9 is connected to the controller 2 The corresponding input current signal input port is connected;
所述的输出电压互感器10的输入侧与所述的输出侧变换单元7的输出端的主电路相连,所述的输出电压互感器10的电压信号输出端与所述的控制器2对应的输出电压信号输入端口相连;所述的输出电流互感器11串接在所述的输出侧变换单元7的输出主电路中,其电流信号输出端与所述的控制器2对应的输出电流信号输入端口相连;The input side of the output voltage transformer 10 is connected to the main circuit of the output end of the output side conversion unit 7, and the voltage signal output end of the output voltage transformer 10 is connected to the corresponding output of the controller 2 The voltage signal input port is connected; the output current transformer 11 is connected in series in the output main circuit of the output side conversion unit 7, and its current signal output port is corresponding to the output current signal input port of the controller 2 connected;
所述的直流电压传感器12的输入侧与所述的输出侧H桥整流单元6的输出直流端电路相连,所述的直流电压传感器12的电压信号输出端与所述的控制器2对应的直流电压信号输入端口相连,所述的;The input side of the DC voltage sensor 12 is connected to the output DC terminal circuit of the H-bridge rectifier unit 6 on the output side, and the voltage signal output terminal of the DC voltage sensor 12 is connected to the DC voltage corresponding to the controller 2. The voltage signal input port is connected, as mentioned above;
所述的控制器2的输出的脉宽调制信号PWMS123、PWMO123端口分别与所述的输入侧变换单元3的PWM控制信号端、所述的输出侧变换单元7的PWM控制信号端相连;所述的控制器2的本地通讯端口与所述的显示单元16的通讯端口相连,所述的控制器2的远端通讯端口与上位机通讯相连。The PWM S123 and PWM O123 ports of the output of the controller 2 are respectively connected to the PWM control signal end of the input side conversion unit 3 and the PWM control signal end of the output side conversion unit 7; The local communication port of the controller 2 is connected with the communication port of the display unit 16, and the remote communication port of the controller 2 is connected with the host computer.
本发明交直流馈能型电子模拟负载装置系统中,所述输入侧变换单元与输出侧变换单元包括与交流三相连接的三相逆变结构与公共直流母线电容,其中每相逆变结构均包括:第一绝缘栅双极型晶体管(以下简称为IGBT)、第二IGBT,其中所述第一IGBT的发射极连接所述第二IGBT的集电极,所述第一IGBT的集电极通过所述公共直流母线电容与所述第二IGBT的发射极连接,作为逆变单元的控制端的所述第一IGBT和第二IGBT的控制端,其与对应相逆变单元PWM信号对应的控制单元的逆变单元PWM信号输出端相连,其中所述第一IGBT和第二IGBT的控制端的信号相反,第二IGBT的集电极为逆变单元的交流输出端,所述公共直流母线电容两端为逆变单元的直流输入端,其电压为逆变单元的直流电压UDC。In the AC/DC feed type electronic analog load device system of the present invention, the input-side conversion unit and the output-side conversion unit include a three-phase inverter structure connected to the three-phase AC and a common DC bus capacitor, wherein each phase inverter structure is It includes: a first insulated gate bipolar transistor (hereinafter referred to as IGBT), a second IGBT, wherein the emitter of the first IGBT is connected to the collector of the second IGBT, and the collector of the first IGBT is connected to the collector of the first IGBT through the The common DC bus capacitor is connected to the emitter of the second IGBT, and the control terminals of the first IGBT and the second IGBT as the control terminals of the inverter unit are connected to the control unit corresponding to the PWM signal of the corresponding phase inverter unit. The PWM signal output terminals of the inverter unit are connected, wherein the signals of the control terminals of the first IGBT and the second IGBT are opposite, the collector of the second IGBT is the AC output terminal of the inverter unit, and the two ends of the common DC bus capacitor are inverted The DC input terminal of the inverter unit, whose voltage is the DC voltage U DC of the inverter unit.
上述方案中,由于第一IGBT的控制端和第二IGBT的控制端信号相反,控制单元的逆变单元PWM信号输出端输出的逆变单元PWM信号可经外部反相器或者由控制单元内部生成相反的逆变单元PWM信号,然后将逆变单元PWM信号和相反的逆变单元PWM信号对应输入第一IGBT的控制端和第二IGBT的控制端。In the above solution, since the control terminal of the first IGBT and the control terminal of the second IGBT have opposite signals, the PWM signal of the inverter unit output by the PWM signal output terminal of the inverter unit of the control unit can be generated by an external inverter or internally by the control unit The opposite PWM signal of the inverter unit, and then correspondingly input the PWM signal of the inverter unit and the opposite PWM signal of the inverter unit to the control terminal of the first IGBT and the control terminal of the second IGBT.
本发明交直流馈能型电子模拟负载装置系统中,所述输入侧H桥逆变单元与输出侧H桥逆变单元(参见图3)的结构包括:第一IGBT、第二IGBT、第三IGBT、第四IGBT,其中所述第一IGBT的发射极连接所述第三IGBT的集电极,所述第一IGBT的集电极通过所述公共直流母线电容与所述第三IGBT的发射极连接;所述第二IGBT的发射极连接所述第四IGBT的集电极,所述第二IGBT的集电极通过所述公共直流母线电容与所述第四IGBT的发射极连接。In the AC/DC feed type electronic analog load device system of the present invention, the structures of the input-side H-bridge inverter unit and the output-side H-bridge inverter unit (see FIG. 3 ) include: a first IGBT, a second IGBT, a third IGBT, the fourth IGBT, wherein the emitter of the first IGBT is connected to the collector of the third IGBT, and the collector of the first IGBT is connected to the emitter of the third IGBT through the common DC bus capacitance The emitter of the second IGBT is connected to the collector of the fourth IGBT, and the collector of the second IGBT is connected to the emitter of the fourth IGBT through the common DC bus capacitance.
第一IGBT的控制端和第三IGBT的控制端的控制信号相反,第二IGBT的控制端和第四IGBT的控制端的控制信号相反;第一IGBT的控制端和第四IGBT的控制端的控制信号相同,第二IGBT的控制端和第三IGBT的控制端的控制信号相同。控制信号由本地产生,为10k~50kHz频率、50%占空比的信号。The control signals of the control terminal of the first IGBT and the control terminal of the third IGBT are opposite, the control signals of the control terminal of the second IGBT and the control terminal of the fourth IGBT are opposite; the control signals of the control terminal of the first IGBT and the control terminal of the fourth IGBT are the same , the control signal of the control terminal of the second IGBT is the same as that of the control terminal of the third IGBT. The control signal is generated locally and is a signal with a frequency of 10k-50kHz and a duty ratio of 50%.
本发明还提供了一种交直流馈能型电子模拟负载控制方法,The present invention also provides an AC/DC feed type electronic analog load control method,
其输出侧变换单元控制方法参见图4,包括步骤:Refer to Figure 4 for the control method of the conversion unit on the output side, including steps:
给定第1比例积分控制PI1、第2比例积分器PI2、第3比例积分器PI3的控制参数1<kp1<100、0.1<ki1<10、1<kp2<100、0.1<ki2<10、1<kp3<100、0.1<ki3<10,测量输出侧交流电压uo、交流电流io,并由此得到输出侧交流电压幅值Us、输出侧交流电流幅值Id、Iq以及输出侧交流电压与交流电流的功角θ。Given the control parameters of the first proportional integral control PI1, the second proportional integrator PI2, and the third proportional integrator PI3 1<k p1 <100, 0.1<k i1 <10, 1<k p2 <100, 0.1<k i2 <10, 1<k p3 <100, 0.1<k i3 <10, measure the output side AC voltage u o and AC current i o , and obtain the output side AC voltage amplitude U s and the output side AC current amplitude I d , I q and the power angle θ of the AC voltage and AC current on the output side.
设定直流电压给定值UDCref,测量直流电压UDC,将设定直流电压给定值UDCref和测量的直流电压UDC之差进行第1比例积分控制(PI1)得到中间控制量ud0,其计算公式为:Set the DC voltage given value U DCref , measure the DC voltage U DC , and perform the first proportional-integral control (PI1) on the difference between the set DC voltage given value U DCref and the measured DC voltage U DC to obtain the intermediate control value u d0 , whose calculation formula is:
ud0=kp1*(UDCref-UDC)+ki1*∫(UDCref-UDC)dtu d0 =k p1 *(U DCref -U DC )+k i1 *∫(U DCref -U DC )dt
其中,UDCref是直流电压给定值,标幺值为1~1.2。Among them, U DCref is the given value of DC voltage, and the per unit value is 1 to 1.2.
上述第1比例积分器PI1输出值,结合测量得到的输出侧交流电压US与电流Id,经过含第2比例积分器PI2的下述公式,得到逆变单元控制量ud,具体公式如下:The output value of the above-mentioned first proportional integrator PI1 is combined with the measured output side AC voltage U S and current I d , and through the following formula including the second proportional integrator PI2, the control value u d of the inverter unit is obtained. The specific formula is as follows :
ud=kp2*(ud0-Id)+ki2*∫(ud0-Id)dt+US u d =k p2 *(u d0 -I d )+k i2 *∫(u d0 -I d )dt+U S
测量得到的输出侧交流电流Iq,经过第3比例积分器PI3,得到逆变单元控制量uq,具体公式如下:The measured AC current I q on the output side passes through the third proportional integrator PI3 to obtain the control value u q of the inverter unit. The specific formula is as follows:
uq=kp3*Iq+ki3*∫Iqdtu q =k p3 *I q +k i3 *∫I q dt
根据上述步骤得到的无功功率控制量uq、有功功率控制量ud,经过dq-abc派克反变换后,得到三相逆变单元脉宽调制PWM信号,调节输出侧变换单元的输出电压。According to the reactive power control quantity u q and active power control quantity u d obtained in the above steps, after dq-abc Parker inverse transformation, the pulse width modulation PWM signal of the three-phase inverter unit is obtained to adjust the output voltage of the conversion unit on the output side.
所述的输入侧变换单元控制方法,参见图5,包括The control method of the conversion unit on the input side, as shown in Fig. 5, includes
步骤1,恒功率控制:Step 1, constant power control:
给定第4比例积分器PI4、第5比例积分器PI5、第6比例积分器PI6、第7比例积分器PI7的控制参数1<kp4<100、0.1<ki4<10、1<kp5<100、0.1<ki5<10、1<kp6<100、0.1<ki6<10、1<kp7<100、0.1<ki7<10,测量输入侧交流电压us、交流电流is,并由此得到输入侧交流电压幅值US1、输入侧交流电流幅值Id1、Iq1以及输入侧交流电压与交流电流的功角θ2,计算有功功率P=US1×Id1和无功功率Q=US1×Iq1。Given the control parameters of the 4th proportional integrator PI4, the 5th proportional integrator PI5, the 6th proportional integrator PI6, and the seventh proportional integrator PI7 1<k p4 <100, 0.1<k i4 <10, 1<k p5 <100, 0.1<k i5 <10, 1<k p6 <100, 0.1<k i6 <10, 1<k p7 <100, 0.1<k i7 <10, measure input side AC voltage u s and AC current i s , and thus obtain the input-side AC voltage amplitude U S1 , the input-side AC current amplitudes I d1 , I q1 and the power angle θ 2 between the input-side AC voltage and AC current, and calculate the active power P=U S1 ×I d1 and Reactive power Q=U S1 ×I q1 .
设定恒功率控制,有功功率给定值Pref,将Pref和计算得到的P之差进行第4比例积分控制PI4,得到中间控制量ud20,其计算公式为Set constant power control, given value of active power P ref , perform the fourth proportional integral control PI4 on the difference between P ref and the calculated P, and obtain the intermediate control variable u d20 , the calculation formula is
ud20=kp4*(Pref-P)+ki4*∫(Pref-P)dtu d20 =k p4 *(P ref -P)+k i4 *∫(P ref -P)dt
上述第4比例积分器PI4输出值,结合测量得到的输入侧交流电压US1与电流Id1,经过下述公式,得到逆变单元控制量ud2,具体公式如下:The above-mentioned fourth proportional integrator PI4 output value, combined with the measured input-side AC voltage U S1 and current I d1 , through the following formula, obtains the control variable u d2 of the inverter unit, and the specific formula is as follows:
ud2=kp5*(ud20-Id1)+ki5*∫(ud20-Id1)dt+US1 u d2 =k p5 *(u d20 -I d1 )+k i5 *∫(u d20 -I d1 )dt+U S1
设定无功功率给定值Qref,将Qref和计算得到的无功功率Q之差进行第6比例积分控制PI6,得到中间控制量uq20,其计算公式为Set the given value of reactive power Q ref , and perform the sixth proportional integral control PI6 on the difference between Q ref and the calculated reactive power Q to obtain the intermediate control quantity u q20 , the calculation formula of which is
uq20=kp6*(Qref-Q)+ki6*∫(Qref-Q)dtu q20 =k p6 *(Q ref -Q)+k i6 *∫(Q ref -Q)dt
上述第6比例积分器PI6输出值,结合测量得到的输入侧交流电流Iq1,经过第7比例积分控制PI7,得到逆变单元控制量uq2,具体公式如下:The above-mentioned sixth proportional integrator PI6 output value, combined with the measured input-side AC current I q1 , passes through the seventh proportional-integral control PI7 to obtain the control variable u q2 of the inverter unit. The specific formula is as follows:
uq2=kp7*(uq20-Iq1)+ki7*∫(uq20-Iq1)dtu q2 =k p7 *(u q20 -I q1 )+k i7 *∫(u q20 -I q1 )dt
根据上述步骤得到的控制量ud2、uq2,经过dq-abc派克反变换后,得到三相逆变单元脉宽调制PWM信号,调节输入侧变换单元的输出电压。According to the control variables u d2 and u q2 obtained in the above steps, after dq-abc Parker inverse transformation, the three-phase inverter unit pulse width modulation PWM signal is obtained to adjust the output voltage of the input side conversion unit.
步骤2,恒电流控制:Step 2, constant current control:
给定有功电流值Idref,上述步骤中,ud20=Idref。Given the active current value I dref , in the above steps, u d20 =I dref .
步骤3,恒电阻控制:Step 3, constant resistance control:
给定电阻参考值Rref,上述步骤1中,ud20=Us1/Idref。Given the resistance reference value R ref , in the above step 1, u d20 =U s1 /I dref .
本发明的能量反馈优化方法包括The energy feedback optimization method of the present invention includes
能量反馈优化模型函数:Energy feedback optimization model function:
其中,为UDC的平均值。in, is the average value of U DC .
本发明交直流馈能型电子模拟负载装置是一个能量反馈的电子模拟负载,输出反馈到交流或直流电源。输入侧可以模拟恒功率、恒电流、恒阻抗三种模式,此外,可以模拟各种负荷特性曲线、功率因数可调,通过显示单元面板进行设置,也可以通过通讯由上位机进行设置。本发明负载测试研究节电优势明显,具有灵活模拟各种负载特性、交直流反馈的特点。The AC/DC energy feeding type electronic analog load device of the present invention is an electronic analog load with energy feedback, and the output is fed back to the AC or DC power supply. The input side can simulate three modes of constant power, constant current and constant impedance. In addition, it can simulate various load characteristic curves, and the power factor can be adjusted. It can be set through the display unit panel, or it can be set by the host computer through communication. The invention has obvious power-saving advantages in load test research, and has the characteristics of flexible simulation of various load characteristics and AC/DC feedback.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610073920.5A CN105656318B (en) | 2016-02-02 | 2016-02-02 | Alternating current-direct current energy regenerative type electronic simulation load device and its control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610073920.5A CN105656318B (en) | 2016-02-02 | 2016-02-02 | Alternating current-direct current energy regenerative type electronic simulation load device and its control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105656318A true CN105656318A (en) | 2016-06-08 |
CN105656318B CN105656318B (en) | 2018-04-17 |
Family
ID=56489126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610073920.5A Expired - Fee Related CN105656318B (en) | 2016-02-02 | 2016-02-02 | Alternating current-direct current energy regenerative type electronic simulation load device and its control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105656318B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107492950A (en) * | 2017-10-13 | 2017-12-19 | 上海阳顿电气制造有限公司 | A kind of UPS devices of uninterrupted power supply |
CN108427048A (en) * | 2018-03-07 | 2018-08-21 | 中国商用飞机有限责任公司北京民用飞机技术研究中心 | A kind of load simulating device |
CN108776244A (en) * | 2018-07-25 | 2018-11-09 | 易事特集团股份有限公司 | Electronic load |
CN108958116A (en) * | 2018-07-16 | 2018-12-07 | 深圳市禾望电气股份有限公司 | Control method, system, equipment and the storage medium of power power station experimental rig |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040094552A (en) * | 2003-05-03 | 2004-11-10 | (주)그린파워 | Energy Regenerative Multi-Function Electronic Load |
CN1847865A (en) * | 2006-03-16 | 2006-10-18 | 西安爱科电子有限责任公司 | Energy feedback type AC/DC electronic load simulator |
CN201616680U (en) * | 2010-02-08 | 2010-10-27 | 南京国睿新能电子有限公司 | Energy-feedback power grid energy-saving direct-current electronic load |
-
2016
- 2016-02-02 CN CN201610073920.5A patent/CN105656318B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040094552A (en) * | 2003-05-03 | 2004-11-10 | (주)그린파워 | Energy Regenerative Multi-Function Electronic Load |
CN1847865A (en) * | 2006-03-16 | 2006-10-18 | 西安爱科电子有限责任公司 | Energy feedback type AC/DC electronic load simulator |
CN201616680U (en) * | 2010-02-08 | 2010-10-27 | 南京国睿新能电子有限公司 | Energy-feedback power grid energy-saving direct-current electronic load |
Non-Patent Citations (1)
Title |
---|
陈德双: "馈能式电子负载及其数字控制方法的研究", 《中国优秀硕士学位论文全文数据库(电子期刊) 工程科技Ⅱ辑》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107492950A (en) * | 2017-10-13 | 2017-12-19 | 上海阳顿电气制造有限公司 | A kind of UPS devices of uninterrupted power supply |
CN107492950B (en) * | 2017-10-13 | 2023-06-30 | 上海阳顿电气制造有限公司 | Uninterrupted power supply UPS device |
CN108427048A (en) * | 2018-03-07 | 2018-08-21 | 中国商用飞机有限责任公司北京民用飞机技术研究中心 | A kind of load simulating device |
CN108958116A (en) * | 2018-07-16 | 2018-12-07 | 深圳市禾望电气股份有限公司 | Control method, system, equipment and the storage medium of power power station experimental rig |
CN108776244A (en) * | 2018-07-25 | 2018-11-09 | 易事特集团股份有限公司 | Electronic load |
Also Published As
Publication number | Publication date |
---|---|
CN105656318B (en) | 2018-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103091587B (en) | Energy-saving inverter test circuit and control method | |
CN204012751U (en) | A kind of energy feedback type programmable electronic can be presented load device | |
CN105656318B (en) | Alternating current-direct current energy regenerative type electronic simulation load device and its control method | |
CN206339631U (en) | A kind of motor simulation device for simulating three-phase synchronous motor | |
CN104991131A (en) | Flexible direct-current power-transmission converter-valve half-bridge structure power module test device | |
CN102508073B (en) | Load test device for large-power frequency converter adopting front active end | |
CN106772128B (en) | A kind of energy consumption type alternating current electronic load and its method of work | |
CN106950512B (en) | Energy storage converter grid-connected and grid-disconnected characteristic integrated detection system and method | |
CN204228854U (en) | A kind of voltage dip analogue means | |
CN102692577A (en) | Test system for large-power high-frequency transformer | |
CN105226610A (en) | A kind of Transformer Close magnetizing inrush current arrester | |
CN106451576A (en) | Control method of single-phase multiple-output power electronic transformer | |
CN109239622A (en) | DC load is set to have the device and control method of exchange load function | |
CN202614878U (en) | High-power high-frequency transformer test system | |
CN102324749A (en) | A STATCOM Device Based on Switched System Theory and Its Robust Control Method | |
CN206865359U (en) | A kind of energy-saving multifunction simulation electrical load device | |
CN102116850B (en) | Device and method for testing rectifier | |
CN207835362U (en) | A kind of dynamic lithium battery simulator | |
CN203289103U (en) | Load unbalance compensating system | |
CN109283419B (en) | DC solid-state simulation load-based electric life test device for piezoelectric device | |
CN102346223B (en) | Power evaluation system of frequency converter in energy two-way transmission rectification mode and test method of power evaluation system | |
CN113514679A (en) | Universal modularized energy feedback type AC/DC virtual load | |
CN109687749B (en) | Boost three-leg inverter and boost regulation method | |
CN210835114U (en) | An energy-saving DC charging pile detection device | |
CN103312183B (en) | For power supply and the method for testing thereof of reactor performance test in phase control rectifier circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C41 | Transfer of patent application or patent right or utility model | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Guojie Inventor after: Qi Chen Inventor after: Han Bei Inventor after: Huang Renle Inventor after: Wang Cunping Inventor before: Li Guojie Inventor before: Qi Chen Inventor before: Han Bei |
|
COR | Change of bibliographic data | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20160714 Address after: 200240 Dongchuan Road, Shanghai, No. 800, No. Applicant after: SHANGHAI JIAO TONG University Applicant after: STATE GRID BEIJING ELECTRIC POWER Co. Address before: 200240 Dongchuan Road, Shanghai, No. 800, No. Applicant before: Shanghai Jiao Tong University |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180417 |
|
CF01 | Termination of patent right due to non-payment of annual fee |