CN105647102A - 纳米改性的石油树脂 - Google Patents

纳米改性的石油树脂 Download PDF

Info

Publication number
CN105647102A
CN105647102A CN201610097822.5A CN201610097822A CN105647102A CN 105647102 A CN105647102 A CN 105647102A CN 201610097822 A CN201610097822 A CN 201610097822A CN 105647102 A CN105647102 A CN 105647102A
Authority
CN
China
Prior art keywords
petropols
tio
nanoparticle
nano
petroleum resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610097822.5A
Other languages
English (en)
Inventor
虞天笔
徐永兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANTONG TIANCAI TECHNOLOGY Co Ltd
Original Assignee
NANTONG TIANCAI TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANTONG TIANCAI TECHNOLOGY Co Ltd filed Critical NANTONG TIANCAI TECHNOLOGY Co Ltd
Priority to CN201610097822.5A priority Critical patent/CN105647102A/zh
Publication of CN105647102A publication Critical patent/CN105647102A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种纳米改性的石油树脂,由石油树脂与TiO2纳米粒子混合组成。本发明产品具有优异的紫外吸收能力。

Description

纳米改性的石油树脂
技术领域
本发明涉及一种纳米改性的石油树脂。
背景技术
石油树脂广泛的应用于人造产品中,但紫外吸收性能不理想,人们一直渴望能够赋予石油树脂良好的紫外吸收能力。
发明内容
本发明的目的在于提供一种紫外吸收能力好的纳米改性的石油树脂。
本发明的技术解决方案是:
一种纳米改性的石油树脂,其特征是:由石油树脂与TiO2纳米粒子混合组成。
TiO2纳米粒子的直径为100nm。
由有机溶剂、石油树脂与TiO2纳米粒子混合后,在超声浴中反应制成。
分别量取2ml石油溶剂油和2ml二甲苯于6个试剂瓶中,然后分别向试剂瓶中加入0.05-0.3g的石油树脂,石油树脂溶液中提前加入0.1g的TiO2纳米粒子,并且在超声浴中反应,制得产品。
本发明产品具有优异的紫外吸收能力。
本发明提出通过掺杂TiO2纳米粒子可以增强石油树脂的紫外吸收能力。这是因为,石油树脂与TiO2纳米粒子混合后可以形成活跃的量子点,TiO2纳米粒子的吸收能级类似于盒量子肼,当TiO2纳米粒子的粒径大小合适时,能级差可以达到3eV-124eV,正好位于紫外吸收的波长范围(10nm-400nm)之内,因此可以有效的吸收紫外线。
下面结合附图和实施例对本发明作进一步说明。
图1表示TiO2纳米粒子与的混合状态。
1是TiO2纳米粒子,2是石油树脂,3是溶剂,4是容器。石油溶剂油与二甲苯在超声浴中反应一定的时间可以合成TiO2掺杂的石油树脂。这要求TiO2的粒径要低于100nm。当形成乳白色的均匀溶液后,采用电子显微镜观察复合物的形成。SEM和EDX显示表面附着TiO2的石油树脂簇的直径为2μm。
图2是干燥试样的SEM图像。
图3和图4分别是氧化物和钛单质的EDX图。
SEM和EDX图像均表明,TiO2纳米粒子牢固的附着在石油树脂上,光谱也表明了TiO2与石油树脂发生了混合。
图5、图6分别是空试剂瓶的透射比、反射比。
图7、图8分别是加入0.05g石油树脂的反射比、透射比。
图9、图10分别是加入0.1g石油树脂的反射比、透射比。
图11、图12分别是加入0.3g石油树脂的反射比、透射比。
图13、图14分别表示加入0.05g石油树脂+0.1gTiO2纳米粒子后的反射比、透射比。
图15、图16分别表示加入0.1g石油树脂+0.1gTiO2纳米粒子后的反射比、透射比。
图17、图18分别表示加入0.3g石油树脂+0.1gTiO2纳米粒子后的反射比、透射比。
具体实施方式
分别量取4ml溶剂(2ml石油溶剂油和2ml二甲苯)于6个试剂瓶中,然后分别向6个试剂瓶中加入0.05g、0.1g和0.3g的石油树脂,石油树脂溶液中已提前加入0.1g的TiO2纳米粒子,并且在超声浴中反应一定时间。
在200-400nm的紫外吸收波长范围内可以观察和到明显的差异,图像表明,复合材料吸收的紫外线更多。因此,得出结论:纳米TiO2石油树脂的紫外吸收能力增强。

Claims (4)

1.一种纳米改性的石油树脂,其特征是:由石油树脂与TiO2纳米粒子混合组成。
2.根据权利要求1所述的纳米改性的石油树脂,其特征是:TiO2纳米粒子的直径为100nm。
3.根据权利要求1或2所述的纳米改性的石油树脂,其特征是:由有机溶剂、石油树脂与TiO2纳米粒子混合后,在超声浴中反应制成。
4.根据权利要求3所述的纳米改性的石油树脂,其特征是:分别量取2ml石油溶剂油和2ml二甲苯于6个试剂瓶中,然后分别向试剂瓶中加入0.05-0.3g的石油树脂,石油树脂溶液中提前加入0.1g的TiO2纳米粒子,并且在超声浴中反应,制得产品。
CN201610097822.5A 2016-02-23 2016-02-23 纳米改性的石油树脂 Pending CN105647102A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610097822.5A CN105647102A (zh) 2016-02-23 2016-02-23 纳米改性的石油树脂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610097822.5A CN105647102A (zh) 2016-02-23 2016-02-23 纳米改性的石油树脂

Publications (1)

Publication Number Publication Date
CN105647102A true CN105647102A (zh) 2016-06-08

Family

ID=56488562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610097822.5A Pending CN105647102A (zh) 2016-02-23 2016-02-23 纳米改性的石油树脂

Country Status (1)

Country Link
CN (1) CN105647102A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101372598A (zh) * 2007-08-20 2009-02-25 北京路桥瑞通养护中心 蓄能自发光道路标线涂料
CN103540147A (zh) * 2013-10-23 2014-01-29 潍坊市晨鸣新型防水材料有限公司 一种高强度耐剥离型弹性体改性沥青防水卷材及生产工艺
CN103951931A (zh) * 2014-05-16 2014-07-30 保定维特瑞交通设施工程有限责任公司 一种热熔融高耐磨抗污染白色交通标线材料及其制备方法
CN104231837A (zh) * 2013-06-13 2014-12-24 江苏无锡交通设施有限公司 一种抗污染道路标线涂料
CN105086895A (zh) * 2014-05-22 2015-11-25 惠州市能辉化工有限公司 非沥青基预铺式高分子防水卷材用热熔胶及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101372598A (zh) * 2007-08-20 2009-02-25 北京路桥瑞通养护中心 蓄能自发光道路标线涂料
CN104231837A (zh) * 2013-06-13 2014-12-24 江苏无锡交通设施有限公司 一种抗污染道路标线涂料
CN103540147A (zh) * 2013-10-23 2014-01-29 潍坊市晨鸣新型防水材料有限公司 一种高强度耐剥离型弹性体改性沥青防水卷材及生产工艺
CN103951931A (zh) * 2014-05-16 2014-07-30 保定维特瑞交通设施工程有限责任公司 一种热熔融高耐磨抗污染白色交通标线材料及其制备方法
CN105086895A (zh) * 2014-05-22 2015-11-25 惠州市能辉化工有限公司 非沥青基预铺式高分子防水卷材用热熔胶及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
曹建军 等: "PP/TiO2纳米复合材料的研制及其抗老化机理分析", 《工程塑料应用》 *
朱永华 等: "纳米TiO2改性丙烯酸涂层的抗紫外光作用", 《功能材料》 *

Similar Documents

Publication Publication Date Title
Aziz et al. A comprehensive review on optical properties of polymer electrolytes and composites
Udayabhanu et al. Green, nonchemical route for the synthesis of ZnO superstructures, evaluation of its applications toward photocatalysis, photoluminescence, and biosensing
Lin et al. Micellar layer-by-layer synthesis of TiO2/Ag hybrid particles for bactericidal and photocatalytic activities
Kanjwal et al. Effects of silver content and morphology on the catalytic activity of silver-grafted titanium oxide nanostructure
WO2013159090A3 (en) Titanium dioxide pigment grind dispersion and paint
Lichchhavi et al. Transformation of battery to high performance pseudocapacitor by the hybridization of W18O49 with RuO2 nanostructures
CN105289457B (zh) 一种中空结构TiO2纳米材料的制备方法及其应用
CN101891974A (zh) 一种TiO2/SiO2复合粉体的制备方法
Hu et al. Hybrid carbon dot/Ni3S2 architecture supported on nickel foam for effective light collection and conversion
Mirsadeghi et al. In-depth insight into the photocatalytic and electrocatalytic mechanisms of Mg3V2O8@ Zn3V2O8@ ZnO ternary heterostructure toward linezolid: Experimental and DFT studies
CN105647102A (zh) 纳米改性的石油树脂
CN105800679B (zh) 一种TiO2球形三级分级结构的制备方法
Jang et al. Dual‐Wavelength Irradiation and Dox Delivery for Cancer Cell Ablation with Photocatalytic Pr Doped TiO2/NGO Hybrid Nanocomposite
Sharma et al. AND logic gate supported novel speckled phosphorus-doped carbon dots decorated ZrO2/CaO/MgO sonocatalysts for efficient MB dye decolorization
TWI467784B (zh) 太陽能電池
CN103771508A (zh) 一种分级混晶TiO2微纳米材料、制备方法及其用途
Shang et al. Efficient exfoliation of molybdenum disulphide nanosheets by a high‐pressure homogeniser
Wang et al. Controllable synthesis and enhanced photocatalytic activity of B‐TiO2 nanospheres
Nguyen et al. Microwave-assisted synthesis of carbon nanotube-TiO2 nanocomposites in ionic liquid for the photocatalytic degradation of methylene blue
CN103848457A (zh) 氮掺杂锐钛矿晶型二氧化钛纳米粉体及其制备方法
Thongjamroon et al. Photocatalytic Performances and Antifouling Efficacies of Alternative Marine Coatings Derived from Polymer/Metal Oxides (WO3@ TiO2)-Based Composites
Ye et al. Enhanced photocatalytic activity of ternary multilayered Ag/TiO2/CNT composites for methylene blue degradation
Wang et al. Study on the fluorescence properties of carbon dots prepared by one step microwave method
Bahadur et al. Synthesis of mesoporous NiO doped TiO2 submicrosphere via spray hydrolysis
Xiong et al. Construction of novel fluorescent synergistic photocatalytic double Z-scheme photocatalyst for efficient antifouling of polydimethylsiloxane coatings

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160608