CN105636514A - 使用延迟内插的心脏标测 - Google Patents

使用延迟内插的心脏标测 Download PDF

Info

Publication number
CN105636514A
CN105636514A CN201480057380.0A CN201480057380A CN105636514A CN 105636514 A CN105636514 A CN 105636514A CN 201480057380 A CN201480057380 A CN 201480057380A CN 105636514 A CN105636514 A CN 105636514A
Authority
CN
China
Prior art keywords
electrode
pair
signal
electrodes
medical treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480057380.0A
Other languages
English (en)
Other versions
CN105636514B (zh
Inventor
P·H·塔库
B·马斯卡拉
S·肖姆
A·C·舒罗斯
S·阿科特-克里希纳穆尔蒂
S·萨哈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Boston Scientific Scimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Scimed Inc filed Critical Boston Scientific Scimed Inc
Publication of CN105636514A publication Critical patent/CN105636514A/zh
Application granted granted Critical
Publication of CN105636514B publication Critical patent/CN105636514B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/287Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/327Generation of artificial ECG signals based on measured signals, e.g. to compensate for missing leads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/363Detecting tachycardia or bradycardia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/0016Energy applicators arranged in a two- or three dimensional array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/00267Expandable means emitting energy, e.g. by elements carried thereon having a basket shaped structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1467Probes or electrodes therefor using more than two electrodes on a single probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1475Electrodes retractable in or deployable from a housing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • A61B5/6858Catheters with a distal basket, e.g. expandable basket
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/06Electrodes for high-frequency therapy

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Otolaryngology (AREA)
  • Physiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明公开了医疗装置以及使用医疗装置的方法。示例性标测医疗装置可包括具有多个电极的导管轴。所述多个电极可包括第一对电极、第二对电极、第三对电极和第四对电极。所述标测医疗装置还可包括处理器,其中所述处理器可被配置为用于测定所述第一对电极之间的第一延迟、测定所述第二对电极之间的第二延迟、测定所述第三对电极之间的第三延迟、测定所述第四对电极之间的第四延迟,并且通过对所述第一延迟、所述第二延迟、所述第三延迟和所述第四延迟进行内插来测定目标信号。

Description

使用延迟内插的心脏标测
相关专利申请的交叉引用
本专利申请根据35U.S.C.§119,要求提交于2013年11月1目的美国临时申请序列号61/899,033的优先权,该申请的全文以引用方式并入本文。
技术领域
本发明涉及医疗装置,以及用于制造医疗装置的方法。更具体地讲,本发明涉及细长的体内医疗装置以及制造和使用此类装置的方法,所述细长的体内医疗装置包括与其他结构连接的管状构件。
背景技术
已开发出了多种用于医学用途(如血管内用途)的体内医疗装置。这些装置中的一些包括导线、导管等等。可通过多种不同制造方法中的任何一种来制造这些装置,并且可根据多种方法中的任何一种使用这种装置。在已知的医疗装置和方法中,每种均具有某些优点和缺点。所以一直都需要提供替代的医疗装置以及制造和使用医疗装置的替代方法。
发明内容
本发明提供了医疗装置的设计、材料、制造方法以及使用替代形式。本发明公开了示例性标测医疗装置。示例性标测医疗装置可包括:
导管轴,所述导管轴具有连接于其上的多个电极,其中所述多个电极包括第一对电极、第二对电极、第三对电极和第四对电极;
处理器,其中所述处理器被配置为:
测定所述第一对电极之间的第一延迟;
测定所述第二对电极之间的第二延迟;
测定所述第三对电极之间的第三延迟;
测定所述第四对电极之间的第四延迟;以及
通过对所述第一延迟、所述第二延迟、所述第三延迟和所述第四延迟进行内插以测定目标信号。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号还包括感测一段时间内第一对电极的电势变化。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号还包括感测该时间段内第二对电极的电势变化。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号包括计算第一中间信号。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号包括收集对应于该时间段内第一对电极的电势变化的第一组数据、收集对应于该时间段内第二对电极的电势变化的第二组数据以及时移所述第一组数据并且时移所述第二组数据。
作为上述实施例中任一项的另外一种选择或除此之外,其中计算第一中间信号包括计算时移后的第一组数据和时移后的第二组数据的加权平均数。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号还包括感测该时间段内第三对电极的电势变化。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号还包括感测该时间段内第四对电极的电势变化。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号包括计算第二中间信号。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号包括收集对应于该时间段内第三对电极的电势变化的第三组数据、收集对应于该时间段内第四对电极的电势变化的第四组数据以及时移所述第三组数据并且时移所述第四组数据。
作为上述实施例中任一项的另外一种选择或除此之外,其中计算第二中间信号包括计算时移后的第三组数据和时移后的第四组数据的加权平均数。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号包括时移第一中间信号、时移第二中间信号以及计算第一和第二中间信号的加权平均数。
作为上述实施例中任一项的另外一种选择或除此之外,其中第一对电极被定位在与第二对电极直接相邻。
作为上述实施例中任一项的另外一种选择或除此之外,其中一个或多个电极被定位在第一和第二对电极之间。
作为上述实施例中任一项的另外一种选择或除此之外,还包括消融目标信号位置的步骤。
作为上述实施例中任一项的另外一种选择或除此之外,其中第一对电极包括第一电极和第二电极。
作为上述实施例中任一项的另外一种选择或除此之外,其中第二对电极包括第三电极和第四电极。
作为上述实施例中任一项的另外一种选择或除此之外,其中第三对电极包括第一电极和第三电极。
作为上述实施例中任一项的另外一种选择或除此之外,其中第四对电极包括第二电极和第四电极。
用于递送医疗标测装置的示例性方法包括:
将所公开的实施例中任一项的医疗标测装置递送至患者心脏内。
用于标测解剖结构的示例性方法可包括:
测定医疗装置上的第一和第二电极之间的第一延迟;
测定医疗装置上的第三和第四电极之间的第二延迟;
测定医疗装置上的第一和第三电极之间的第三延迟;
测定医疗装置上的第二和第四电极之间的第四延迟;以及
通过对所述第一延迟、所述第二延迟、所述第三延迟和所述第四延迟进行内插以测定目标信号。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号还包括感测一段时间内第一电极的电势变化。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号还包括感测该时间段内第二电极的电势变化。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号包括计算第一中间信号。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号包括收集对应于该时间段内第一电极的电势变化的第一组数据、收集对应于该时间段内第二电极的电势变化的第二组数据以及时移所述第一组数据并且时移所述第二组数据。
作为上述实施例中任一项的另外一种选择或除此之外,其中计算第一中间信号包括计算时移后的第一组数据和时移后的第二组数据的加权平均数。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号还包括感测该时间段内第三电极的电势变化。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号还包括感测该时间段内第四电极的电势变化。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号包括计算第二中间信号。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号包括收集对应于该时间段内第三电极的电势变化的第三组数据、收集对应于该时间段内第四电极的电势变化的第四组数据以及时移所述第三组数据并且时移所述第四组数据。
作为上述实施例中任一项的另外一种选择或除此之外,其中计算第二中间信号包括计算时移后的第三组数据和时移后的第四组数据的加权平均数。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号包括时移第一中间信号、时移第二中间信号以及计算第一和第二中间信号的加权平均数以测定目标信号。
作为上述实施例中任一项的另外一种选择或除此之外,其中第一电极被定位在与第二电极直接相邻。
作为上述实施例中任一项的另外一种选择或除此之外,其中一个或多个电极被定位在第一和第二电极之间。
作为上述实施例中任一项的另外一种选择或除此之外,还包括消融目标信号位置的步骤。
用于标测解剖结构的示例性方法包括:
提供标测医疗装置,所述医疗装置包括具有连接于其上的多个电极的导管轴,其中所述多个电极包括第一对电极、第二对电极、第三对电极和第四对电极;
测定所述第一对电极之间的第一延迟;
测定所述第二对电极之间的第二延迟;
测定所述第三对电极之间的第三延迟;
测定所述第四对电极之间的第四延迟;以及
通过对所述第一延迟、所述第二延迟、所述第三延迟和所述第四延迟进行内插以测定目标信号。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号还包括感测一段时间内第一对电极的电势变化。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号还包括感测该时间段内第二对电极的电势变化。
作为上述实施例中任一项的另外一种选择或除此之外,其中医疗装置包括处理器,并且其中测定目标信号包括使用该处理器来计算第一中间信号。
作为上述实施例中任一项的另外一种选择或除此之外,其中该处理器收集对应于该时间段内第一对电极的电势变化的第一组数据,其中该处理器收集对应于该时间段内第二对电极的电势变化的第二组数据,并且其中该处理器时移所述第一组数据并且时移所述第二组数据。
作为上述实施例中任一项的另外一种选择或除此之外,其中使用该处理器来计算第一中间信号包括计算时移后的第一组数据和时移后的第二组数据的加权平均数。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号还包括感测该时间段内第三对电极的电势变化。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号还包括感测该时间段内第四对电极的电势变化。
作为上述实施例中任一项的另外一种选择或除此之外,其中测定目标信号包括使用该处理器来计算第二中间信号。
作为上述实施例中任一项的另外一种选择或除此之外,其中该处理器收集对应于该时间段内第三对电极的电势变化的第三组数据,其中该处理器收集对应于该时间段内第四对电极的电势变化的第四组数据,并且其中该处理器时移所述第三组数据并且时移所述第四组数据。
作为上述实施例中任一项的另外一种选择或除此之外,其中使用该处理器来计算第二中间信号包括计算时移后的第三组数据和时移后的第四组数据的加权平均数。
作为上述实施例中任一项的另外一种选择或除此之外,其中该处理器时移第一中间信号,其中该处理器时移第二中间信号,并且其中该处理器计算所述第一和第二中间信号的加权平均数以测定目标信号。
作为上述实施例中任一项的另外一种选择或除此之外,第一对电极被定位在与第二对电极直接相邻。
作为上述实施例中任一项的另外一种选择或除此之外,其中一个或多个电极被定位在第一和第二对电极之间。
作为上述实施例中任一项的另外一种选择或除此之外,还包括消融目标信号位置的步骤。
作为上述实施例中任一项的另外一种选择或除此之外,其中第一对电极包括第一电极和第二电极。
作为上述实施例中任一项的另外一种选择或除此之外,其中第二对电极包括第三电极和第四电极。
作为上述实施例中任一项的另外一种选择或除此之外,其中第三对电极包括第一电极和第三电极。
作为上述实施例中任一项的另外一种选择或除此之外,其中第四对电极包括第二电极和第四电极。
上述对于一些实施例的概述并非旨在描述本发明的每一个公开的实施例或每一种实施方式。结合以下附图和具体实施方式更具体地举例说明这些实施例。
附图说明
结合附图来考虑以下详细说明可以更全面地理解本发明,其中:
图1为导管系统的实施例的示意图,该导管系统出于诊断和治疗目的而进入体内目标组织区域。
图2为标测导管的实施例的示意图,该标测导管具有与图1的系统联合使用的篮状功能元件承载结构。
图3为包括多个标测电极的篮状功能元件的实施例的示意图。
图4举例说明了示例性兴奋波前和被布置为2×2分布的4个电极。
图5举例说明了两个示例性电描记图信号和目标信号的一个示例性电描记图。
图6举例说明了定位在坐标系中的一段时间内的示例性电描记图信号。
图7举例说明了定位在坐标系中的一段时间内的示例性电描记图信号。
图8举例说明了定位在坐标系中的一段时间内的示例性电描记图信号。
图9举例说明了定位在坐标系中的一段时间内的示例性电描记图信号。
图10举例说明了定位在坐标系中的图6-9的示例性电描记图信号。
图11举例说明了两条示例性电描记图曲线和一个示例性中间信号。
图12举例说明了两条示例性电描记图曲线和一个示例性中间信号。
图13举例说明了两个示例性中间信号和一个示例性最终内插电描记图信号。
虽然本发明可接受各种修改形式和替代形式,但其具体形式已在附图中以举例的方式示出,并且将对其进行详细描述。然而,应当理解其意图并非在于将本发明局限于所描述的具体实施例。相反,其意图在于涵盖落入本发明的精神和范围之内的所有修改形式、等同形式和替代形式。
具体实施方式
对于以下给出定义的术语,应以这些定义为准,除非在权利要求书或在本说明书中的其它地方给出了不同的定义。
不管是否明确表示,本文的所有数值都认为是由术语“大约”来修饰。术语“大约”一般是指会被本领域的技术人员认为是与所描述的值等效(即具有相同功能或结果)的数值范围。在许多情况下,术语“大约”可包括四舍五入为最接近有效值的数字。
由端点表述的数值范围包括该范围内的所有数值(例如,1至5包括1、1.5、2、2.75、3、3.80、4和5)。
如本说明书和所附权利要求中所用,除非内容另有明确说明,否则单数形式“一个”、“一种”和“所述”包括多个指代物。如本说明书和所附权利要求中所用,除非内容另有明确说明,否则术语“或”一般以包括“和/或”的意思使用。
需注意,在本说明书中提及的“一个实施例”、“一些实施例”、“其他实施例”等表明所描述的实施例可包括一个或多个特定特征、结构和/或特性。然而,此类表述并不一定是指所有实施例均包括所述特定特征、结构和/或特性。另外,当结合一个实施例描述特定特征、结构和/或特性时,应当理解,不管是否明确描述,此类特征、结构和/或特性也可结合其他实施例使用,除非有明确相反的陈述。
以下具体实施方式应参照附图来阅读,其中不同附图中的类似元件采用相同编号。附图未必按比例描绘,其示出了示例性实施例并且并不旨在限制本发明的范围。
标测心律紊乱的电生理学通常涉及将具有多个传感器的星象(constellation)导管或其他标测/感测装置引入心腔内。传感器检测心脏在传感器位置处的电活动。可能有利的是将电活动处理成电描记图信号,该电描记图信号准确表示通过相对于传感器位置的心脏组织的细胞兴奋。处理系统随后可分析信号并将信号输出至显示装置。医生可使用所显示信息实施诊断程序。然而,在一些情况下,感测电极可能无法准确检测心脏的电活动。例如,传感器可能完全检测不到信号,或者可能检测到远场电活动和/或电伪像。
处理系统可被配置为检测由心肌组织的电活动生成并且由相邻电极感测到的多种激活信号。然而,星象导管或其他标测/感测装置上有限数量的电极可能限制激活模式感测的分辨率。因此,可能有利的是插入弱的或不存在的激活信号。由于激活信号的瞬时性质和激活信号在电极间传播的非瞬时性质,标准内插法可能具有缺陷。本文所公开的方法和系统被设计用于克服标准内插法的至少一些缺陷,从而插入弱的或不存在的激活信号。例如,本文所公开的方法中的一些可包括内插法,用以说明细胞兴奋信号传播中的内在延迟影响。本文还公开了其他方法和医疗装置。
图1为系统10的示意图,该系统10出于诊断和/或治疗目的而进入体内目标组织区域。图1整体示出配置在心脏左心房中的系统10。作为另外一种选择,系统10可配置在心脏的其他区域中,诸如左心室、右心房或右心室。虽然图示实施例示出用于消融心肌组织的系统10,但作为另外一种选择,系统10(以及本文所述的方法)可被配置为用于其他组织消融应用,诸如消融前列腺、脑部、胆囊、子宫、神经、血管以及身体其他区域的组织的程序,包括不一定基于导管的系统中。
系统10包括标测探针14和消融探针16。在图1中,通过合适的经皮进入将每一者穿过静脉或动脉(例如,股静脉或股动脉)分别引入所选心脏区域12中。
作为另外一种选择,标测探针14和消融探针16可组装在一体化的结构中,以便在心脏区域12中同时引入和配置。
标测探针14可具有柔性导管主体18。导管主体18的远端带有三维多电极结构20。在图示实施例中,结构20呈限定开放内部空间22的篮状形式(参见图2),但可使用其他多电极结构,其中电极结构的几何形状和电极位置可为已知的。多电极结构20带有多个标测电极24(在图1上未明确示出,但在图2上示出),每个标测电极均具有电极位置和通道。每个电极24可被配置为感测解剖区域中的固有生理活动。在一些实施例中,电极24可被配置为检测解剖结构内的固有生理活动的激活信号,例如心脏活动的激动时间。
电极24电连接至处理系统32。可将信号线(未示出)电连接至篮状结构20上的每个电极24。线延伸通过探针14的主体18并且将每个电极24电连接至处理系统32的输入端,这将在后面更详细地描述。电极24感测解剖区域(例如心肌组织)中的固有电活动。所感测的活动(例如激活信号)由处理系统32处理,以通过生成解剖标测图(例如矢量场标测图)来协助医生识别心脏内适于诊断和/或治疗程序(例如消融术)的一个或多个部位。例如,处理系统32可识别近场信号分量,即源自与标测电极24邻近的细胞组织的激活信号,或源自阻塞性远场信号分量的激活信号(即源自非相邻组织的激活信号)。例如,近场信号分量可包括源自心房心肌组织的激活信号,而远场信号分量可包括源自心室心肌组织的激活信号。可进一步分析近场激活信号分量以找到病变的存在,并确定适于消融以对病变进行治疗(例如消融治疗)的位置。
处理系统32包括用于接收和/或处理所获得的激活信号的专用电路(例如,离散逻辑元件和一个或多个微控制器;特定应用的集成电路(ASICs);或者特殊配置的可编程装置,诸如可编程逻辑器件(PLD)或现场可编程门阵列(FPGA))。在一些实施例中,处理系统32包括通用微处理器和/或专用微处理器(例如,可优化用于处理激活信号的数字信号处理器或DSP),微处理器执行指令以接收、分析和显示与所接收的激活信号相关的信息。在此类具体实施中,处理系统32可包括程序指令,该程序指令在被执行时进行部分信号处理。程序指令可包括例如由微处理器或微控制器执行的固件、微码或应用程序代码。上述具体实施仅仅是示例性的,并且读者将理解的是,处理系统32可采用任何合适的形式。
在一些实施例中,处理系统32可被配置为测量与电极24相邻的心肌组织中的固有电活动。例如,在一些实施例中,处理系统32被配置为检测与被标测的解剖特征中的主导转子或发散激活模式相关的固有电活动。例如,主导转子和/或发散激活模式可在引发和维持心房纤颤中发挥作用,并且转子路径、转子芯和/或发散焦点的消融可有效终止心房纤颤。在任一情况下,处理系统32对所感测的激活信号进行处理,以生成相关特性的显示,诸如APD标测图、矢量场标测图、轮廓标测图、可靠性标测图、电描记图、心脏动作电位等等。医生可使用相关特性来识别适用于消融治疗的部位。
消融探针16包括带有一个或多个消融电极36的柔性导管主体34。该一个或多个消融电极36电连接至射频(RF)发生器37,该发生器37被配置为将消融能量递送至该一个或多个消融电极36。消融探针16可相对于待治疗的解剖特征以及结构20移动。当该一个或多个消融电极36相对于待治疗的组织定位时,消融探针16可定位在结构20的电极24之间或与结构20的电极24相邻。
处理系统32将供医生查看的相关特性的显示输出至装置40。在图示实施例中,装置40为CRT、LED或其他类型的显示器,或打印机。装置40以对医生最有用的格式呈现相关特征。另外,处理系统32可生成显示在装置40上的位置识别输出,该位置识别输出有助于医生引导消融电极36与被识别为消融部位处的组织发生接触。
图2示出标测导管14的实施例,该标测导管在远端处包括适用于图1所示的系统10的电极24。标测导管14具有柔性导管主体18,其远端带有三维结构20,该三维结构20被配置为带有标测电极或传感器24。标测电极24感测心肌组织中的固有电活动,例如激活信号,所感测的活动随后由处理系统32处理,以协助医生通过所生产和所显示的相关特性来识别具有心律紊乱或其他心肌病变的一个或多个部位。随后该信息可用于确定向所识别的部位施加适当治疗(如消融)的适当位置,并且/或者将所述一个或多个消融电极36导航至所识别的部位。
图示三维结构20包括基座构件41和端盖42,在基座构件41和端盖42之间,柔性样条44在这两者之间大致以周向隔开的关系延伸。如上所述,三维结构20呈限定开放内部空间22的篮状形式。在一些实施例中,样条44由诸如镍钛合金或硅橡胶的弹性惰性材料制成,并且以弹性预拉紧状态连接在基座构件41和端盖42之间,以弯曲并适形于其接触的组织表面。在图示实施例中,8个样条44形成三维结构20。在其他实施例中可使用更多或更少的样条44。如图所示,每个样条44带有8个标测电极24。在三维结构20的其他实施例中,可在每个样条44上设置更多或更少的标测电极24。在图示实施例中,三维结构20相对较小(例如,直径为40mm或更小)。在可供选择的实施例中,三维结构20甚至更小或更大(例如,直径为40mm或更大)。
可滑动护套50可沿导管主体18的主轴移动。向前(即,朝向远端)移动护套50使得护套50移至三维结构20上方,从而使结构20收缩成适合在解剖结构(诸如心脏)的内部空间中引入和/或移除的紧凑薄型状态。与此相反,向后(即,朝向近端)移动护套50将三维结构20暴露在外,从而允许结构20弹性展开并且呈现图2所示的预拉紧位置。
将信号线(未示出)电连接至每个标测电极24。线延伸穿过标测导管20的主体18进入到柄部54,线在柄部54中连接至外部连接器56,该连接器56可为多针连接器。连接器56将标测电极24电连接至处理系统32。有关标测系统以及标测导管生成信号的处理方法的进一步细节在以下专利中有所讨论:名称为“SystemsandMethodsforGuidingMovableElectrodeElementswithinMultipleElectrodeStructure(引导多电极结构内的可移动电极元件的系统和方法)”的美国专利No.6,070,094,名称为“CardiacMappingandAblationSystems(心脏标测和消融系统)”的美国专利No.6,233,491,以及名称为“SystemsandProcessesforRefiningaRegisteredMapofaBodyCavity(用于细化体腔的配准标测图的系统和方法)”的美国专利No.6,735,465,这些专利的公开内容据此以引用方式明确并入本文。
为了举例说明系统10的操作,图3为包括多个标测电极24的篮状结构20实施例的示意性侧视图。在图示实施例中,篮状结构包括64个标测电极24。标测电极24以8个电极(标记为1、2、3、4、5、6、7和8)为一组被设置在8个样条(标记为A、B、C、D、E、F、G和H)的每一个上。虽然64个标测电极24的布置方式示出为设置在篮状结构20上,但作为另外一种选择,标测电极24可以不同数量布置在不同结构上和/或不同位置中。另外,多个篮状结构可配置在相同或不同解剖结构中,以同时获得来自不同解剖结构的信号。
在篮状结构20被定位在与待治疗的解剖结构(例如,心脏的左心房、左心室、右心房或右心室)相邻之后,处理系统32被配置为记录来自与解剖结构的生理活动相关的每个电极24通道的激活信号,即电极24测量解剖结构的生理机能的固有电激活信号。可响应于固有生理活动或基于由多个电极24中的至少一者制定的预定起搏方案来感测生理活动的激活信号。
图4示出在被布置为2×2电极分布的4个电极(E1、E2、E3和E4)方向上传播的示例性细胞激活波前。可以设想的是,本发明也可以适用于任何数量的电极分布。在本实施例中,电极构型可代表被布置在星象导管、篮状结构或类似感测装置上的4个电极。图4大致示出波前矢量箭头43朝向电极E1、E2、E3和E4行进的细胞击发方向。在本实例中,波前矢量43的方向表明波前可能会先到达电极E1,然后到达电极E2、E3或E4。当电极E1下面的细胞响应于膜电位的变化而去极化时,电极E1可“感测”一个“激活事件”,即相对于细胞的静息状态势能的电势变化。作为响应,E1可收集电势数据变化并将其发送至处理系统32,处理系统32可将电描记图信号输出至显示器40。类似地,如果相邻细胞响应于相邻细胞的电势变化而击发,那么波前可朝向电极E2传播。电极E2随后可以与电极E1类似的方式感测电势变化。在感测E1至E2的细胞击发的电势变化之间的时间流逝可表征为E1和E2感测之间的延迟时间间隔。
正常心脏中的细胞激活波前传播的方向可在优选方向上发生。然而,在疾病状态下,心肌组织(即,心肌细胞)可能不会“正常”表现。相反,细胞击发可在相对于沿星象导管或或类似感测装置的感测电极的位置的多个方向上发生。例如,图4所示的示例性波前矢量43可表示细胞击发的一个路径,该路径相对于电极E1、E2、E3和E4的X方向或Y方向上均不直接对齐。然而,波前矢量可被理解为X方向上的波前矢量分量和Y方向上的波前矢量分量之和。因此,当激活波前接近电极E1至电极E4时,电极E1可能会首先感测示例性波前,然后依次感测电极E2、E3和E4,其中波前分别到达电极E2至E4中的每一个。
可以理解,如果第二波前从不同于第一波前的方向接近电极E1至E4,那么电极E1至E4可根据细胞击发相对于电极分布发生的准确路径,以不同于第一波前的顺序感测第二波前传播。例如,波前可先到达E3,然后到达E4、E1,最后到达E2。此外,可以理解,由于每个波前矢量为X方向和Y方向上的矢量分量之和,因此可在以任何顺序感测E1、E2、E3和E4中任一者之间计算延迟。
如上所指出的那样,可能有利的是感测、标测和显示由心肌组织的电活动生成的细胞激活传播信号。例如,可能有利的是显示与心肌细胞的放电相关的激活信号。信号的形状可以指示异常波前兴奋传播。
电极沿星象导管或其他标测/感测装置的布置方式、尺寸、间距和位置,与目标解剖结构的具体几何形状结合,可决定感测电极收集和传输目标细胞组织电活动的精确度。例如,存在于星象导管或其他感测装置上的有限数量的电极可降低从目标激活模式感测中所获得的数据的分辨率。由于在感测装置上增加电极数量或减小电极之间的间距可能不实际或不利,因此可能有利的是插入发生在电极之间的电信号。例如,除了感测电极位置E1至E4处的细胞击发之外,有利的是粗略估计电极E1至E4中间某些位置的细胞击发。
图5示出生成于细胞兴奋波前的两个示例性电描记图,该细胞兴奋波前经过两个示例性电极E1和E2下面。在该实例中,波前在某一时间先经过E1下面,再经过E2下面。如图所示,每个电极传感器的示例性电描记图直观地表示电极E1和E2下面的细胞在不同时间的去极化。E1下面的细胞击发和E2下面的细胞击发之间的时间延迟可称为E1和E2之间的“延迟”。另外,图5示出理论电极(标记为E12)的“内插”电描记图,该理论电极理论上将位于E1和E2之间的某一点。不考虑存在于E1和E2的细胞击发之间的延迟,利用标准线性内插法可得到图5中虚线46表示的电描记图。因此,使用标准内插法得到内插电描记图,该内插电描记图的形状对于衍生出该内插电描记图(E12)的电描记图(即E1和E2)并没有代表性。因此,说明延迟影响的内插法可提供更准确的内插电描记图。
图6示出生成于示例性电极E1的示例性电描记图60,该示例性电极E1位于笛卡儿坐标系中的示例性位置。虽然图6中E1的位置位于X和Y坐标内,但可以设想的是,E1可位于三维空间中的任何位置。电极E1可表示沿星象导管或类似感测装置的样条定位的电极,诸如本文中所示的那些电极。例如,细胞激活波前在一段时间内经过E1下面,生成电描记图60,该电描记图60以图形方式显示去极化细胞相对于其静息电压的电压电位。
类似地,图7至图9示出生成于示例性电极E2、E3和E4的示例性电描记图62、64、66,该示例性电极E2、E3和E4位于笛卡儿坐标系中的示例性位置。虽然图7至图9中E2、E3和E4的位置位于X和Y坐标内,但可以设想的是,E2、E3和E4可位于三维空间中的任何位置。电极E2、E3和E4可表示沿星象导管或类似感测装置的样条定位的电极。例如,细胞激活波前在一段时间内经过E2、E3或E4下面,生成电描记图62、64、66,这些电描记图以图形方式显示去极化细胞相对于其静息电压的电压电位。
图10为图6至图9中所述示例性电极E1至E4的电描记图60、62、64、66的集合的示意性实例。由图10可见,电极E1至E4中的每一个均彼此分开地被定位于笛卡尔坐标系中的示例性位置。与图6-9类似,虽然图7-9中E2、E3和E4的位置位于X和Y坐标内,但可以设想的是,E2、E3和E4可位于三维空间中的任何位置。电极E2、E3和E4可表示沿星象导管或类似感测装置的样条定位的电极。例如,细胞激活波前在一段时间内经过E2、E3或E4下面,生成电描记图60、62、64、66,这些电描记图以图形方式显示去极化细胞相对于其静息电压的电压电位。另外,图10示出示例性目标电极(标记为ET)的位置。可能有利的是根据电极E1至E4所感测和所收集的数据对目标电极ET的电描记图进行内插。
因此,一个示例性实施例可包括导管主体18,该导管主体包括被设计为插入患者心脏心腔的多个电极24。例如,电极结构20可以是星象导管或类似感测装置。如上所述,该多个电极24可连接至处理器32。处理器32可收集、分析并输出与上文所述示例性电极E1至E4相关的数据。另外,处理器32可分析并生成上文所述示例性目标电极ET的内插电描记图。处理器32可将电描记图相关数据输出至显示装置40。
图11示出了通过对第一延迟、第二延迟、第三延迟和第四延迟进行内插来测定目标信号的示例性起始步骤。可以预期,处理器32也能够通过对第一延迟、第二延迟、第三延迟和第四延迟进行内插来测定目标信号。与上文所述相似,当波前移动到E1和E2下面时,示例性电极E1和E2可感测并采集细胞波前兴奋的电压电位。电极E2可在相比于E1稍后的时间点上感测波前。因此,在E1和E2对兴奋波前的感测之间存在延迟。
心脏动作电位能够以可预测的速率发出。因此,心脏细胞的兴奋信号能够以可预测的速度传播。另外,如果电极E1和E2位于星象导管或类似感测装置上,则它们相对于彼此的位置可为已知的。因此,知道E1和E2相对于彼此的相对位置以及兴奋波前在E1和E2下面传播时的速度,即可计算E1和E2之间的延迟。该实例示出了沿着X轴排列的电极E1和E2。但如上所述,可以理解的是,可根据波前矢量的矢量分量之和,计算任何方向上任何波前兴奋在两个电极之间的延迟。另外,可利用类似的方法计算E1和E2中间任一点的延迟。例如,可计算与目标电极ET的位置相对应的延迟。可利用以下公式计算目标电极ET的延迟:
LX1=X/dX*L12
一旦计算出延迟LX1,就可通过处理器32对示例性电极E1和E2处感测并采集到的电描记图信号进行时移。如果根据未考虑任何延迟效应的方法对信号进行内插,则可能引入误差,对电极E1和E2处的信号进行时移可减小该误差。因此,为了计入细胞波前传播中固有的延迟效应,可将E1采集的示例性电描记图可向前时移延迟LX1,而电极E2可向后时移延迟LX1
将E1和E2处的电描记图信号时移延迟LX1后,可通过处理器32计算所得信号均值,以计算中间信号IX168。电描记图信号(例如,电极E1和E2处感测并采集的信号)对中间信号IX168的影响可根据它们相对于最终目标信号的理论位置进行加权。例如,可能需要将电描记图信号插入到定位更靠近E1的理论电极ET处。那样,E1处采集的信号的“影响”可与其到ET的距离成正比例。可利用以下公式计算E1和E2的加权平均信号,该加权平均信号被标识为IX168并在图11中照此标记:
IX1(t)=(1-X/dX)*E1(t-LX1)+(X/dX)*(E2)*(t+L12-LX1)
图12示出了根据相对于中间信号IX168公开的方法,由电描记图信号E3和E4生成中间信号IX270。可利用以下公式计算E3和E4的加权平均信号,该加权平均信号被标识为IX2并在图12中照此标记:
LX2=X/dX*L34
IX2(t)=(1-X/dX)*E3(t-LX2)+(X/dX)*(E4)*(t+L34-LX2)
图13示出了最终内插信号72的生成,该最终内插信号代表目标电极ET处的电描记图信号。与上文中关于计算X方向上的延迟的讨论相似,可计算代表在Y方向上行进的细胞兴奋波前传播持续时间的延迟。例如,可利用以下公式分别计算目标电极ET在Y方向上电极1和3以及电极2和4之间的延迟:
LY1=y/dY*L13
LY2=y/dY*L24
在一种与关于沿着X轴时移信号的讨论相似的方法中,要说明生成ET内插信号过程中的延迟效应,可在Y轴方向上对中间信号IX1和IX2进行时移。例如,中间信号IX1可正向时移延迟LY。可通过以下公式计算LY
LY=(1-X/dX)*LY1+(X/dX)*LY2
相似地,中间信号IX2可反向时移延迟LGL。可通过以下公式计算LGL
LGL=(1-X/dX)*L13+(X/dX)*L24
要获得最终内插信号72,可通过处理器32计算所得时移中间信号IX168和IX270的均值。中间信号IX168还可根据其相对于IX168和IX270的理论位置进行加权。例如,可能需要将电描记图信号插入到定位更靠近IX168的理论电极ET处,因而可照此对IX168的“影响”进行加权。可利用以下公式,通过计算信号IX168和IX270的加权均值来计算最终内插信号72:
ET(t)=(1-y/dY)*IX1(t-LY)+(y/dY)*IX2(t+LGL-LY)
根据彼此正交定位于任意XY坐标系中的电极E1至E4,可得出以上结论。然而,电极E1和E4在示例性X和Y坐标内的定位仅为它们可能如何相对于彼此定位的一个例子。本发明设想,内插信号可由电描记图信号生成,所述电描记图信号采集自多个电极对之间的多种空间关系。
另外,在本发明中,目标电极ET的内插沿着X方向开始。沿着X方向开始内插计算仅仅是一种惯例。本文所公开的方法可沿着Y(或任何其他)方向开始。因此,在公开的实例中以X和Y方向描述的步骤可互换,即它们会分别在Y和X方向上进行。
应当理解,本发明在许多方面仅仅是示例性的。在不超出本发明范围的前提下,可对细节,具体地讲与形状、尺寸和步骤布置有关的细节,做出改变。这可包括在适当的程度上,在其他实施例中使用一个示例性实施例的任何一种特征。当然,本发明的范围由所附权利要求书表述的语言来限定。

Claims (15)

1.一种标测医疗装置,包括:
导管轴,所述导管轴具有连接于其上的多个电极,其中所述多个电极包括第一对电极、第二对电极、第三对电极和第四对电极;
处理器,其中所述处理器被配置为:
测定所述第一对电极之间的第一延迟;
测定所述第二对电极之间的第二延迟;
测定所述第三对电极之间的第三延迟;
测定所述第四对电极之间的第四延迟;以及
通过对所述第一延迟、所述第二延迟、所述第三延迟和所述第四延迟进行内插以测定目标信号。
2.根据权利要求1所述的医疗装置,其中测定所述目标信号还包括感测所述第一对电极和/或所述第二对电极在一定时间段内的电势变化,并且其中测定所述目标信号包括计算第一中间信号。
3.根据权利要求1至2中任一项所述的医疗装置,其中测定所述目标信号包括:收集对应于所述时间段内所述第一对电极的所述电势变化的第一组数据;收集对应于所述时间段内所述第二对电极的所述电势变化的第二组数据;以及时移所述第一组数据并且时移所述第二组数据。
4.根据权利要求2至4中任一项所述的医疗装置,其中计算所述第一中间信号包括计算所述时移后的第一组数据和所述时移后的第二组数据的加权均值。
5.根据权利要求1至4中任一项所述的医疗装置,其中测定所述目标信号还包括感测所述第三对电极和/或所述第四对电极在所述时间段内的电势变化,并且其中测定所述目标信号包括计算第二中间信号。
6.根据权利要求1至5中任一项所述的医疗装置,其中测定所述目标信号包括:收集对应于所述时间段内所述第三对电极的所述电势变化的第三组数据;收集对应于所述时间段内所述第四对电极的所述电势变化的第四组数据;以及时移所述第三组数据并且时移所述第四组数据。
7.根据权利要求5至6中任一项所述的医疗装置,其中计算第二中间信号包括计算所述时移后的第三组数据和所述时移后的第四组数据的加权均值。
8.根据权利要求5至7中任一项所述的医疗装置,其中测定所述目标信号包括时移所述第一中间信号、时移所述第二中间信号以及计算所述第一和所述第二中间信号的加权均值。
9.根据权利要求1至8中任一项所述的医疗装置,其中所述第一对电极被定位在与所述第二对电极直接相邻。
10.根据权利要求1至9中任一项所述的医疗装置,其中一个或多个电极被定位在所述第一和第二对电极之间。
11.根据权利要求1至10中任一项所述的医疗装置,还包括消融所述目标信号位置的步骤。
12.根据权利要求1至11中任一项所述的医疗装置,其中所述第一对电极包括第一电极和第二电极。
13.根据权利要求1至12中任一项所述的医疗装置,其中所述第二对电极包括第三电极和第四电极。
14.根据权利要求1至13中任一项所述的医疗装置,其中所述第三对电极包括第一电极和第三电极。
15.根据权利要求1至14中任一项所述的医疗装置,其中所述第四对电极包括第二电极和第四电极。
CN201480057380.0A 2013-11-01 2014-10-30 使用延迟内插的心脏标测 Expired - Fee Related CN105636514B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361899033P 2013-11-01 2013-11-01
US61/899033 2013-11-01
PCT/US2014/063148 WO2015066322A1 (en) 2013-11-01 2014-10-30 Cardiac mapping using latency interpolation

Publications (2)

Publication Number Publication Date
CN105636514A true CN105636514A (zh) 2016-06-01
CN105636514B CN105636514B (zh) 2020-06-05

Family

ID=51897474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480057380.0A Expired - Fee Related CN105636514B (zh) 2013-11-01 2014-10-30 使用延迟内插的心脏标测

Country Status (4)

Country Link
US (1) US10076258B2 (zh)
EP (1) EP3062694A1 (zh)
CN (1) CN105636514B (zh)
WO (1) WO2015066322A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2881462C (en) 2012-08-09 2020-07-14 University Of Iowa Research Foundation Catheters, catheter systems, and methods for puncturing through a tissue structure
US10076258B2 (en) 2013-11-01 2018-09-18 Boston Scientific Scimed, Inc. Cardiac mapping using latency interpolation
EP3091921B1 (en) 2014-01-06 2019-06-19 Farapulse, Inc. Apparatus for renal denervation ablation
EP3113671B1 (en) 2014-03-07 2023-10-25 Boston Scientific Scimed, Inc. Medical devices for mapping cardiac tissue
JP2017509399A (ja) 2014-03-11 2017-04-06 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 心臓組織をマッピングするための医療用デバイス
EP3139997B1 (en) 2014-05-07 2018-09-19 Farapulse, Inc. Apparatus for selective tissue ablation
WO2015192018A1 (en) 2014-06-12 2015-12-17 Iowa Approach Inc. Method and apparatus for rapid and selective tissue ablation with cooling
EP3154463B1 (en) 2014-06-12 2019-03-27 Farapulse, Inc. Apparatus for rapid and selective transurethral tissue ablation
WO2016060983A1 (en) 2014-10-14 2016-04-21 Iowa Approach Inc. Method and apparatus for rapid and safe pulmonary vein cardiac ablation
EP3270776B1 (en) * 2015-05-12 2020-05-27 St. Jude Medical, Cardiology Division, Inc. Systems and methods for orientation independent sensing
US20210282693A1 (en) * 2019-04-18 2021-09-16 Ablacon Inc. Systems, Devices, Components and Methods for Detecting the Locations of Sources of Cardiac Rhythm Disorders in a Patient's Heart and Generating an Estimate or Probability of the Patient Being Free from Atrial Fibrillation
US10130423B1 (en) 2017-07-06 2018-11-20 Farapulse, Inc. Systems, devices, and methods for focal ablation
US10660702B2 (en) 2016-01-05 2020-05-26 Farapulse, Inc. Systems, devices, and methods for focal ablation
US20170189097A1 (en) 2016-01-05 2017-07-06 Iowa Approach Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US10172673B2 (en) 2016-01-05 2019-01-08 Farapulse, Inc. Systems devices, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US10360700B2 (en) * 2016-02-11 2019-07-23 Biosense Webster (Israel) Ltd. Interpolation of dynamic three-dimensional maps
WO2017218734A1 (en) 2016-06-16 2017-12-21 Iowa Approach, Inc. Systems, apparatuses, and methods for guide wire delivery
US9987081B1 (en) 2017-04-27 2018-06-05 Iowa Approach, Inc. Systems, devices, and methods for signal generation
US10617867B2 (en) 2017-04-28 2020-04-14 Farapulse, Inc. Systems, devices, and methods for delivery of pulsed electric field ablative energy to esophageal tissue
CN115844523A (zh) 2017-09-12 2023-03-28 波士顿科学医学有限公司 用于心室局灶性消融的系统、设备和方法
EP3790483A1 (en) 2018-05-07 2021-03-17 Farapulse, Inc. Systems, apparatuses, and methods for filtering high voltage noise induced by pulsed electric field ablation
JP7399881B2 (ja) 2018-05-07 2023-12-18 ファラパルス,インコーポレイテッド 心外膜アブレーションカテーテル
WO2019217433A1 (en) 2018-05-07 2019-11-14 Farapulse, Inc. Systems, apparatuses and methods for delivery of ablative energy to tissue
US10687892B2 (en) 2018-09-20 2020-06-23 Farapulse, Inc. Systems, apparatuses, and methods for delivery of pulsed electric field ablative energy to endocardial tissue
US11642090B2 (en) 2019-05-29 2023-05-09 Sirona Medical Technologies, Inc. Cardiac electrical mapping and ablation
US10625080B1 (en) 2019-09-17 2020-04-21 Farapulse, Inc. Systems, apparatuses, and methods for detecting ectopic electrocardiogram signals during pulsed electric field ablation
US11065047B2 (en) 2019-11-20 2021-07-20 Farapulse, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US11497541B2 (en) 2019-11-20 2022-11-15 Boston Scientific Scimed, Inc. Systems, apparatuses, and methods for protecting electronic components from high power noise induced by high voltage pulses
US10842572B1 (en) 2019-11-25 2020-11-24 Farapulse, Inc. Methods, systems, and apparatuses for tracking ablation devices and generating lesion lines
US11950930B2 (en) * 2019-12-12 2024-04-09 Biosense Webster (Israel) Ltd. Multi-dimensional acquisition of bipolar signals from a catheter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657755A (en) * 1993-03-11 1997-08-19 Desai; Jawahar M. Apparatus and method for cardiac ablation
US5687737A (en) * 1992-10-09 1997-11-18 Washington University Computerized three-dimensional cardiac mapping with interactive visual displays
US20130173222A1 (en) * 2011-12-29 2013-07-04 Eric J. Voth Method and system for constructing an electrophysiology map

Family Cites Families (211)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014590A (en) 1974-03-04 2000-01-11 Ep Technologies, Inc. Systems and methods employing structures having asymmetric mechanical properties to support diagnostic or therapeutic elements in contact with tissue in interior body regions
US5904680A (en) 1992-09-25 1999-05-18 Ep Technologies, Inc. Multiple electrode support structures having optimal bio-mechanical characteristics
US4433380A (en) 1975-11-25 1984-02-21 Philips Medical Systems, Inc. Tomographic scanner
US4690152A (en) 1985-10-23 1987-09-01 American Mediscan, Inc. Apparatus for epithelial tissue impedance measurements
US5254088A (en) 1990-02-02 1993-10-19 Ep Technologies, Inc. Catheter steering mechanism
US5527292A (en) 1990-10-29 1996-06-18 Scimed Life Systems, Inc. Intravascular device for coronary heart treatment
US5383874A (en) 1991-11-08 1995-01-24 Ep Technologies, Inc. Systems for identifying catheters and monitoring their use
US5906614A (en) 1991-11-08 1999-05-25 Ep Technologies, Inc. Tissue heating and ablation systems and methods using predicted temperature for monitoring and control
WO1994021170A1 (en) 1993-03-16 1994-09-29 Ep Technologies, Inc. Flexible circuit assemblies employing ribbon cable
WO1994021166A1 (en) 1993-03-16 1994-09-29 Ep Technologies, Inc. Multiple electrode support structures
US6233491B1 (en) 1993-03-16 2001-05-15 Ep Technologies, Inc. Cardiac mapping and ablation systems
US20020115941A1 (en) 1993-04-15 2002-08-22 Scimed Life Systems, Inc. Systems and methods using annotated images for controlling the use of diagnostic or therapeutic instruments in interior body regions
US5582609A (en) 1993-10-14 1996-12-10 Ep Technologies, Inc. Systems and methods for forming large lesions in body tissue using curvilinear electrode elements
US6129724A (en) 1993-10-14 2000-10-10 Ep Technologies, Inc. Systems and methods for forming elongated lesion patterns in body tissue using straight or curvilinear electrode elements
DE69434664T2 (de) 1993-10-14 2006-11-09 Boston Scientific Ltd., Barbados Elektroden zur erzeugung bestimmter muster von pathologisch verändertem gewebe
US5797903A (en) 1996-04-12 1998-08-25 Ep Technologies, Inc. Tissue heating and ablation systems and methods using porous electrode structures with electrically conductive surfaces
US5840076A (en) 1996-04-12 1998-11-24 Ep Technologies, Inc. Tissue heating and ablation systems and methods using electrode structures with distally oriented porous regions
WO1995020348A1 (en) 1994-01-28 1995-08-03 Ep Technologies, Inc. Matching electrical characteristics and propagation velocities to locate ablation sites
US5485849A (en) 1994-01-31 1996-01-23 Ep Technologies, Inc. System and methods for matching electrical characteristics and propagation velocities in cardiac tissue
US5577509A (en) 1994-01-28 1996-11-26 Ep Technologies, Inc. Systems and methods for examining the electrical characteristics and timing of electrical events in cardiac tissue
WO1995020344A1 (en) 1994-01-28 1995-08-03 Ep Technologies, Inc. System for examining cardiac tissue electrical characteristics
US5487391A (en) 1994-01-28 1996-01-30 Ep Technologies, Inc. Systems and methods for deriving and displaying the propagation velocities of electrical events in the heart
WO1995020345A1 (en) 1994-01-28 1995-08-03 Ep Technologies, Inc. Minimizing blood contact in cardiac tissue measurements
US5494042A (en) 1994-01-28 1996-02-27 Ep Technologies, Inc. Systems and methods for deriving electrical characteristics of cardiac tissue for output in iso-characteristic displays
US5968040A (en) 1994-03-04 1999-10-19 Ep Technologies, Inc. Systems and methods using asymmetric multiple electrode arrays
US6165169A (en) 1994-03-04 2000-12-26 Ep Technologies, Inc. Systems and methods for identifying the physical, mechanical, and functional attributes of multiple electrode arrays
US6216043B1 (en) 1994-03-04 2001-04-10 Ep Technologies, Inc. Asymmetric multiple electrode support structures
US5911739A (en) 1994-03-04 1999-06-15 Ep Technologies, Inc. Structures for supporting diagnostic or therapeutic elements in internal body regions
US5598848A (en) 1994-03-31 1997-02-04 Ep Technologies, Inc. Systems and methods for positioning multiple electrode structures in electrical contact with the myocardium
EP0767628B1 (en) 1994-06-27 2004-01-14 Boston Scientific Limited Non-linear control systems for heating and ablating body tissue
US6113591A (en) 1994-06-27 2000-09-05 Ep Technologies, Inc. Systems and methods for sensing sub-surface temperatures in body tissue
CA2194062C (en) 1994-06-27 2005-06-28 Dorin Panescu System for controlling tissue ablation using temperature sensors
JP3578460B2 (ja) 1994-06-27 2004-10-20 ボストン サイエンティフィック リミテッド 体内の温度を感知するためのシステム及び方法
US5735846A (en) 1994-06-27 1998-04-07 Ep Technologies, Inc. Systems and methods for ablating body tissue using predicted maximum tissue temperature
US5853409A (en) 1994-06-27 1998-12-29 E.P. Technologies, Inc. Systems and apparatus for sensing temperature in body tissue
US6030382A (en) 1994-08-08 2000-02-29 Ep Technologies, Inc. Flexible tissue ablatin elements for making long lesions
US5797905A (en) 1994-08-08 1998-08-25 E. P. Technologies Inc. Flexible tissue ablation elements for making long lesions
US5810802A (en) 1994-08-08 1998-09-22 E.P. Technologies, Inc. Systems and methods for controlling tissue ablation using multiple temperature sensing elements
US5740808A (en) 1996-10-28 1998-04-21 Ep Technologies, Inc Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions
US5722402A (en) 1994-10-11 1998-03-03 Ep Technologies, Inc. Systems and methods for guiding movable electrode elements within multiple-electrode structures
US5876336A (en) 1994-10-11 1999-03-02 Ep Technologies, Inc. Systems and methods for guiding movable electrode elements within multiple-electrode structure
US5941251A (en) 1994-10-11 1999-08-24 Ep Technologies, Inc. Systems for locating and guiding operative elements within interior body regions
US5630425A (en) 1995-02-17 1997-05-20 Ep Technologies, Inc. Systems and methods for adaptive filtering artifacts from composite signals
US5605157A (en) 1995-02-17 1997-02-25 Ep Technologies, Inc. Systems and methods for filtering signals derived from biological events
US5601088A (en) 1995-02-17 1997-02-11 Ep Technologies, Inc. Systems and methods for filtering artifacts from composite signals
US5792064A (en) 1995-02-17 1998-08-11 Panescu; Dorin Systems and methods for analyzing cardiac biopotential morphologies by cross-correlation
US5595183A (en) 1995-02-17 1997-01-21 Ep Technologies, Inc. Systems and methods for examining heart tissue employing multiple electrode structures and roving electrodes
US5609157A (en) 1995-02-17 1997-03-11 Ep Technologies, Inc. Systems and methods for analyzing biopotential morphologies in body tissue using iterative techniques
US6101409A (en) 1995-02-17 2000-08-08 Ep Technologies, Inc. Systems and methods for analyzing biopotential morphologies in body tissue
US5711305A (en) 1995-02-17 1998-01-27 Ep Technologies, Inc. Systems and methods for acquiring endocardially or epicardially paced electrocardiograms
US5722416A (en) 1995-02-17 1998-03-03 Ep Technologies, Inc. Systems and methods for analyzing biopotential morphologies in heart tissue to locate potential ablation sites
ATE220307T1 (de) 1995-02-17 2002-07-15 Boston Scient Ltd Anordnung für sequentielles messen biologischer ereignisse
WO1996034570A1 (en) 1995-05-01 1996-11-07 Ep Technologies, Inc. Systems and methods for obtaining desired lesion characteristics while ablating body tissue
US6030379A (en) 1995-05-01 2000-02-29 Ep Technologies, Inc. Systems and methods for seeking sub-surface temperature conditions during tissue ablation
US6053912A (en) 1995-05-01 2000-04-25 Ep Techonologies, Inc. Systems and methods for sensing sub-surface temperatures in body tissue during ablation with actively cooled electrodes
US5688267A (en) 1995-05-01 1997-11-18 Ep Technologies, Inc. Systems and methods for sensing multiple temperature conditions during tissue ablation
US6293943B1 (en) 1995-06-07 2001-09-25 Ep Technologies, Inc. Tissue heating and ablation systems and methods which predict maximum tissue temperature
US6022346A (en) 1995-06-07 2000-02-08 Ep Technologies, Inc. Tissue heating and ablation systems and methods using self-heated electrodes
US5891136A (en) 1996-01-19 1999-04-06 Ep Technologies, Inc. Expandable-collapsible mesh electrode structures
US5961513A (en) 1996-01-19 1999-10-05 Ep Technologies, Inc. Tissue heating and ablation systems and methods using porous electrode structures
US5853411A (en) 1996-01-19 1998-12-29 Ep Technologies, Inc. Enhanced electrical connections for electrode structures
US5868736A (en) 1996-04-12 1999-02-09 Ep Technologies, Inc. Systems and methods to control tissue heating or ablation with porous electrode structures
US5879348A (en) 1996-04-12 1999-03-09 Ep Technologies, Inc. Electrode structures formed from flexible, porous, or woven materials
US5846239A (en) 1996-04-12 1998-12-08 Ep Technologies, Inc. Tissue heating and ablation systems and methods using segmented porous electrode structures
US5836874A (en) 1996-04-08 1998-11-17 Ep Technologies, Inc. Multi-function electrode structures for electrically analyzing and heating body tissue
US6071278A (en) 1996-02-28 2000-06-06 Ep Technologies, Inc. Tissue heating and ablation systems and methods using porous electrode structures with specified electrical resistivities
US5871483A (en) 1996-01-19 1999-02-16 Ep Technologies, Inc. Folding electrode structures
US5846238A (en) 1996-01-19 1998-12-08 Ep Technologies, Inc. Expandable-collapsible electrode structures with distal end steering or manipulation
US5925038A (en) 1996-01-19 1999-07-20 Ep Technologies, Inc. Expandable-collapsible electrode structures for capacitive coupling to tissue
US5830213A (en) 1996-04-12 1998-11-03 Ep Technologies, Inc. Systems for heating and ablating tissue using multifunctional electrode structures
US5848969A (en) 1996-10-28 1998-12-15 Ep Technologies, Inc. Systems and methods for visualizing interior tissue regions using expandable imaging structures
US5752518A (en) 1996-10-28 1998-05-19 Ep Technologies, Inc. Systems and methods for visualizing interior regions of the body
US5908445A (en) 1996-10-28 1999-06-01 Ep Technologies, Inc. Systems for visualizing interior tissue regions including an actuator to move imaging element
US5722403A (en) 1996-10-28 1998-03-03 Ep Technologies, Inc. Systems and methods using a porous electrode for ablating and visualizing interior tissue regions
US5904651A (en) 1996-10-28 1999-05-18 Ep Technologies, Inc. Systems and methods for visualizing tissue during diagnostic or therapeutic procedures
US6076012A (en) 1996-12-19 2000-06-13 Ep Technologies, Inc. Structures for supporting porous electrode elements
AU5722198A (en) 1996-12-20 1998-07-17 Ep Technologies Inc Unified switching system for electrophysiological stimulation and signal recording and analysis
US6625482B1 (en) 1998-03-06 2003-09-23 Ep Technologies, Inc. Graphical user interface for use with multiple electrode catheters
US5916163A (en) 1997-03-07 1999-06-29 Ep Technologies, Inc. Graphical user interface for use with multiple electrode catheters
US5954661A (en) 1997-03-31 1999-09-21 Thomas Jefferson University Tissue characterization and treatment using pacing
US5868680A (en) * 1997-09-23 1999-02-09 The Regents Of The University Of California Quantitative characterization of fibrillatory spatiotemporal organization
US6086532A (en) 1997-09-26 2000-07-11 Ep Technologies, Inc. Systems for recording use of structures deployed in association with heart tissue
US6049732A (en) 1997-11-17 2000-04-11 Ep Technologies, Inc. Electrophysiological interface system for use with multiple electrode catheters
US6014581A (en) 1998-03-26 2000-01-11 Ep Technologies, Inc. Interface for performing a diagnostic or therapeutic procedure on heart tissue with an electrode structure
US6106460A (en) 1998-03-26 2000-08-22 Scimed Life Systems, Inc. Interface for controlling the display of images of diagnostic or therapeutic instruments in interior body regions and related data
US6192266B1 (en) 1998-03-26 2001-02-20 Boston Scientific Corporation Systems and methods for controlling the use of diagnostic or therapeutic instruments in interior body regions using real and idealized images
US6115626A (en) 1998-03-26 2000-09-05 Scimed Life Systems, Inc. Systems and methods using annotated images for controlling the use of diagnostic or therapeutic instruments in instruments in interior body regions
US6129669A (en) 1998-05-22 2000-10-10 Scimed Life Systems, Inc. Systems and methods for assessing stability of an ablation electrode in contact with heart tissue
US6035226A (en) 1998-05-22 2000-03-07 Scimed Life Systems, Inc. Systems and methods for assessing stability of an operative instrument inside a body region
US7263397B2 (en) 1998-06-30 2007-08-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for catheter navigation and location and mapping in the heart
US6226542B1 (en) 1998-07-24 2001-05-01 Biosense, Inc. Three-dimensional reconstruction of intrabody organs
US6301496B1 (en) 1998-07-24 2001-10-09 Biosense, Inc. Vector mapping of three-dimensionally reconstructed intrabody organs and method of display
US6245065B1 (en) 1998-09-10 2001-06-12 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6123702A (en) 1998-09-10 2000-09-26 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6183468B1 (en) 1998-09-10 2001-02-06 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US7194294B2 (en) 1999-01-06 2007-03-20 Scimed Life Systems, Inc. Multi-functional medical catheter and methods of use
US6206831B1 (en) 1999-01-06 2001-03-27 Scimed Life Systems, Inc. Ultrasound-guided ablation catheter and methods of use
US6556695B1 (en) 1999-02-05 2003-04-29 Mayo Foundation For Medical Education And Research Method for producing high resolution real-time images, of structure and function during medical procedures
US6391024B1 (en) 1999-06-17 2002-05-21 Cardiac Pacemakers, Inc. RF ablation apparatus and method having electrode/tissue contact assessment scheme and electrocardiogram filtering
US8830235B1 (en) 1999-09-13 2014-09-09 Alcatel Lucent Non-uniform relaxation procedure for multiresolution mesh processing
US6569160B1 (en) 2000-07-07 2003-05-27 Biosense, Inc. System and method for detecting electrode-tissue contact
US6725085B2 (en) 2000-09-22 2004-04-20 Armin Schwartzman Method and apparatus for characterizing cardiac tissue from local electrograms
US6647281B2 (en) 2001-04-06 2003-11-11 Scimed Life Systems, Inc. Expandable diagnostic or therapeutic apparatus and system for introducing the same into the body
US20020198520A1 (en) 2001-06-20 2002-12-26 Scimed Life Systems, Inc. Irrigation sheath
US6895267B2 (en) 2001-10-24 2005-05-17 Scimed Life Systems, Inc. Systems and methods for guiding and locating functional elements on medical devices positioned in a body
US6735465B2 (en) 2001-10-24 2004-05-11 Scimed Life Systems, Inc. Systems and processes for refining a registered map of a body cavity
US8175680B2 (en) 2001-11-09 2012-05-08 Boston Scientific Scimed, Inc. Systems and methods for guiding catheters using registered images
US20030093067A1 (en) 2001-11-09 2003-05-15 Scimed Life Systems, Inc. Systems and methods for guiding catheters using registered images
US6745076B2 (en) 2001-11-16 2004-06-01 Medtronic, Inc. Implantable medical device with autosensitivity algorithm for controlling sensing of cardiac signals
US6790206B2 (en) 2002-01-31 2004-09-14 Scimed Life Systems, Inc. Compensation for power variation along patient cables
US6746401B2 (en) 2002-05-06 2004-06-08 Scimed Life Systems, Inc. Tissue ablation visualization
US20040097803A1 (en) 2002-11-20 2004-05-20 Dorin Panescu 3-D catheter localization using permanent magnets with asymmetrical properties about their longitudinal axis
US20050197657A1 (en) 2004-03-02 2005-09-08 Goth Paul R. Thermokeratoplasty system with a regulated power generator
US7699829B2 (en) 2004-03-25 2010-04-20 Boston Scientific Scimed, Inc. Catheter with sensor tip and method of use of same
US7565208B2 (en) 2004-03-25 2009-07-21 Boston Scientific Scimed, Inc. Catheter with sensor tips, tool and device and methods of use of same
US20050245949A1 (en) 2004-04-28 2005-11-03 Goth Paul R Thermokeratoplasty system with a guided probe tip
GB0410248D0 (en) 2004-05-07 2004-06-09 Isis Innovation Signal analysis method
US7582074B2 (en) 2004-09-16 2009-09-01 Mcneil-Ppc, Inc. Drapeable sanitary absorbent napkin
US20060064083A1 (en) 2004-09-17 2006-03-23 Steve Khalaj Multi-tip probe used for an ocular procedure
US20060089688A1 (en) 2004-10-25 2006-04-27 Dorin Panescu Method and apparatus to reduce wrinkles through application of radio frequency energy to nerves
US20060135957A1 (en) 2004-12-21 2006-06-22 Dorin Panescu Method and apparatus to align a probe with a cornea
US20060184166A1 (en) 2005-02-16 2006-08-17 Moises Valle Method and apparatus to automatically insert a probe into a cornea
AU2006288486A1 (en) 2005-09-05 2007-03-15 Tohoku Techno Arch Co., Ltd. Non-linear signal separation method using non-linear state space projection method
US20070055227A1 (en) 2005-09-08 2007-03-08 Refractec, Inc. Probe used for an ocular procedure
US8038625B2 (en) 2005-09-15 2011-10-18 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for three-dimensional mapping of electrophysiology information
US20070073286A1 (en) 2005-09-29 2007-03-29 Dorin Panescu Method and apparatus for an ocular procedure
US8449535B2 (en) 2005-12-06 2013-05-28 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing coupling between an electrode and tissue
AU2006321574B2 (en) 2005-12-06 2012-07-19 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
US8406866B2 (en) 2005-12-06 2013-03-26 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing coupling between an electrode and tissue
US9629567B2 (en) 2006-01-12 2017-04-25 Biosense Webster, Inc. Mapping of complex fractionated atrial electrogram
US7869854B2 (en) 2006-02-23 2011-01-11 Magnetecs, Inc. Apparatus for magnetically deployable catheter with MOSFET sensor and method for mapping and ablation
US8600497B1 (en) 2006-03-31 2013-12-03 Pacesetter, Inc. Systems and methods to monitor and treat heart failure conditions
US7794404B1 (en) 2006-03-31 2010-09-14 Pacesetter, Inc System and method for estimating cardiac pressure using parameters derived from impedance signals detected by an implantable medical device
US8712519B1 (en) 2006-03-31 2014-04-29 Pacesetter, Inc. Closed-loop adaptive adjustment of pacing therapy based on cardiogenic impedance signals detected by an implantable medical device
US20070232949A1 (en) 2006-03-31 2007-10-04 Ep Medsystems, Inc. Method For Simultaneous Bi-Atrial Mapping Of Atrial Fibrillation
US7774051B2 (en) 2006-05-17 2010-08-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for mapping electrophysiology information onto complex geometry
US7505810B2 (en) 2006-06-13 2009-03-17 Rhythmia Medical, Inc. Non-contact cardiac mapping, including preprocessing
US7729752B2 (en) 2006-06-13 2010-06-01 Rhythmia Medical, Inc. Non-contact cardiac mapping, including resolution map
CA2654759A1 (en) 2006-06-13 2007-12-21 Rhythmia Medical, Inc. Non-contact cardiac mapping, including moving catheter and multi-beat integration
US7515954B2 (en) 2006-06-13 2009-04-07 Rhythmia Medical, Inc. Non-contact cardiac mapping, including moving catheter and multi-beat integration
US7751873B2 (en) 2006-11-08 2010-07-06 Biotronik Crm Patent Ag Wavelet based feature extraction and dimension reduction for the classification of human cardiac electrogram depolarization waveforms
US7946995B1 (en) 2006-11-09 2011-05-24 Pacesetter, Inc. Analyzing circadian variations of a hemodynamic parameter to determine an adverse cardiac condition
US8202224B2 (en) 2006-11-13 2012-06-19 Pacesetter, Inc. System and method for calibrating cardiac pressure measurements derived from signals detected by an implantable medical device
US20080190438A1 (en) 2007-02-08 2008-08-14 Doron Harlev Impedance registration and catheter tracking
US8208999B2 (en) 2007-04-04 2012-06-26 Pacesetter, Inc. System and method for estimating electrical conduction delays from immittance values measured using an implantable medical device
US8504152B2 (en) 2007-04-04 2013-08-06 Pacesetter, Inc. System and method for estimating cardiac pressure based on cardiac electrical conduction delays using an implantable medical device
US7676264B1 (en) 2007-04-13 2010-03-09 Pacesetter, Inc. Systems and methods for use by an implantable medical device for evaluating ventricular dyssynchrony based on T-wave morphology
US7957813B1 (en) 2007-05-08 2011-06-07 Pacesetter, Inc. Adaptive staged wake-up for implantable medical device communication
WO2008141225A1 (en) 2007-05-11 2008-11-20 The Trustees Of Columbia University In The City Of New York Systems and methods for telescopic data compression in sensor networks
US8019419B1 (en) 2007-09-25 2011-09-13 Dorin Panescu Methods and apparatus for leadless, battery-less, wireless stimulation of tissue
US10660690B2 (en) 2007-12-28 2020-05-26 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for measurement of an impedance using a catheter such as an ablation catheter
US8103327B2 (en) 2007-12-28 2012-01-24 Rhythmia Medical, Inc. Cardiac mapping catheter
JP5207172B2 (ja) 2008-03-21 2013-06-12 国立大学法人 大分大学 波形解析装置及び波形解析プログラム
US8538509B2 (en) 2008-04-02 2013-09-17 Rhythmia Medical, Inc. Intracardiac tracking system
JP2011516238A (ja) 2008-04-15 2011-05-26 タフツ メディカル センター インコーポレイテッド 胎児ecgモニタリング
US8532734B2 (en) 2008-04-18 2013-09-10 Regents Of The University Of Minnesota Method and apparatus for mapping a structure
US8128617B2 (en) 2008-05-27 2012-03-06 Boston Scientific Scimed, Inc. Electrical mapping and cryo ablating with a balloon catheter
US8280511B2 (en) 2008-07-07 2012-10-02 Pacesetter, Inc. Systems and methods for use by an implantable medical device for detecting heart failure based on the independent information content of immittance vectors
US8554333B2 (en) 2008-07-24 2013-10-08 Pacesetter, Inc. Adaptable communication sensitivity for an implantable medical device
US8032218B2 (en) 2008-07-31 2011-10-04 Pacesetter, Inc. Implantable cardiac device with satellite refresh
WO2010024738A1 (en) 2008-08-29 2010-03-04 St. Jude Medical Ab Implantable medical device and method for such a device for predicting hf status of a patient
CN104840197B (zh) 2008-10-09 2018-04-17 加利福尼亚大学董事会 用于自动定位生物节律紊乱的源的机器和过程
US8137343B2 (en) 2008-10-27 2012-03-20 Rhythmia Medical, Inc. Tracking system using field mapping
CN102223838B (zh) 2008-11-24 2015-10-07 皇家飞利浦电子股份有限公司 用于对心脏成像的成像设备
US9398862B2 (en) 2009-04-23 2016-07-26 Rhythmia Medical, Inc. Multi-electrode mapping system
EP2427106B1 (en) 2009-05-08 2017-04-26 Rhythmia Medical, Inc. Impedance based anatomy generation
US8571647B2 (en) 2009-05-08 2013-10-29 Rhythmia Medical, Inc. Impedance based anatomy generation
US8103338B2 (en) 2009-05-08 2012-01-24 Rhythmia Medical, Inc. Impedance based anatomy generation
EP2448510B1 (en) 2009-06-30 2016-08-31 Boston Scientific Scimed, Inc. Map and ablate open irrigated hybrid catheter
US20110028821A1 (en) 2009-07-31 2011-02-03 Newcardio, Inc. Electrocardiographic Monitoring System and Method Using Orthogonal Electrode Pattern
WO2011021948A1 (en) 2009-08-21 2011-02-24 Auckland Uniservices Limited System and method for mapping gastro-intestinal electrical activity
US20110105928A1 (en) 2009-11-05 2011-05-05 Newcardio, Inc. ECG Reconstruction For Atrial Activity Monitoring And Detection
US20110112413A1 (en) 2009-11-06 2011-05-12 Newcardio, Inc Method for automated ekg analysis
US20110112415A1 (en) 2009-11-06 2011-05-12 Newcardio, Inc System and method for automated ekg analysis
US20110112414A1 (en) 2009-11-06 2011-05-12 Newcardio, Inc System for automated ekg analysis
US8454589B2 (en) 2009-11-20 2013-06-04 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing effective delivery of ablation therapy
US20110184300A1 (en) 2010-01-26 2011-07-28 Newcardio, Inc. Atrial fibrillation detection based on absence of consistent p-loops in averaged vectorcardiogram
MX2012011614A (es) 2010-04-08 2013-02-07 Univ California Metodos, sistemas y aparato para la deteccion, diagnostico y tratamiento de transtornos del ritmo biologico.
US8787635B2 (en) 2010-05-03 2014-07-22 Siemens Aktiengesellschaft Optimization of multiple candidates in medical device or feature tracking
US8694074B2 (en) 2010-05-11 2014-04-08 Rhythmia Medical, Inc. Electrode displacement determination
US9763587B2 (en) 2010-06-10 2017-09-19 Biosense Webster (Israel), Ltd. Operator-controlled map point density
US20140058282A1 (en) * 2010-10-18 2014-02-27 Mayo Foundation For Medical Education And Research System and method for gastro-intestinal electrical activity
JP2012123880A (ja) 2010-12-10 2012-06-28 Toshiba Corp 半導体記憶装置
US9186081B2 (en) 2010-12-30 2015-11-17 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for diagnosing arrhythmias and directing catheter therapies
US8428700B2 (en) 2011-01-13 2013-04-23 Rhythmia Medical, Inc. Electroanatomical mapping
US9002442B2 (en) 2011-01-13 2015-04-07 Rhythmia Medical, Inc. Beat alignment and selection for cardiac mapping
US9326698B2 (en) 2011-02-18 2016-05-03 The Trustees Of The University Of Pennsylvania Method for automatic, unsupervised classification of high-frequency oscillations in physiological recordings
US9901303B2 (en) 2011-04-14 2018-02-27 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for registration of multiple navigation systems to a common coordinate frame
US9050006B2 (en) 2011-05-02 2015-06-09 The Regents Of The University Of California System and method for reconstructing cardiac activation information
US8165666B1 (en) 2011-05-02 2012-04-24 Topera, Inc. System and method for reconstructing cardiac activation information
KR20140070502A (ko) 2011-05-02 2014-06-10 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 형상 절제를 이용한 심장 리듬 장애를 대상으로 하는 시스템 및 방법
US8972228B2 (en) 2011-05-03 2015-03-03 Medtronic, Inc. Assessing intra-cardiac activation patterns
US8900228B2 (en) 2011-09-01 2014-12-02 Biosense Webster (Israel) Ltd. Catheter adapted for direct tissue contact and pressure sensing
US10201385B2 (en) 2011-09-01 2019-02-12 Biosense Webster (Israel) Ltd. Catheter adapted for direct tissue contact
US20130096447A1 (en) 2011-09-27 2013-04-18 Akshay Dhawan System and methods for serial analysis of electrocardiograms
US20130138003A1 (en) 2011-11-30 2013-05-30 General Electric Company Method, apparatus and computer program product for monitoring clinical state of a subject
EP3488803B1 (en) 2012-02-03 2023-09-27 Intuitive Surgical Operations, Inc. Steerable flexible needle with embedded shape sensing
JP5869925B2 (ja) 2012-03-15 2016-02-24 日本光電工業株式会社 心筋興奮波形検出装置、および検出プログラム
US20130303945A1 (en) 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Electromagnetic tip sensor
US10039473B2 (en) 2012-05-14 2018-08-07 Intuitive Surgical Operations, Inc. Systems and methods for navigation based on ordered sensor records
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US9167999B2 (en) 2013-03-15 2015-10-27 Restoration Robotics, Inc. Systems and methods for planning hair transplantation
CA2908995A1 (en) 2013-04-12 2014-10-16 Discus Analytics, Llc Medical treatment methods
TWI539406B (zh) 2013-07-12 2016-06-21 國立中央大學 影像插補方法以及應用影像插補方法之影像插補裝置與影像裝置
CN105722459B (zh) 2013-08-28 2019-06-14 波士顿科学医学有限公司 在电生理学标测期间估计数据段中激活模式的普遍率
US10076258B2 (en) 2013-11-01 2018-09-18 Boston Scientific Scimed, Inc. Cardiac mapping using latency interpolation
JP2017504407A (ja) 2014-01-13 2017-02-09 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 心臓組織をマッピングするための医療用デバイス
JP2017503590A (ja) 2014-01-13 2017-02-02 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 心臓組織をマッピングする医療用デバイス
JP2017502766A (ja) 2014-01-13 2017-01-26 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 心臓組織をマッピングする医療用デバイス
EP3113671B1 (en) 2014-03-07 2023-10-25 Boston Scientific Scimed, Inc. Medical devices for mapping cardiac tissue
JP2017509399A (ja) 2014-03-11 2017-04-06 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 心臓組織をマッピングするための医療用デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687737A (en) * 1992-10-09 1997-11-18 Washington University Computerized three-dimensional cardiac mapping with interactive visual displays
US5657755A (en) * 1993-03-11 1997-08-19 Desai; Jawahar M. Apparatus and method for cardiac ablation
US20130173222A1 (en) * 2011-12-29 2013-07-04 Eric J. Voth Method and system for constructing an electrophysiology map

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUAN LI 等: "《A Novel Interpolation Method for Electric Potential Fields in the Heart during Excitation》", 《ANNALS OF BIOMEDICAL ENGINEERING》 *

Also Published As

Publication number Publication date
CN105636514B (zh) 2020-06-05
US10076258B2 (en) 2018-09-18
WO2015066322A1 (en) 2015-05-07
US20150126840A1 (en) 2015-05-07
EP3062694A1 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
CN105636514A (zh) 使用延迟内插的心脏标测
JP6517277B2 (ja) マッピング中の電極接触のリアルタイムフィードバック
EP3113671B1 (en) Medical devices for mapping cardiac tissue
CN105007811B (zh) 基于电气与机械装置的心脏激活信息的再构造
CN105307561B (zh) 用于标识转子传播矢量的系统
CN105636513A (zh) 使用局部匹配进行高分辨率标测的医疗装置
CN103385706B (zh) 定位导管护套端点
US9636032B2 (en) Persistent display of nearest beat characteristics during real-time or play-back electrophysiology data visualization
AU2014265087B2 (en) Flexible multiple-arm diagnostic catheter
CN106456036A (zh) 用于映射心脏组织的医疗装置
JP2017512095A (ja) 心臓組織をマッピングするための医療用デバイス及びマッピングデータを表示する方法
CN106102574A (zh) 用于标测心脏组织的医疗装置
CN104799850A (zh) 用于心房纤颤注记的双重双极构型
US20150196215A1 (en) Medical devices for mapping cardiac tissue
CN104883969A (zh) 使用顺序模式匹配的转子识别
EP3113672A1 (en) Medical devices for mapping cardiac tissue and methods for displaying mapping data
CN107072575A (zh) 用于映射心脏组织的医疗装置
CN105873500A (zh) 心脏组织标测医疗装置
CN106999075A (zh) 用于标测心脏组织的医疗系统
CN105873507A (zh) 心脏组织标测医疗装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200605

Termination date: 20211030

CF01 Termination of patent right due to non-payment of annual fee